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Introduction

1.1 Pairing in nuclei, superconductors, liquid 3He and neutrons stars

If one sweeps a magnetic field through a metallic ring (e.g. a ring made out
of lead) immersed in liquid helium (T ∼ 4 K) it induces a current which does
not show any measurable decrease for a year, and a lower bound of 105 years
for its characteristic decay time has been established using nuclear resonance
to detect any slight decrease in the field produced by the circulating current
(File and Mills (1963)). If a torus-shaped vessel filled with liquid helium below
the critical temperature Tc = 2.17 K (known as He II) and packed with porous
material, which provides very narrow capillary channels, is rotated around its
axis of symmetry and then brought to rest, the liquid continues to flow (Reppy and
Depatie (1964)), showing no reduction in the angular velocity over a twelve-hour
period, and indicating that He II can flow without dissipation. Using an adiabatic
cooling apparatus, Osheroff et al. (1972 a,b) found two anomalies in the pressure–
time curve of liquid 3He, when the volume was changed at a constant rate. At the
critical temperature Tc = 2.7 mK the slope of the curve suffered a discontinuity,
and at about Tc = 1.8 mK there was a singularity involving hysteresis (see also
Osheroff (1997) and Lee (1997)). If a deformed nucleus in its ground state
is set into a state of rotation by the action of a non-uniform, time-dependent
Coulomb field, it displays rotational bands with a moment of inertia which is a
fraction (between one-half to one-third) of the rigid moment of inertia (Belyaev
(1959), Bohr and Mottelson (1975)). Rotating neutron stars (pulsars) display
marked glitches, that is, sudden increases in the frequency of the emitted pulses
of radiation (McKenna and Lyne (1990), McCullough et al. (1990), Flanagan
(1990), Anderson et al. (1982)). All the above observations are examples of
phenomena known as superconductivity and superfluidity.

From a microscopic point of view, helium atoms are structureless spherical
particles interacting via a two-body potential. The attractive part of this potential,
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arising from weak Van der Waals-type dipole, quadrupole, etc. forces, causes
helium gas to condense, at normal pressure, into a liquid at temperatures of 3.2 K
and 4.2 K for 3He and 4He respectively.

The striking difference in the behaviour of 3He and 4He at even lower tem-
peratures, in particular the fact that the critical temperature for 3He to become
superfluid is roughly one thousandth of the transition temperature of 4He, is a
consequence of the fact that 3He is composed of an odd number of fermions (two
protons, one neutron and two electrons), and is thus also a fermion, while 4He,
containing one more neutron, is a boson. Since in a Bose system single-particle
states may be multiply occupied, at low temperatures this system has a tendency
to condense into the lowest-energy single-particle state (Bose–Einstein conden-
sation). It is believed that the superfluid transition in 4He is a manifestation of
Bose–Einstein condensation (see e.g. Leggett (1989), Pitaevskii and Stringari
(2003), Pethick and Smith (2002)).

The basic feature of the Bose condensate is its phase rigidity, i.e. the fact that
it is energetically favourable for the particles to condense into a single-particle
state of fixed quantum-mechanical phase, such that the global gauge symmetry is
spontaneously broken. For three-dimensional (3D-) systems, macroscopic flow
of the condensate is (meta) stable, giving rise to the phenomenon of superfluidity
(frictionless flow).

In a Fermi system, on the other hand, the Pauli exclusion principle allows only
single occupation of fermion states. In the simplest approximation the fermions
move independently in an average potential and occupy the lowest available
single-particle states up to a Fermi energy εF. Fermions with energy near εF are,
in a variety of systems, subject to a pairing residual interaction. The associated
pairing correlations are important for understanding the structure of the low-
lying states of nuclei, the properties of neutron stars and those of metals and
of liquid helium 3He at low temperatures. The relevant fermions are nucleons
in nuclei, and in neutron stars, electrons in superconductors and 3He atoms in
liquid helium.

The pairing interaction leads to pairs of fermions bound in states coupled
to integer spin (zero or one). These pairs, whose structure is different for each
physical system, behave like bosons, and can at low temperatures Bose-condense,
the condensate being characterized by macroscopic quantum coherence leading
to the superconducting or superfluid phase. The mechanism and the consequences
of this condensation in the case of nuclei is the subject of the present monograph.

Particular emphasis is placed on the study of quantal-size-effects (QSE). These
effects are due to the fact that the nucleus is a finite many-body system where the
surface plays a paramount role. In fact, the nuclear surface is not only the source
of space quantization and thus of the discreteness of the single-particle levels,
but also, by vibrating as a whole, of the existence of collective surface modes.
Furthermore, because the length at which Cooper pairs are correlated is much
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larger than the nuclear dimension, the nuclear superfluid can be viewed as a zero-
dimensional system. Because the number of pairs which build the condensate is
small, fluctuations become very important.

1.2 Macroscopic wavefunction and phase rigidity

The central idea of the macroscopic quantum state is represented by assigning a
macroscopic number of particles to a single wavefunction (�̃) (see e.g. Anderson
(1964, 1984), Mercerau (1969), Tilley and Tilley (1974), Bruus and Flensberg
(2004)). These particles are assumed to have condensed into a single state. This
condensation results in a macroscopic density of particles (ρs) sharing the same
quantum phase (
). The resulting wavefunction is then �̄ = � exp (i
). In this
form ρs = (�̄∗�̄) is not the usual probability of finding a particle but, owing to
the macroscopic number of particles involved, is actually the effective particle
density. Both � and 
 may be functions of space and time and their variations
will therefore determine the motion of the quantum fluid.

In what follows we shall be more interested in understanding the consequences
the r-dependence of
 has on the behaviour of the system and somewhat neglect
the r-dependence of �. Since, by definition, the particles are in precisely the
same state and must therefore behave in an identical fashion, the equations of
motion for the macrostate must also be identical to the equations of motion
for any single particle in this state. Because the phase is common to so many
particles, its effects do not average out on a macroscopic scale, but remain to
fundamentally determine the behaviour of the system.

Changes in the wavefunction are of course determined by the Schrödinger
equation. In particular, the centre of mass velocity ( 	V ) can be calculated for this
wavefunction from the velocity operator (	v) common to all the particles

	v = − 1

m∗
(i� 	∇ + e∗ 	A)

where e∗ and m∗ are, respectively, the (effective) charge and mass of the particles
and 	A is the vector potential. The centre of mass velocity is

	V = 1
2

{
�̄ 	v +�̄ + + �̄ +	v�̄}

/
(
�̄ +�̄

)
giving a current

	J = e∗ρs 	V = e∗ρs

m∗
(
� 	∇
− e∗ 	A

)
. (1.1)

By taking the curl of this equation one can derive another equation of signifi-
cance, namely

	∇ × 	J + ρse∗
2

m∗c
	B = 0. (1.2)
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This is the solution found by F. London and H. London (London, 1954) of the
relation

∂

∂t

(
	∇ × 	J + ρse∗

2

m∗c
	B
)
= 0. (1.3)

This equation together with the Maxwell equation

	∇ × 	B = 4π

c
	J , (1.4)

characterizes a medium that conducts electricity without dissipation. In fact, in
such circumstances, electrons under the effect of an electric field will be freely
accelerated without dissipation so that their mean velocity 	vs will satisfy

m∗
d 	vs

dt
= −e∗ 	E .

Since the current density carried by these electrons is 	J = −e∗vsρs, the above
equation can be written as

d

dt
	J = ρse∗2

m∗
	E . (1.5)

The Fourier transform of this equation gives the ordinary AC conductivity for
an electron gas of density ρs in the Drude model, when the relaxation time τ
becomes infinitely large, that is,

	J = σs(ω)E(ω)

where

σs(ω) = lim
τ→∞ σ (ω)

is the frequency dependent (or AC) conductivity

σ (ω) = σ0

1− iωτ
,

the zero-frequency conductivity being

σ0 = ρse∗
2
τ

m∗
.

Substituting equation (1.5) into Faraday’s induction law

∇ × 	E = −1

c

∂ 	B
∂t
,

one finds equation (1.3). In other words, 	∇ × 	J + ρse∗2

m∗c
	B = C characterizes a

non-dissipative electric medium. The more restrictive London equation, which
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specifically characterizes superconductors and distinguishes them from mere
perfect conductors, requires in addition C = 0.

The reason for replacing (1.3) by (1.2) is that the latter equation leads directly
to essential experimental facts, by forbidding currents or magnetic fields internal

to the superconductor except within a layer of thickness � =
(

m∗c2

4πρse∗2

)1/2
≈

42
(

rs
a0

)3/2 (
ρ

ρs

)1/2
(London penetration depth) of the surface, r0 = aBrs being

the Wigner-Seit cell radius of the system under consideration, defining the density
ρ (r0 = (4πρ/3)−1/3). In fact, equations (1.2) and (1.4) imply

∇2 	B = 4πρse∗2

m∗c2
	B,

∇2 	J = 4πρse∗2

m∗c2
	J ,

where the relation 	∇ × ( 	∇×) = 	∇( 	∇·)− ∇2 was used. Assuming a semi-infinite
superconductor occupying the half space x > 0,

B(x) = B(0)e−x/�,

and

J (x) = J (0)e−x/�.

Thus, the London equation implies the Meissner effect, along with a specific
picture of the surface currents that screen out the applied field. These currents
occur within a surface layer of thickness 102 − 103 Å. Within this same surface
layer the field drops continuously to zero, predictions which are confirmed,
among other things, by the fact that the field penetration is not complete in
superconducting films as thin as or thinner than the penetration depth �.

Let us now return to equation (1.1). This relation can be obtained by minimiz-
ing the free energy of the system with respect to the phase 
. In other words,
subject to a phase gradient, the system minimizes its energy by carrying a current
even in thermodynamical equilibrium, and such a current is always dissipation-
less. This is true both for charged systems (like, e.g., metals where e∗ = 2e and
m∗ = 2me), as well as for neutral systems (like, e.g., He II, where e∗ = 0 and
m∗ = m4).

Of course there is an energy cost for the system to carry the current, but
as long as this cost is smaller than the alternative which is to go out of the
superfluid or superconducting state, the current carrying state is chosen. The
critical current is reached when the energies are equal (and equal to the value of
the gap, see Sections 1.4 and 1.5 and Figs. 1.6 and 1.7), and then the superfluid
or superconductor goes into the normal state (see equations (1.17) and (1.21),
respectively).
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Within this context, it should be noted that the appearance of the excitation
gap is not the reason for the superfluidity or superconductivity itself, but a con-
sequence of the spontaneous symmetry breaking of gauge invariance. In fact,
gapless superconductors do exist (in this connection see Sections 5.3 and 6.2.1).

1.3 Broken symmetry and collective modes

In many phase transitions, such as that to the ferromagnetic state, or from the
normal to the superconducting state, or again from a spherical to a deformed
nucleus, the ground state of the low-temperature phase has a lower symmetry
than the Hamiltonian used to describe the system. The situation is one of broken
symmetry. In cases where the symmetry group that is broken is continuous
(e.g. the rotation group), a new collective mode appears, whose frequency, in
the absence of long-range forces, goes to zero in the long wavelength limit
(Anderson Goldstone Nambu (AGN) mode (see Chapter 4)). For the ferromagnet,
the elementary excitations required by Goldstone’s theorem (Goldstone, 1961)
are Bloch’s spin waves (magnons), in which the magnetization precesses about
its direction in the ground state (see Figs. 1.1 and 1.2).

Superconductors furnish an example of a system in which the excitations
required by the symmetry-breaking process have a finite frequency in the

(c)
a a a

(a) (b) (c)

Figure 1.1. (a) Classical picture of the ground state of a simple ferromagnet; all spins are par-
allel. (b) A possible excitation; one spin is reversed. (c) The low-lying elementary excitations
are spin waves. The ends of the spin vectors precess on the surfaces of cones, with successive
spins advanced in phase by a constant angle (after C. Kittel (1968)). From Introduction to
Solid State Physics, 7th edition, by Charles Kittel, Copyright 1995 John Wiley & Sons Inc.
Reprinted with permission of John Wiley & Sons Inc.

a
(a)

(b)

Figure 1.2. A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins
viewed from above, showing one wavelength. The wave is drawn through the ends of the
spin vectors (after Kittel (1968)). From Introduction to Solid State Physics, 7th edition, by
Charles Kittel, Copyright 1995 John Wiley & Sons Inc. Reprinted with permission of John
Wiley & Sons Inc.
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Figure 1.3. Excitation spectrum of density fluctuations in a quantum plasma with the density
of Al, as calculated in the random phase approximation. Plasmons are essentially undamped
(see also Section 8.3.4) for wavevectors less than qc, and are strongly damped (Landau
damping) beyond qc by the single particle–hole excitations, whose energies lie within the
hatched region (after Pines (1963)).

long wavelength limit (because of the infinite range of the Coulomb force):
the corresponding Goldstone mode is the familiar plasma oscillation (see
Fig. 1.3).

For a neutral fermion superfluid, on the other hand, the collective mode is the
zero-sound mode proposed by Anderson (1958) and Bogoliubov (1958a), which
has a vanishing frequency at long wavelengths (see Section 4.3.1).

An example of AGN boson in a neutral system is provided by the fourth sound
in superfluid 3He, which corresponds to the oscillatory motion of the superfluid
phase in a confined geometry (superleak) where the normal fluid is clamped. For
example, assume a porous medium. In it, the normal-fluid fraction (see equation
(1.12)) is clamped by the scattering of quasiparticles with the surface of the
very narrow channels. The superfluid fraction is barely affected by the confining
walls, provided that the channel diameter is greater than the coherence length
ξ (T ) (equation (1.32)), and thus may move freely. The oscillatory motion of
the superfluid phase in such a confined geometry is called fourth sound (see
Vollhardt and Wölfle (1990)). In the case of atomic nuclei, the very occurrence
of collective rotational degrees of freedom may be said to originate in a breaking
of rotational invariance, which introduces a ‘deformation’ that makes it possible
to specify an orientation of the system (Bohr and Mottelson, 1975). Rotation
(see Fig. 1.4) represents the collective mode associated with such a spontaneous
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Figure 1.4. Schematic representation of the (discrete) energy levels of the (ground state) rota-
tional band of a quadrupole deformed atomic nucleus as a function of the angular momentum
I (E = (�2/2I )I (I + 1), where I is the moment of inertia).

symmetry breaking (AGN boson). The full degrees of freedom associated with
rotations in three-dimensional space come into play if the deformation com-
pletely breaks the rotational symmetry, thus permitting a unique specification
of the orientation. If the deformation is invariant with respect to a subgroup of
rotations, the corresponding elements are part of the intrinsic degree of freedom,
and the collective rotational modes of excitation are correspondingly reduced,
disappearing entirely in the limit of spherical symmetry.

1.4 Superfluid 4He (He II)
4He becomes liquid under its own vapour pressure at 4.21 K. The liquid phase at
this temperature, helium I, behaves like a normal liquid, but at 2.17 K it shows
a further phase transition – to helium II. Helium II is a most peculiar liquid: it
shows superfluidity, i.e. a lack of viscosity when flowing through a narrow slit
or capillary. At 2.17 K the specific heat shows a very strong pronounced peak,
resembling the Greek letter λ, whence Ehrenfest suggested the name λ-point for
the transition point (see Fig. 1.5).

The theory developed by Landau (Landau (1941, 1947)) was constructed
upon the basic idea that the equilibrium properties of liquid helium below the
λ-point could be expressed in terms of the energy spectrum of the elementary
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Figure 1.5. Specific heat of 4He (after Atkins (1959)).

excitations possible in helium, namely phonons and rotons. Landau considers the
quantization of liquids and reaches the conclusion that there are states possible
in the liquid for which

curl 	v = 0, (1.6)

where 	v is the velocity of the liquid. Note that this relation is obtained from
equation (1.1) for e∗ = 0 (neutral system). Such states correspond to potential
flow, as would be the case in classical hydrodynamics, because, just as there is
no continuous transition in quantum mechanics between states with zero angular
momentum and with non-vanishing angular momentum, in the same way there
may be no continuous transition between states with curl 	v = 0 and those with
curl 	v �= 0. Consequently, one concludes that there will be an energy gap �
between the lowest energy level corresponding to potential flow and the lowest
energy level of vortex motion (curl 	v �= 0). In order that the liquid be superfluid,
it is necessary that the vortex motions start at a higher energy than the potential
flow motions.

The spectrum of helium II can thus be seen as a superposition of two continuous
spectra: one corresponding to potential flow and one corresponding to vortex
motion. The potential flow part of the spectrum corresponds to longitudinal
waves, i.e. sound waves. The elementary excitations are thus phonons, the energy
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p0 p

ε

Figure 1.6. Phonon–roton spectrum suggested by Landau. Broken lines indicate superfluid
critical velocities. Dotted line shows free-particle parabola for comparison.

spectrum of which is known to be (Fig. 1.6)

εph = cs p,

where p is the momentum of the excitation while cs is the sound velocity.
The elementary excitations of the vortex motion were called rotons by Tamm.

The roton spectrum is given by

εr = �+ (p − p0)2

2μ
, (1.7)

where � is the energy gap mentioned above while μ is the inertia of the rotons.
It should be emphasized that the above two equations (see also Fig. 1.6) give

the energy of the excitation spectrum of the elementary excitations of the helium
II and not the energy spectrum of the single helium atoms

εsp = p2

2m4
.

Note that given the dispersion relation shown in Fig. 1.6 it is difficult to speak
strictly of rotons and phonons as qualitatively different types of excitations. It
could be more correct to speak simply of the long wave (small p) and short wave
(p in the neighbourhood of p0) excitations. In any case, there is an essential
difference between phonons and rotons. Phonons can have zero energy in the
long wavelength limit and thus qualify as AGN modes (Anderson (1952, 1963),
Nambu (1959, 1960)), while rotons have always an energy ≥ � and can thus
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never be an example of Goldstone’s theorem (Goldstone (1961), Goldstone et al.
(1962)).

At finite temperature and assuming it to be sufficiently low, one can consider
the excitation of He II to be that of a perfect gas of phonons and rotons. This
means that one neglects the interaction between the elementary excitations. If
one assumes that the presence of excitations does not affect the spectrum of
any new excitation, one can prove (see below) that new phonon and rotons
cannot be excited if the liquid moves with V < (Vc)phon,rot (see equations (1.17)
and (1.19)) through a capillary. However, the phonon and roton gas will not be
superfluid. Landau showed indeed that this gas will stick to the walls and behave
like an ordinary liquid. This leads to the conclusion that at finite, not too high,
temperatures, part of the liquid behaves normally while the remainder shows
superfluidity.

In other words in a quantum liquid such as helium both normal and superfluid
motion can occur and while there is no real division of the liquid into two parts,
such that some atoms belong to the superfluid liquid and others to the normal
liquid, it is possible to assign to each of the two liquids its own mass. In fact, the
density of the normal liquid at a given temperature can be defined as the effective
mass of the roton and phonon gases.

To evaluate these masses, we consider the liquid moving at a velocity 	V . Since
the phonons are bosons, their distribution function is {expβ[ε − ( 	p · 	V )]− 1}−1,
where β = 1/T . The total momentum per unit volume is then

	Pph = 1

(2πh)3

∫ 	p d3 p

eβ[ε− 	p· 	V ] − 1
. (1.8)

The effective phonon mass density ρph can then be defined through the relation

	Pph = ρph 	V . (1.9)

For small 	V one can expand the denominator in the integral and retain only the
linear term in 	V . This leads to

ρph = 4

3
ρ

Eph

c2
s

, (1.10)

where ρ is the total density of the liquid and Eph the energy of the phonon gas
which is proportional to T 4.

One can evaluate the effective roton mass density ρr in a similar way. Having
found ρr and ρph one has determined the normal fluid density,

ρn = ρr + ρph, (1.11)

as well as the superfluid density

ρs = ρ − ρn. (1.12)
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Landau suggests that the λ-point can be defined as that for which the temperature
is such that ρn = ρs.

The basic idea of Landau is thus that the equilibrium properties of He II can
be expressed as a gas consisting of (non-interacting) phonons and rotons, and
is based on the fact that the only system statistical mechanics can deal with
satisfactorily is a perfect gas. In other words, for sufficiently low temperatures
one may assume that the excitation of the liquid helium can be considered to be
a gas of phonons and rotons and, moreover, a perfect gas of these elementary
excitations.

Let us now consider the question of superfluidity at absolute zero temperature.
One must show that when helium flows through a capillary at a constant velocity
	V it cannot be slowed down by exciting an elementary excitation, provided 	V
is smaller than some critical velocity. In order to see this, let us find the energy
necessary to create an excitation of momentum 	p. Suppose a body of velocity
	V and mass M creates an excitation and ends up moving with velocity 	V ′. From
momentum conservation

M 	V = M 	V ′ + 	p, (1.13)

so that the new kinetic energy of the body is

1

2M
(MV ′)2 = M

2
V ′2 = 1

2M
(M 	V − 	p)2 = 1

2
MV 2 − 	V · 	p + p2

2M
. (1.14)

If ε( 	p) is the energy of an elementary excitation of momentum 	p, this excita-
tion cannot be created unless

1

2
MV 2 ≥ 1

2
MV ′2 + ε( 	p). (1.15)

Consequently

ε(p) ≤ 1

2
MV 2 − 1

2
MV ′2 = 	V · 	p − p2

2M
. (1.16)

For large M , ε(p) ≤ 	V · 	p. Thus, the critical velocity necessary to create an ele-
mentary excitation in He II is then derived by drawing a tangent to the dispersion
relation ε(p) versus p (see Fig. 1.6), i.e.

Vc = ε(p)

p
. (1.17)

There are two solutions of this relation. One occurs at the origin,

(Vc)phon = cs, (1.18)

which indicates that the critical velocity for the creation of phonons is the velocity
of first sound (239 m s−1).

To find the second solution of (1.16), one draws the straight line which passes
through the origin and touches the curve close to the roton minimum. This

https://doi.org/10.1017/9781009401920.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.002
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leads to

(Vc)rot ≈ �

p0
= 58 m s−1. (1.19)

Because (Vc)rot < (Vc)phon, (Vc)rot is the critical velocity for superfluidity.
Note also that the condition given in equation (1.17) for the case of the free-

particle parabola (see Fig. 1.6) is

(Vc)sp = 0. (1.20)

A critical velocity of zero means that superfluidity is impossible in any system
where free-particle motion can take place. Thus, it is the energy gap�, together
with the lack of any other thermal excitation below the dispersion relation shown
in Fig. 1.6, which ensures a finite value of the critical velocity in He II. Detailed
calculations of the dispersion relations shown in Fig. 1.6 have been carried out
starting from the classical papers of Feynman (1972), see also Belyaev (1958a,
1958b), Hugenholtz and Pines (1959), Brueckner and Sawada (1957a, 1957b),
Alberico et al. (1976) and references therein.

1.5 Critical velocity for superconductors

The excitation spectrum of a superconducting metal worked out by Bardeen,
Cooper and Schrieffer (Bardeen et al., 1957a,b; Chapter 3) is shown in Fig. 1.7.

The Landau criterion for superconductivity gives the critical velocity

(Vc)sc = �

�kF
. (1.21)

Figure 1.7. Sketch of the BCS excitation spectrum (full line) Ek =
√

(ε2
k +�2), with the

normal spectrum |εk | (broken line). The normal spectrum is εk = �
2k2/2me − �

2k2
F/2me

which can be approximated by εk = ν ′F(|k| − kF) with ν ′F = �kF/me.
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Using the values for Sn

kF = 1.64× 108 cm−1, (1.22)

Tc = 3.72 K = 0.32 meV, (1.23)

and the BCS relation (Section 1.7)

2�(0)

Tc
= 3.5, (1.24)

one obtains

(Vc)sc = �

�kF
= 51.2 m s−1 (1.25)

where use was made of �c ≈ 2× 10−2 meV cm and c = 3× 108 m s−1. For the
case of nuclei see Appendix K.

The use of � for both the (BCS) superconducting energy gap (see Fig. 1.7)
and the roton energy minimum in neutral superfluids (see Fig. 1.6) is so well
established in the literature that it is preferable to retain this double usage, at the
risk (hopefully slight) of confusion.

1.6 Pairing in nuclei

The shell model potential is the average potential for a nucleon moving in a
nucleus. It has a central and a spin-orbit component and, in a spherical nucleus,
the individual nucleon states are specified by an orbital angular momentum l,
a total angular momentum j(= l ± 1

2 ) and an eigenvalue m of jz (Brink and
Satchler, 1968). The nucleons interact through a strong, short-range, attractive
nuclear force which contributes both to the shell model potential and to the
residual interaction between nucleons. Two neutrons (or two protons) can best
take advantage of the residual interaction to minimize their energy by moving in
time-reversed orbits, i.e. states with the same j but equal and opposite m. The
residual interaction (being time-reversal invariant) preserves the time-reversed
motion because when such a pair of nucleons interact they scatter into time-
reversed states. The total angular momentum of the pair is zero.

The ground state of a nucleus with an even number of neutrons and protons
is obtained by coupling like nucleons in states with energies near the Fermi
energy to form zero angular momentum pairs. Excited states are formed by
breaking pairs, and the lowest states are constructed by breaking one pair. These
states have an excitation energy of about 2� which is the pair binding energy
(see Fig. 1.8).
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Figure 1.8. Schematic picture of the ground state and of the lowest excited states with angular
momentum zero and positive parity in a system with an even number of fermions moving in
a set of single-particle levels, assumed to be double degenerate.
Ground state: the ground state is obtained, in this extreme independent particle model, by
filling the lowest orbitals compatible with the Pauli principle. The large energy gap observed
in the nuclear spectrum is understood assuming a large energy loss not only to the breaking of
a pair, but also to the lifting of pairs from one level to another; these two process are indicated
in (b). That is, in the case where pairing correlations are taken into account, the ground state
is a linear combination of pairs of particles in time-reversal states distributed over all the
available levels. Thus the pair-correlated ground state consists of pairs scattering across the
diffuse Fermi surface, a basic feature which is reflected in the occupation number shown to
the far right (c).
Excited states: excited states can thus only be generated by breaking a pair of particles in
any two levels, as shown in the lower part of the figure. Because the energy associated with
each particle of the pair is Eν =

√
(εν − λ)2 +�2, where εν is the single-particle energy, λ

is the Fermi energy and � the pairing gap, the minimum excitation energy is 2�, as shown.
Note that the radius of the circle is the pairing gap, which measures the diffusivity of the
Fermi surface. To the far left and right we show the extreme single-particle configurations
associated with the two quasiparticle states shown close to the pairing gap circle, as well as
the two-particle and two-quasiparticle excitation energy (after Nathan and Nilsson (1965)).
Reprinted from Alpha- Beta- and Gamma-Ray Spectroscopy, Vol. 1, Nathan, H. and Nilsson,
S. G., Editor Siegbahn, H., page 601, Copyright 1965, with permission from Elsevier.

The odd nucleon in a nucleus with an odd number of neutrons or protons
must remain unpaired. One can obtain a qualitative description of the low states
of such a nucleus in terms of the orbits available to the unpaired nucleon. In
this approximation the degrees of freedom of the paired nucleons are neglected.
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Figure 1.9. Ground state and excited states in the extreme independent single-particle model
and in the pairing-correlated, superfluid model in the case of a system with an odd number of
particles. In the first case, the energy of the ground state of the odd system differs from that of
the even with one particle fewer by the energy difference εν − εν ′ , while in the second case
by the energy Eν =

√
(εν − λ)2 +�2 ≈ �, associated with the fact the odd particle has no

partner. Excited states can be obtained in the independent particle case by promoting the odd
particle to states above the level εν , or by exciting one particle from the state below to the
state εν or to one above it. To the left only a selected number of these excitations are shown.
In the superfluid case excited states can be obtained by breaking of pairs in any orbit. The
associated quasiparticle energy is drawn also here by an arrow of which the thin part indicates
the contribution of the pairing gap and the thick part indicates the kinetic energy contribution,
i.e. the contribution arising from the single-particle motion. Note the very different density
of levels emerging from these two pictures, which are shown at the far left of the figure (after
Nathan and Nilsson (1965)). Reprinted from Alpha- Beta- and Gamma-Ray Spectroscopy,
Vol. 1, Nathan, H. and Nilsson, S. G., Editor Siegbahn, H., page 601, Copyright 1965, with
permission from Elsevier.

When pairing correlations are taken into account this system in its ground state
has an excitation energy of the order of � compared with the even system (see
Fig. 1.9).

This effect leads to an odd–even staggering in nuclear masses and nucleon
separation energies. If B(N , Z ) is the binding energy of a nucleus with Z protons
and N neutrons then the energy required to separate the last neutron is

Sn(N , Z ) = B(N , Z )− B(N − 1, Z ). (1.26)

Similarly the separation energy for the last proton is

Sp(N , Z ) = B(N , Z )− B(N , Z − 1). (1.27)

On average the neutron separation energy Sn(N , Z ) should be larger for a
nucleus with even N compared with a nucleus with odd N by the neutron pairing
energy 2�. Fig. 1.10 shows the neutron separation energy for a sequence of nuclei
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Figure 1.10. The neutron separation energies, Sn, are taken from the compilation by J. H. E.
Mattauch, W. Thiele and A. H. Wapstra, Nuclear Phys. 67, 1 (1965) (after Bohr and Mottelson
(1969)).

with N − Z = 21, 23, i.e. in the neighbourhood of the N = 82 closed shell.
There is a general tendency for Sn to increase as N increases but super-imposed
on this trend there is a clear odd–even staggering effect due to pairing.

Values for the neutron pairing energy, known as the pairing gap, can be ob-
tained from measured separation energies by using the formula

�n = 1
4 {2Sn(N , Z )− Sn(N + 1, Z )− Sn(N − 1, Z )}

= 1
4{B(N − 2, Z )− 3B(N − 1, Z )+ 3B(N , Z )− B(N + 1, Z )} ,

(1.28)

where N is even. Similarly, the proton separation energy is given by

�p = 1
4

{
2Sp(N , Z )− Sp(N , Z + 1)− Sp(N , Z − 1)

}
= 1

4{B(N , Z − 2)− 3B(N , Z − 1)+ 3B(N , Z )− B(N , Z + 1)}. (1.29)

Empirical values of the pairing energy parameters�n and�p are collected in
Fig. 1.11. The general trend with mass number A can be fitted by the formula
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Figure 1.11. The odd–even mass differences for neutrons and protons are based on the analysis
of Zeldes et al. (1967) (after Bohr and Mottelson (1969)).

(see Bohr and Mottelson (1969)).

� ≈ 12/A
1
2 MeV. (1.30)

Conspicuous local variations of the pairing gap with the number of neutrons
or protons are observed, which cannot be fitted in detail by the smooth behaviour
given by expression (1.30) (see e.g. Fig. 10.6). This A-dependence of � corre-
lates, as a rule, with the collectivity displayed by low-lying surface vibrations
of the different isotopes or isotones (see e.g. Fig. 10.7). This correlation testifies
to the fact that, in addition to the bare nucleon–nucleon force, the exchange of
collective surface vibrations between nucleons moving in time-reversal states
close to the Fermi energy contributes to nuclear pairing correlations. The rel-
ative importance of this induced pairing interaction compared with the bare
nucleon–nucleon interaction is a subject which is discussed in Chapters 8, 9, 10
and 11.
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1.7 Superconductivity

Electrons near the Fermi surface in a superconductor interact to form correlated
pairs. This idea was first suggested by Cooper (1956) and the pairs are often
called ‘Cooper pairs’. Cooper pairs are constructed from states in which the two
electrons have zero total spin and equal and opposite linear momentum k and−k.
The interaction which produces pairing correlations in a normal superconductor
is a coupling between electrons via the positive ions of the crystal lattice. The
electrons are coupled to the lattice by electrostatic forces. An electron moving
through a crystal distorts the lattice and this distortion influences the motion of
other electrons. Another way of expressing this is to say that an electron can
emit or absorb a virtual phonon. The effective interaction between electrons is a
result of the virtual emission of a phonon by one electron and its absorption by
another. This interaction causes scattering of an electron pair from states (k,−k)
to states (k′,−k′) with an amplitude Vk′k which depends on the electron–phonon
coupling and on the phonon spectrum (see Fig. 1.12).

The interaction which produces pairing correlations in a normal superconduc-
tor is the result of a delicate balance between Coulomb repulsion screened by
dynamical polarization effects of both electrons (plasmons) and ions (phonons).
The screening of the Coulomb repulsion due to the exchange of plasmons
(measured by the dimensionless parameterμ∗) plays an equally important role in
determining the properties of superconductors as the effective interaction arising
from the exchange of phonons (measured by the dimensionless parameter λ).
Systems displaying small (� 1) values of μ∗ and large (� 0.3− 0.4) values
of λ are expected to be normal or incipient high-Tc superconductors, such as

′

Figure 1.12. Schematic representation of the Cooper pair phenomenon. In (a) a transition is
illustrated in which one pair of electrons moving in time-reversal states above the Fermi sea
and carrying zero centre-of-mass momentum interact, exchanging momentum 	q . The carriers
of this interaction are the lattice phonons which are exchanged between the two electrons, as
shown in (b).
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alkaline doped fullerides, i.e. materials made out of e.g. C60 fullerenes, in which
case μ∗ ≈ 0.3 and λ ≈ 1 (Gunnarsson (1997), (2004), Broglia et al. (2004)).

In the nuclear case the situation is quite different, as the strong force is (for
relative distances � 0.75 fm) attractive in the s-wave channel (see Figs. 8.2 and
8.5). Consequently, the main origin of nuclear pairing is due to the nucleon–
nucleon strong force.

It is found, however, that the exchange of collective surface vibrations be-
tween pairs of nucleons moving in time-reversal states lying close to the Fermi
energy seems to play a role which cannot be neglected in a quantitative de-
scription of pairing in nuclei (Chapters 8, 9, 10 and 11). The main differences
between the phonon exchange in solids and in nuclei is that nuclear vibrations
can be viewed as coherent motion of nucleons. To take care of Pauli principle
violations as well as to avoid double counting of the same degrees of free-
dom, nuclear field theoretical methods have to be used in the calculation of
the coupling of nucleons to nuclear surface vibrations leading to an induced
pairing interaction (see Bes et al. (1976a,b), Bortignon et al. (1977), see also
Appendix F).

Returning now to the case of superconductors, each Cooper pair has a binding
energy 2� which is much smaller than the Fermi energy εF. The main compo-
nents of the pair wavefunction come from electron states with energies ε within
� of the Fermi energy,

εF −� < ε < εF +�. (1.31)

The energy spread δε ≈ 2� corresponds to a momentum range δp ≈ 2�/vF

where vF is the Fermi velocity. The uncertainty relation δx ≈ �/δp ≈ �vF/2�
gives an estimate of the size of a Cooper pair. The quantity

ξ = �vF

2�
(1.32)

is called the coherence length or correlation length of the superconductor, and is
a measure of the size of a Cooper pair. The coherence length ξ is much larger than
the crystal lattice spacing (∼5 Å) in Type I superconductors. The Fermi velocity
of electrons in these materials is normally large (vF ≈ 106 m s−1) and the energy
gap is small, leading to a large coherence length. For example ξ ≈ 10714 Å for Sn
and ξ ≈ 4615 Å for Pb. Type II superconductors have a much smaller coherence
length (ξ ≈ 50 Å). This is partly because the electrons in these materials have
a large effective mass and a small Fermi velocity (vF ≈ 104 m s−1). Also, the
energy gap is usually larger.

Bardeen, Cooper and Schrieffer (1957a,b) and Schrieffer (1964) developed a
microscopic theory of superconductivity which incorporated the idea of Cooper
pairs and gave a consistent treatment of the Pauli principle. The theory (called the
BCS theory) has also been used to describe pairing in nuclei (Bohr, Mottelson
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and Pines (1958)) and is discussed in Chapter 3 of this book. According to the
BCS theory all electrons near the Fermi surface in the ground state of a super-
conductor form correlated Cooper pairs. Excited states are formed by breaking
pairs and there is an energy gap 2� between the ground state and the lower
excited states (Fig. 1.8). It is this energy gap which stabilizes the superconduct-
ing state. Thermal effects can break pairs, and in BCS theory the presence of
unpaired electrons reduces the binding of those pairs which remain. Thus the
gap parameter 2� is temperature dependent and decreases as T increases. At a
critical temperature Tc the energy gap becomes zero, the pairs are broken and
there is a phase transition from the superconducting phase into the normal phase.
BCS theory predicts a definite relation between the transition temperature Tc and
the energy gap �(0) at T = 0, namely,

2�(0)

Tc
= 3.51. (1.33)

This relation can be checked experimentally because both�(0) and Tc can be
measured. For most normal superconductors the ratio lies in the range 3.2–4.6
and is close to the BCS value.

These concepts have had also a profound influence on the theory of ele-
mentary particles. The Nambu–Jona-Lasinio model (1961a,b) was the first to
pursue such matters, assuming that a kind of superconducting material occu-
pied the whole Universe. This corresponds to the Higgs field introduced in later
developments. In this world, particles and antiparticles, e.g. quarks and anti-
quarks, are the constituents of the Cooper pairs. Breaking one of these pairs
produces a massive quark and a massive antiquark. Disturbing the distribution
of the pairs creates waves (Anderson–Nambu–Goldstone modes) which can be
interpreted as bosons, e.g. pions (see Chapter 4). The role which gauge invari-
ance (charge conservation) plays in the BCS theory is played here by chiral
invariance (invariance with respect to left-handedness and right-handedness
operations).

Leggett (1989) points out that the Cooper pairs in the BCS theory of the super-
conducting state must all behave in exactly the same way, not only as regards their
internal structure but also as regards their centre of mass motion. Each Cooper
pair is made up of two fermions and therefore the pairs behave like bosons. From
this point of view superconductivity is due to Bose condensation of the pairs.
The analogy is not complete. In a Bose liquid such as 4He the bosons exist even
when they are not all condensed, while in the superconducting state either the
Cooper pairs are condensed or they do not exist. Such a picture should, however,
be modified for finite systems like nuclei, as well as for superconductors around
the critical temperature and for superconducting metal clusters (see Section 1.9).
In the nucleus, pairing vibrations (Chapter 5), i.e. collective modes which change
the number of pairs, play an important role. They can be viewed as bound states
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Figure 1.13. A system of independent Cooper pairs (Schafroth pairs). This situation cor-
responds to the incoherent solution of the many Cooper pair problem, the so called Fock
state.

at the top of the Fermi surface (Anderson (1958), Högaasen-Feldman (1961),
Bes and Broglia (1966)). In finite systems the presence of incipient Cooper pairs
smooths out the sharp phase transition predicted by BCS theory.

There is another important fact to be considered in connection with the descrip-
tion of superconductors in terms of electron pairs. As pointed out by Schrieffer
(1964) the pairs could be treated as independent if they were well separated
(see Fig. 1.13), and Cooper’s discussion would be appropriate for Schafroth
(1955) pairs, see also Ogg (1946), Blatt and Butler (1955); note also the re-
newed interest in Schafroth pairs in connection with high Tc superconductivity
(Alexandrov, 2003). However, actual superconductors differ in a fundamental
manner from a bound-pair model in which the pairs are well separated in space
and weakly interacting. The pairs overlap strongly and there are, in a supercon-
ducting metal, on average one million bound pairs (eliminating electrons deep
in the Fermi sea) which have their centres of mass falling within the region
occupied by a given pair wavefunction (see Fig. 1.14).

The study of Bose–Einstein condensation (BEC) has opened new interest
on the study of the two, widely different, regimes schematically depicted in
Figs. 1.13 and 1.14. In particular, with the possibility of studying ultracold Fermi
gases of, for example, alkali metal atoms (Jochim et al. (2003), Greiner et al.
(2003), Zwierlein et al. (2003), Regal et al. (2004)) like potassium or lithium,
whose nucleus has an even integer spin but an odd number of protons and of
neutrons (40

19K21,
6
3Li3). A notable property of these atomic gases is the pres-

ence of scattering resonances, so called Feshbach resonances. A Feshbach res-
onance is an enhancement in the scattering amplitude of a particle incident on a
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Figure 1.14. There are about 1018 Cooper pairs per cm3 in a superconducting metal. A Cooper
pair has a spatial extension of about 10−4 cm. Thus a given Cooper pair will overlap with
106 other Cooper pairs, leading to strong pair–pair correlation, as schematically shown. This
solution corresponds to the coherent solution of the many Cooper pair problem (coherent
state).

target – for instance, a nucleon scattering from a nucleus or an atom scattering
from another atom – when it has approximately the energy needed to create a
quasi-bound state of the two-particle system.

If a pair of ultracold atoms happens to have a bound state (molecular state)
close to zero energy, then during collisions they will stick together for a while
as they undergo a Feshbach resonance. While few molecules have a bound
state near zero energy, Feshbach resonances can be produced using an external
magnetic field (Zeeman tuning). The resonance is induced in the scattering be-
tween two atoms in different internal states, typical hyperfine states, and results
in the divergence in the two-body s-wave scattering length αF (the interaction
between a pair of ultracold atoms is directly proportional to αF). Feshbach
resonances allow the experimental study of a Fermi gas at various interaction
regimes. By varying the value of αF (atoms repel if αF is positive and attract if it
is negative), one can explore different kinds of fermionic superfluidity, ranging
from the BCS superfluidity, to BEC. Momentum correlations in Cooper-paired
particles extend over long distances, whereas correlations in a molecule are
short range. Consequently, the diatomic molecules do not constitute Cooper
pairs. However, the molecules can be dissociated by moving the system back
across the Feshbach resonance into the atomic regime. Interest in the transition
from BEC-like behaviour to BCS-like behaviour was discussed, even before the
discovery of Bose–Einstein condensation, by Leggett (1980).
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Superconductors have unusual magnetic properties. When a sample of su-
perconductor is placed in a magnetic field supercurrents are developed inside
it which exclude the magnetic flux. Type I superconductors exclude the mag-
netic flux B completely for applied fields H less than a critical field Hc. This
is the Meissner effect (Meissner and Ochsenfeld (1933)). Above Hc there is
complete flux penetration and the normal state is restored. The Meissner effect
is more complicated in a Type II superconductor in that there are two critical
fields Hc1 < Hc2. There is complete exclusion of flux if H < Hc1 and partial
penetration for Hc1 < H < Hc2 The critical field Hc2 depends on temperature
and goes to zero at the critical temperature Tc. Magnetic fields reduce or destroy
superconductivity because they break time reversal invariance and reduce the
binding of the Cooper pairs. When discussing magnetic effects it is important
to make a distinction between the fields H and B. A number of conventions
are possible depending on whether the supercurrent is regarded as an external
current or a magnetization current. One convention which is commonly used
is that H is generated by external currents and is unaffected by the presence of
the superconductor. Supercurrents are considered to be magnetization currents
which modify the flux B, but do not affect H.

The Ginzburg–Landau (1950) theory is a phenomenological theory of super-
conductivity which is based on Landau’s theory of second order phase transitions
(see e.g. Patashinskii and Pokrovskiĭ (1979) and refs. therein). Landau had argued
that such a transition is characterized by an order parameter in a simple way.
Ginzburg and Landau applied the method to superconductors. They introduced a
complex order parameterψ which could be interpreted as a kind of macroscopic
wavefunction for the superconductor. In the presence of a magnetic field the free
energy density is

f (r) = f0 + α|ψ(r )|2 + 1

2
β|ψ(r )|4 + 1

2m∗
|(−i� 	∇ψ − qAψ)|2 + 1

2
μ0B2.

(1.34)

Here A is the vector potential of the magnetic field B, q is the charge of the
carriers of the supercurrent, and α and β are temperature-dependent constants.
The Ginzburg–Landau theory is gauge-invariant provided that a gauge transfor-
mation of the vector potential is associated with a change in the phase of the
order parameter. One can check that the gauge transformation

ψ ′ = eiχ , A′ = A+ � 	∇χ/q (1.35)

leaves the free energy invariant. The electric current density is (see also
Section 1.2)

J(r) = q�

2m∗i
(ψ∗ 	∇ψ − ψ 	∇ψ∗ − 2iqAψ∗ψ/�), (1.36)
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and is also invariant with respect to the gauge transformation given in equation
(1.35). The quantity m∗ is the effective mass of the carriers. The Ginzburg–
Landau theory gives a good description of the magnetic properties of both Type I
and Type II superconductors and predicts that magnetic flux is quantized in
certain situations.

The magnetic flux trapped in a superconducting ring is quantized and the quan-
tization condition can be derived from the form (1.36) of the supercurrent and the
condition that the order parameter is single valued. There may be supercurrents
in the surface of a ring enclosing magnetic flux but the current in the interior is
zero. Also, the magnitude of the order parameter will be approximately constant
in the interior of the material of the ring. If we write ψ = |ψ |exp (iφ) then the
condition that the current density (1.36) is zero gives

�∇φ − qA = 0. (1.37)

If ψ is single valued then φ can be changed by an integer multiple of 2π
around the ring. Integrating equation (1.37) along a path C inside the ring gives
the flux quantization condition


 =
∮

C
A · dl = n2π�/q (1.38)

where n is an integer.
The quantum 2π�/q of magnetic flux has been measured (Parks and Little

(1964)) with the result that the charge of the carriers of the supercurrent is
|q| = 2e, that is e∗ (Section 1.2). This result indicates that the carriers of the
supercurrent are the Cooper pairs of the BCS theory. The absence of electrical
resistance in a superconductor is due to the binding energy 2� of the pairs.
Because of this binding the electrons cannot scatter individually (note, however,
the discussion at the end of Section 1.2).

The BCS theory describes a superconductor in equilibrium. An extension to
include departures from equilibrium using the time-dependent mean-field ap-
proximation was made by Gor′kov (1960a,b) who established a connection be-
tween the BCS microscopic theory and the phenomenological Ginzburg–Landau
theory. Gor′kov introduces a pair-field � (r) which in general is complex and
position-dependent. In an equilibrium situation 2�(r) is the BCS energy gap
between the ground state and excited states. Gor′kov showed that the pair field
� (r) is essentially the same as the order parameterψ(r) of the Ginzburg–Landau
theory except for a constant factor due to the different normalization of ψ (see
also Bes et al. (1970)).

1.8 Superfluidity of liquid 3He

When the effective interaction Vk,k′ for scattering of an electron pair from a
state (k, −k) to a state (k′, −k′) is independent of the angle between k and k′
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then the Cooper pairs have zero orbital angular momentum and the pairing is
called s-wave pairing. The Pauli principle requires that the pair wavefunction
should be antisymmetric. As the orbital state is symmetric, the spin state must
be antisymmetric and the pair must be in singlet state with spin S = 0. Most
superconductors have s-wave pairing, but there could be a component of d-wave
pairing due to crystal field effects. Pairing in nuclei is essentially s-wave pairing,
although there is also evidence for d-wave pairing (Section 5.3 and Section
6.2.2). Furthermore, because of the presence of two types of fermions (protons
and neutrons), the isospin dependence of pairing is important in nuclei (Bohr
(1968), Nathan (1968), Bayman et al. (1969), Bes et al. (1977)).

The situation is different in the superfluid state of liquid 3He because the in-
teraction potential between 3He atoms is strongly repulsive at small separations.
This repulsion inhibits s-wave pairing and favours pairs with non-zero orbital
angular momentum. Experimental and theoretical work has shown that p-wave
pairing is important. In this case the orbital wave function of a pair of 3He atoms
is antisymmetric. Then the Pauli principle requires the spin of the pair to be
symmetric with S = 1 and there is spin triplet pairing.

Triplet pairing is more complicated than singlet pairing. A pair has spin angular
momentum S = 1 and orbital angular momentum L = 1 and there are several
ways in which S and L can couple. The Ginzburg–Landau order parameter has
nine complex components. It is for this reason that the superfluid phases of 3He
have a very rich structure. There are many superfluid phases. Two of them are
the A-phase and the B-phase. In the A-phase the spin part of the wavefunctions
is | ↑↑〉 or | ↓↓〉 while in the B-phase the pairing includes the combination
| ↑↓〉 + | ↓↑〉. The structure of the phases is anisotropic on a small scale due
to various spin alignment correlations (see Vollhardt and Wölfle (1990) and
refs. therein). The phase structure of 3He was predicted by Leggett (1972) see
also Anderson and Morel (1961), Balian and Werthamer (1963), Anderson and
Brinkman (1973), (1975) and Ambegaokar and Mermin (1973)).

1.9 Comparison of pairing in nuclei with superconductivity

In this section we point out some of the differences between pairing properties of
nuclei and superconductors. The coherence length in a superconductor is defined
in equation (1.32). It measures the size of a Cooper pair. In both Type I and Type
II superconductors the coherence length is large compared with the interatomic
spacing in the material but small compared with the typical size of a piece of
superconducting material. The situation is very different in a nucleus. Using the
appropriate Fermi wave number (kF ≈ 1.36 fm−1) we get �υF = 54 MeV fm.
Then equation (1.32) gives a coherence length

ξ ≈ 27

�
fm, (1.39)
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the gap being in units of MeV. For a typical nucleus with A = 140,� ≈ 1 MeV,
ξ ≈ 27 fm. This compares with a nuclear radius R = 1.2A1/3 fm ≈ 6.3 fm for
medium heavy nuclei (A ≈ 120). Thus the coherence length is larger than the
nuclear radius. The same result holds for all nuclei in the periodic table. In a
nucleus the size of a Cooper pair is given by the nuclear size rather than by the
coherence length.

Quantum size effects can modify the properties of a superconductor if its
dimensions are small enough. The first changes occur when the size is small
compared with the coherence length but is still large in comparison with inter-
atomic distances. In principle such a superconductor has the same properties as
a bulk sample so long as it is not in a magnetic field. The behaviour in a strong
field has interesting features. For example, the energy gap in the energy spectrum
disappears at a certain value of the field. However, this field is not yet strong
enough to break the Cooper pairs, and other properties of the superconducting
state are retained. When the field is increased further there is a second-order
phase transition to the normal state. These and other properties of small super-
conducting particles have been reviewed by Perenboom et al. (1981) (see also
Kubo (1962), Black et al. (1996), Ralph et al. (1997), Farine and Schuck (2002)).

Properties of a sample of a superconductor depend on its dimension. A two-
dimensional film or a one-dimensional wire behave differently from a three-
dimensional sample. The meaning of a thin film is that the thickness is small com-
pared with the coherence length. Similarly, a wire is effectively one-dimensional
if its radius is small compared with the coherence length. Using the same criteria
a nucleus should be regarded as a zero-dimensional superconductor (Chapter 4).

If the dimensions of a superconducting particle become much smaller than the
coherence length other effects come into play. Anderson (1959) suggested that
there is a lower limit in size for a particle still to be superconducting. A relevant
parameter for this regime is the ratio of the mean spacing of single particle states
δ with the same spin to the transition temperature Tc

δ = δ

Tc
= 2

ρ(εF)Tc
, (1.40)

where ρ(εF) is the density of states at the Fermi level. Mühlschlegel et al. (1972)
and Lauritzen et al. (1993) have calculated the effects of thermal fluctuations
on the superconducting phase transitions using Ginzburg–Landau theory, path
integral methods plus RPA theory, respectively. They show that the fluctuations
smooth out the discontinuity in the thermal capacity at the transition temperature.
The smoothing is complete when δ = 1, but is already significant if δ ≈0.01. This
smoothing has been observed experimentally by Tsuboi and Suzuki (1977). They
measured the electronic specific heat of small particles of Sn with an average
diameter ranging from 25 nm up to 220 nm. Some of their results are shown in
Fig. 1.15.
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Figure 1.15. Measured normalized difference (CS − CN)/CN(Tc) of the specific heat in the
superconductive and normal state respectively, for tin particles with different diameters, as
a function of the reduced temperature. The measurements are normalized to CN(Tc) = γ Tc,
with γ = 1.78× 10−3 JK−2 mol−1. The ensemble of tin particles, isolated from each other
by an oxide layer, was prepared by depositing tin islands in vacuum and then oxidising their
surfaces repeatedly. From Tsuboi and Suzuki (1977).

Quantum size effects are also significant in nuclei and no sharp pairing phase
transition is expected. Pairing correlations should definitely become weaker
as the excitation energy is increased but there will be no sudden transition
(Chapter 6).

Mottelson and Valatin (1960) argued that there is a close formal correspon-
dence between the equations of motion in a constant magnetic field and those in
a rotating reference system. They suggested that critical magnetic field phenom-
ena in superconductors should have their counterpart in the rotational spectra
of nuclei. The Coriolis forces in a rotating nucleus tend to decouple pairs of
particles in time-reversal states. When the angular velocity is sufficiently large
then pairing correlations should be destroyed completely. Mottelson and Valatin
estimated a critical angular velocity ωc above which there would no longer be
any pairing correlation. This is analogous to the critical magnetic field Bc for a
superconductor.
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1.9 Comparison of pairing in nuclei with superconductivity 29

The correspondence between the effect of a magnetic field on a superconductor
and the influence of rotations on pairing in a nucleus is not complete. The London
penetration depth is destroyed by an applied magnetic field in two stages. In the
absence of a magnetic field all the electrons are paired in the superconducting
ground state. Excited states are formed by breaking pairs. The two-quasiparticle
states have an excitation energy and so on. The magnetic field produces a Zeeman
splitting of the excited states and reduces the energy gap. The splitting is largest
in a quasiparticle state with maximum angular momentum. This is kF R, where
R is the radius of the particle and kF is the Fermi momentum. When the field has
a strength B1 given by:

e�

2m
(2kF R)B1 = 2�, (1.41)

the lowest two-quasiparticle state becomes degenerate with the fully paired
ground state. In these circumstances the field is strong enough to reduce the
energy gap to zero but not strong enough to destroy the superconductivity. It is
an example of gapless superconductivity (Perenboom et al. (1981)).

The two-quasiparticle state with highest angular momentum has a mag-
netic moment (e�/2m)2kF R, while the largest magnetic moment of a four-
quasiparticle state is almost twice that value. Thus, when the field increases
slightly above B1, the four-quasiparticle state becomes degenerate with the fully
paired state. As the field increases further, more and more pairs are broken. The
resultant blocking reduces the effective strength of the pairing interaction and
eventually the pairing disappears. Calculations reviewed in Perenboom et al.
(1981) based on the BCS theory with a Fermi gas density of states and including
no shell effects, give the critical field as

Bc = 2.6B1. (1.42)

The first of these size effects exists in rotating nuclei. As discussed in Brink
(1994), the largest two-quasiparticle angular momentum is j1 + ( j1 − 1) =
2 j1 − 1, where j1 is the maximum single-particle angular momentum avail-
able near the Fermi level. Normally it corresponds to the intruder state with
jmax = lmax + 1/2 which is pushed down from the next shell by the spin–orbit
interaction. This two-quasiparticle state is split by the rotation and becomes
degenerate with the fully paired state when

�ω1 = 2�

2 j1 − 1
. (1.43)

Physically this size effect is associated with the band crossing (or ‘backbend’,
see Chapter 6, Fig. 6.3) observed in rotating nuclei and ω1 should be indentified
with the band crossing frequency. The two quasiparticlcs align their angular
momentum with the rotational axis of the nucleus.

Backbending is a striking effect which is observed in the rotational spectrum of
many deformed nuclei. The corresponding effect is much more difficult to detect
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in superconductors because the critical field B1 (see equation (1.41)) depends on
the radius of the sample and it is difficult to obtain grains of uniform size. As well
as producing backbending, rotations tend to quench the pair correlations in a nu-
cleus. There should be a phase transition to an unpaired state at a critical rotational
frequency ωc. Analogy with the superconducting case equation (1.42) suggests
ωc ≈ 2.6ω1. Making use of equation (1.43) with typical values of� ≈ 1.2 MeV
and j1 ≈ 13/2 for medium heavy nuclei (A ≈ 150), leads to �ωc ≈ 0.5 MeV.

As in the case of the critical temperature, finite size effects will smooth out any
sudden phase transition. Pairing correlations should definitely be reduced as the
angular velocity increases but they are unlikely to vanish suddenly at ω ≈ ωc.

Finite size effects in nuclei smooth out some of the striking effects associated
with phase transitions in superconductors, but at the same time there are new
phenomena associated with the finite size which are unknown in superconduc-
tors. Shell effects are a consequence of the finite size of nuclei. The spacing �w0

between major shells in a nucleus can be estimated from the formula (Bohr and
Mottelson (1969))

�w0 ≈ 41A−1/3 MeV ≈ 49

R
MeV fm, (1.44)

where we have used R = 1.2A1/3fm. Equations (1.39) and (1.44) give a relation

R

ξ
≈ 1.8

�

�w0
. (1.45)

Thus the condition that the nuclear radius is small compared with the coherence
length is related to a condition that the pairing strength 2� is less than the shell
spacing �w0. Consequently, a phase transition from normal into superfluid states
can take place at T = 0, as a function of particle number. In fact in closed shell
nuclei �� δ ≈ 0.5�w0 while in open shell nuclei � > δ ≈ �w0/10. Spatial
quantization in atomic nuclei leads to single-particle states with quite different
angular momenta. Cooper pairs based on large angular momenta levels and
lying close to the Fermi energy feel the action of nuclear rotation stronger than
Cooper pairs based on low angular momenta levels. Consequently, the breaking
of Cooper pairs takes place in atomic nuclei as a function of rotational frequency,
stepwise. This interplay between pairing and shell effects is responsible for the
band crossing or ‘backbending’ phenomena observed in rotating deformed nuclei
(Stephens and Simon (1972), Bohr and Mottelson (1974, 1981), Broglia et al.
(1974a), (1975)) (see Chapter 6).

1.10 Neutron stars

Atoms dissolve when ordinary matter is compressed to a very high density,
namely when the separation of the nuclei is smaller than the atomic size. The
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positive charged nuclei move in a plasma of free electrons. For such an assembly
the lowest energy state is reached for a system of 56

26Fe nuclei because they are
the nuclei with the largest binding energy. If the matter is compressed to a still
higher density the electron Fermi energy increases and the electrons become
relativistic. For a sufficiently large density it becomes energetically favourable
for the electrons to combine with the bound nuclear protons to form neutrons
by inverse β-decay. This moves the equilibrium nuclear composition away from
56
26Fe to more neutron-rich nuclei. Coulomb forces play a weaker role than in
isolated atomic nuclei. When the density increases to ∼ 4× 1011 g cm−3 (note
that saturation nuclear density corresponds to ρ = 2.8× 104 g cm−3), the ratio
n/p reaches a critical level. Any further increase in the density leads to ‘neutron
drip’, that is, a two-phase system in which electrons, nuclei, and free neutrons
coexist and together determine the state of lowest energy. Increasing the density
above 4× 1011 g cm−3 leads to higher n/p ratios and more and more free neu-
trons. Finally, when the density exceeds about 4× 1012 g cm−3, more pressure
is provided by neutrons than by electrons (Shapiro and Teukolsky (1983)).

Pulsars are astronomical objects emitting periodic pulses of radio waves. It is
thought that the objects are neutron stars. The near simultaneous discoveries of
the Crab and Vela pulsars (Hewish et al. (1968), Gold (1969)), provided evidence
for the formation of neutron stars in supernova explosions. At the relatively
low temperatures (≤keV) expected for all but the youngest neutron stars, one
expects to find neutron superfluidity in the crust and interior (see Fig. 1.16).
One also expects the remaining protons in the interior to be paired and hence

Figure 1.16. Cross-section of neutron stars (after Pines (1980)).
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superconducting (Shaham (1980)). It is unlikely, however, that the electrons are
superconducting because the electron–phonon coupling is too weak.

Calculations suggest that at least three distinct hadronic superfluids exist inside
a neutron star (Pines et al. (1980)):

1. In the inner crust (4.3× 1011g cm−3 < ρ < 2× 1014 g cm−3, the free neu-
trons may pair in a 1S0 state to form a superfluid amid the neutron-rich nuclei.

2. In the quantum liquid regime (ρ ≥ 2× 1014 g cm−3), where the nuclei have
dissolved into a degenerate fluid of neutrons and protons, the neutron fluid is
likely to be paired in a 3P2 state.

3. The protons in the quantum liquid are expected to be superconducting in a
1S0 state.

There are a number of important consequences of hadron superfluidity and
superconductivity, which may lead to observational effects. In particular the
cooling time scale of pulsars (Pizzochero et al. (2002)), as well as the sudden
changes in the pulsar periods known as glitches (Anderson et al. (1982), Pines,
Tamagaki and Tsuruta (1992)).
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