FROM CYCLIC ALGEBRAS OF QUADRATIC FIELDS TO CENTRAL POLYNOMIALS

OLGA TAUSSKY

To K. Mahler on his 75th birthday

(Received 27 December 1977)

Communicated by J. H. Coates

Abstract

A link between norms from quadratic fields and $-\det(AB-BA)$ for 2×2 matrices is reformulated via central polynomials and thereby generalized.

Subject classification (Amer. Math. Soc. (MOS) 1970): 12 A 99, 15 A 15, A 36.

This paper is concerned with three elaborations, I, II, III, of a theorem found earlier by this author (1974). It concerns the following fact.

(1) Let $A = (a_{ik})$ be a 2×2 matrix with integral (or rational) elements and irrational characteristic root α and $B = (b_{ik})$ any integral 2×2 matrix then

$$-\det(AB-BA) = \operatorname{norm}\lambda$$

where $\lambda \in Q(\alpha)$.

An earlier result (Taussky (1962)) is connected with this.

(2) Let $A = (a_{ik})$ be a matrix as in (1) and S an integral matrix such that

 $S^{-1}AS = A'$ (the transpose)

then

 $-\det S = \operatorname{norm} \mu$

where $\mu \in Q(\alpha)$.

I.

THEOREM 1. (1) follows from (2).

Assume tr A = 0. This is no restriction when studying AB-BA. In Taussky (1976) it is shown that for A with irrational characteristic roots the commutator C = AB-BA is 0 or non-singular. This follows by an easy computation via the companion matrix of C.

Assuming A in companion matrix form $\begin{pmatrix} 0 & 1 \\ -\det A & 0 \end{pmatrix}$ it follows that

$$C^{-1}AC = -A.$$

Apply then a similarity via $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ to both sides of this equation and obtain

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} C^{-1} A C \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = - \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} A \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = A'.$$

Hence det $C\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} = \det C$ is a negative norm from $Q(\alpha)$ in virtue of (2).

II. Discussion of one of the proofs of (1)

A number of proofs were suggested. One of the treatments by Zassenhaus (1977) uses cyclic algebras. A version of this is used here. It is linked with a proof by Kisilevsky and this author; see Taussky (1976).

A cyclic algebra is determined by a cyclic extension of the ground field of degree, say *n*, with automorphism σ . The algebra has as basis elements the basis of the cyclic field and a set of elements corresponding to the powers of σ . The element corresponding to σ^n is contained in the ground field. Associativity follows then.

The algebra is isomorphic with the full ring of $n \times n$ matrices if and only if the element corresponding to σ^n is a norm from the cyclic extension. This algebra contains the four linearly independent elements *I*, *A*, *B*, *AB-BA* under our assumptions as long as $AB-BA \neq 0$. Hence, by the theorem characterizing cyclic algebras which form the whole matrix algebra we have $(AB-BA)^2$ equal to a norm from $Q(\alpha)$ times *I*. But, by the central polynomial property of $(AB-BA)^2$ it is a scalar matrix, namely the scalar matrix $-\det(AB-BA)I$.

III. Link with the central polynomial

The fact that the case n = 2 is connected with the central polynomial for n = 2 suggested the idea of generalizing (1) via the higher dimensional central polynomials.

Cyclic algebras

The polynomials found by Formanek (1972) particularly stressed the case of a pair of matrices A, B, where A is in diagonal form. Hence, again, as in (1), A is assumed integral and with irreducible characteristic polynomial and characteristic roots $\alpha = \alpha^{(1)}, \alpha^{(2)}, ..., \alpha^{(n)}$, while $B = (b_{ik})$ is an arbitrary integral matrix. In order to use Formanek's method we transform A to diagonal form via a similarity S and apply the same similarity to B, obtaining a matrix \tilde{B} whose elements lie in the normal closure of $Q(\alpha)$.

Restricting to the case n = 3 the central polynomial consists of the sum of certain monomials

$$cA^{i_0}$$
 BA^{i_1} BA^{i_2} BA^{i_3} ,

where $i_0 + i_1 + i_2 + i_3 = 6$ and $c = \pm 1$ or -2.

Assuming A already in diagonal form the central polynomial applied to A, \tilde{B} works out as $(\tilde{b}_{12}\tilde{b}_{23}\tilde{b}_{31}+\tilde{b}_{21}\tilde{b}_{13}\tilde{b}_{32})\prod_{1\leq i< j\leq 3}(\alpha^{(i)}-\alpha^{(j)})^2$. This can be obtained by direct computation of the element (1,1) of the resulting scalar matrix or by using Formanek's result for diagonal A and for three matrices B_1 , B_2 , B_3 appearing in the monomials instead of \tilde{B} , taking them as matrix units and then using the linearity in the B_i 's and finally replacing the B_i 's by \tilde{B} . What remains in the scalar from \tilde{B} are only full cycles $\tilde{b}_{i_1j_1}\tilde{b}_{j_1j_2}\tilde{b}_{j_2i_1}$.

Comparing with the n = 2 case: the result there is $\tilde{b}_{12}\tilde{b}_{21}$.

We now discuss the similarity S to obtain the full generalization of (1). Again, only n = 3 is treated. However, while what was obtained for general n in the preceding paragraphs can be modelled in n = 3, this is not completely the case here from now on.

THEOREM 2. Let A, B be a pair of 3×3 integral matrices, A with irreducible characteristic polynomial f(x) and characteristic roots $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$, B an arbitrary integral matrix. Then the Formanek central polynomial $G_n(A, B, B, B)$ is equal to the scalar matrix gI where g is equal to the product of the discriminant d of the polynomial f(x) times the trace from $Q(\sqrt{d})$ of a relative norm from $Q(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)})$ to $Q(\sqrt{d})$.

PROOF. In view of what was explained earlier it is sufficient to show that $\tilde{b}_{12}, \tilde{b}_{23}, \tilde{b}_{31}$ are conjugate elements in the extension $Q(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)})$ with respect to $Q(\sqrt{d})$ and that $\tilde{b}_{12}, \tilde{b}_{23}, \tilde{b}_{31}, \tilde{b}_{21}, \tilde{b}_{13}, \tilde{b}_{32}$ are conjugate elements of $Q(\sqrt{d})$ with respect to Q.

The matrix S which transforms B into \tilde{B} can be chosen to consist of 3 column vectors which are the characteristic vectors of A with respect to $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$ and hence are conjugate. We denote them correspondingly as $\alpha_1^{(1)}, \alpha_2^{(1)}, \alpha_3^{(1)}; \alpha_1^{(2)}, \alpha_2^{(2)}, \alpha_3^{(2)}; \alpha_1^{(3)}, \alpha_2^{(3)}, \alpha_3^{(3)}$. (Each of these vectors forms a Z-basis for an ideal in its corresponding field via the correspondence between ideal classes and matrix classes).

Olga Taussky

To the vector $\alpha_1^{(1)}, \alpha_2^{(1)}, \alpha_3^{(1)}$ corresponds a dual or complementary vector $\beta_1^{(1)}, \beta_2^{(1)}, \beta_3^{(1)}$ satisfying trace $\alpha_1^{(1)}, \beta_k^{(1)} = \delta_{ik}$. This shows that the matrix with rows $\beta_1^{(1)}, \beta_2^{(1)}, \beta_3^{(1)}$ and its conjugates is the inverse of the matrix with columns $\alpha_1^{(i)}, \alpha_2^{(i)}, \alpha_3^{(i)}$ (i = 1, 2, 3).

Hence, we have the following form for $\tilde{B} = (b_{ik})$:

$$\tilde{b}_{ik} = \sum_{r,s} \beta_r^{(i)} b_{rs} \alpha_s^{(k)}$$

Hence

$$\tilde{b}_{12} = \sum \beta_r^{(1)} b_{rs} \, \alpha_s^{(2)}; \quad \tilde{b}_{23} = \sum \beta_r^{(2)} b_{rs} \, \alpha_s^{(3)}; \quad \tilde{b}_{31} = \sum \beta_r^{(3)} b_{rs} \, \alpha_s^{(1)};$$

and similarly for $\tilde{b}_{21}, \tilde{b}_{13}, \tilde{b}_{32}$.

This proves the assertion.

The idea of using the complementary basis was used by Bender when reproving the author's original theorem (1) in a less computational way. At that time Bender also observed that his method yields that for n = 3 the additive commutator of diag ($\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$) and \tilde{B} goes over into

$$\begin{pmatrix} 0 & \tilde{b}_{12} & \tilde{b}_{13} \\ \tilde{b}_{21} & 0 & \tilde{b}_{23} \\ \tilde{b}_{31} & \tilde{b}_{32} & 0 \end{pmatrix}.$$

Hence it appears that for n = 3 the central polynomial scalar and the determinant of the commutator differ merely by $\prod_{1 \le i < j \le 3} (\alpha^{(i)} - \alpha^{(j)})^2$.

References

- E. Bender, private communication.
- E. Formanek (1972), "Central polynomials for matrix rings", J. Algebra 23, 129-132.
- O. Taussky (1962), "Ideal matrices I", Arch. Math. 13, 275-282.
- O. Taussky (1974), "Additive commutators between 2 × 2 integral matrix representations of orders in identical or different quadratic number fields", Bull. Amer. Math. Soc. 80, 885–887.
- O. Taussky (1976), Two Facts concerning Rational 2×2 Matrices leading to Integral Ternary Forms representing Zero. (Seminar Notes Calif. Inst. Tech.)
- H. Zassenhaus (1977), "Cyclic orders", Number Theory and Algebra, edited by H. Zassenhaus, (Academic Press, New York), 363–393.

Mathematics Department 253–37 California Institute of Technology Pasadena, CA 91125 USA