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Abstract

A link between norms from quadratic fields and —det (48— BA4) for 2 x 2 matrices is reformu-
lated via central polynomials and thereby generalized.

Subject classification (Amer. Math. Soc. (MOS) 1970): 12 A 99, 15 A 15, A 36.

This paper is concerned with three elaborations, I, 1I, III, of a theorem found
ecarlier by this author (1974). It concerns the following fact.

(1) Let A=(ay) be a 2x2 matrix with integral (or rational) elements and
irrational characteristic root o and B = (b;) any integral 2 x 2 matrix then

—det (AB— BA) = norm A
where A€ Q(a).

An earlier result (Taussky (1962)) is connected with this.

(2) Let A =(ay;,) be a matrix as in (1) and S an integral matrix such that
S1AS = A" (the transpose)
then
—detS =normpu

where p€ Q(o).
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L
THEOREM 1. (1) follows from (2).

Assume tr4 = 0. This is no restriction when studying AB— BA. In Taussky
(1976) it is shown that for A with irrational characteristic roots the commutator
C = AB—BA is 0 or non-singular. This follows by an easy computation via
the companion matrix of C.

it follows that

- - 2 M 0 1
Assuming 4 in companion matrix form ( —det A O)

ClAC=—-A.

Apply then a similarity via (_0 1) to both sides of this equation and obtain

10

0o 1\, 1 0 1 o n_
(8 ooy o) ==(51 o2 o)
0 1 . . .
Hence det C 1 0= det C is a negative norm from Q(«) in virtue of (2).

II. Discussion of one of the proofs of (1)

A number of proofs were suggested. One of the treatments by Zassenhaus (1977)
uses cyclic algebras. A version of this is used here. It is linked with a proof by
Kisilevsky and this author; see Taussky (1976).

A cyclic algebra is determined by a cyclic extension of the ground field of degree,
say n, with automorphism ¢. The algebra has as basis elements the basis of the
cyclic field and a set of elements corresponding to the powers of o. The element
corresponding to o® is contained in the ground field. Associativity follows then.

The algebra is isomorphic with the full ring of # x n matrices if and only if the
element corresponding to o™ is a norm from the cyclic extension. This algebra
contains the four linearly independent elements I, A, B, AB—BA under our
assumptions as long as AB— BA#0. Hence, by the theorem characterizing cyclic
algebras which form the whole matrix algebra we have (AB— BA)? equal to a
norm from Q(a) times 1. But, by the central poiynomial property of (48— BA4)*
it is a scalar matrix, namely the scalar matrix —det (4B— BA) L

III. Link with the central polynomial

The fact that the case n = 2 is connected with the central polynomial for n = 2
suggested theidea of generalizing (1) via the higher dimensional central polynomials.
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The polynomials found by Formanek (1972) particularly stressed the case of
a pair of matrices 4, B, where A4 is in diagonal form. Hence, again, as in (1), 4 is
assumed integral and with irreducible characteristic polynomial and character-
istic roots a = oW, a®, ..., o™, while B = (b;;) is an arbitrary integral matrix. In
order to use Formanek’s method we transform A4 to diagonal form via a similarity
S and apply the same similarity to B, obtaining a matrix B whose elements lie in
the normal closure of Q(«x).

Restricting to the case n = 3 the central polynomial consists of the sum of certain
monomials

cA% BA%™ BA®™ BA®,

where {+ i +i;+i;=6and c=+1or —2.

Assuming A already in diagonal form the central polynomial applied to A,
B works out as (Byy By by +byy 513 ba5) TT1<icjecs(e? — a2, This can be obtained
by direct computation of the element (1,1) of the resulting scalar matrix or by
using Formanek’s result for diagonal 4 and for three matrices B,, B,, B, appearing
in the monomials instead of B, taking them as matrix units and then using the
linearity in the B;’s and finally replacing the B;’s by B. What remains in the scalar
from B are only full cycles 5,-1,-1 Em'z szil.

Comparing with the n = 2 case: the result there is 5,5 y;.

We now discuss the similarity S to obtain the full generalization of (1). Again,
only n =3 is treated. However, while what was obtained for general n in the
preceding paragraphs can be modelled in # = 3, this is not completely the case here

from now on.

THEOREM 2. Let A, B be a pair of 3 % 3 integral matrices, A with irreducible charac-
teristic polynomial f(x) and characteristic roots o'V, o'®, o'®, B an arbitrary integral
matrix. Then the Formanek central polynomial G,(A, B, B, B) is equal to the scalar
matrix gl where g is equal to the product of the discriminant d of the polynomial
f(x) times the trace from Q(|d) of a relative norm from Q(«™, a®, a®) to Q(/d).

ProoF. In view of what was explained earlier it is sufficient to show that
Byg» bos, by are conjugate elements in the extension Q(a!V, o), a®) with respect to
Q(yd) and that by, by byy, by by3 by, are conjugate elements of Q(/d) with respect

to Q.

The matrix S which transforms B into B can be chosen to consist of 3 column
vectors which are the characteristic vectors of 4 with respect to a®, a®), af® and
hence are conjugate. We denote them correspondingly as of, oV, of? ; a{?, af?, o ;
o3, o, of®). (Each of these vectors forms a Z-basis for an ideal in its corresponding

field via the correspondence between ideal classes and matrix classes).
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To the vector ofV,ofV,of! corresponds a dual or complementary vector
BV, BV, BV satlsfymg trace ol B{Y = §;;,. This shows that the matrix with rows
BV, BV, BV and its conjugates is the inverse of the matrix with columns
o), o), o) (i = 1,2, 3).

Hence, we have the following form for B = (b'tk):

1k —_ ’B(z) b OL
7,8

Hence
by =3BV by by =T PP b r®; by = TP by ol

rs's

and similarly for by, b3, by,
This proves the assertion.

The idea of using the complementary basis was used by Bender when reproving
the author’s original theorem (1) in a less computational way. At that time Bender
also observed that his method yields that for » = 3 the additive commutator of
diag («?, «?, a®) and B goes over into

0 by by
by by O

Hence it appears that for #» = 3 the central polynomial scalar and the determinant
of the commutator differ merely by IT;¢;jca(a® —at¥)2,
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