ON THE PONTRJAGIN ALGEBRA OF A CERTAIN CLASS OF FLAGS OF FOLIATIONS

ΒY

F. J. CARRERAS AND A. M. NAVEIRA

ABSTRACT. Let (\mathcal{M}, g) be a Riemannian manifold and let $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$ be mutually orthogonal distributions on \mathcal{M} of dimensions p_1, p_2, p_3 such that $p_1 + p_2 + p_3 = \dim \mathcal{M}$. We assume that \mathcal{V}_1 and $\mathcal{V}_1 \oplus \mathcal{V}_2$ are integrable and that all the geodesics of \mathcal{M} with initial tangent vector in \mathcal{V}_2 remain tangent to \mathcal{V}_2 . Then, we prove that Pont^k ($\mathcal{V}_2 \oplus \mathcal{V}_3$) = 0 for $k > p_2 + 2p_3$, where Pont^k ($\mathcal{V}_2 \oplus \mathcal{V}_3$) is the subspace of the Pontrjagin algebra of $\mathcal{V}_2 \oplus \mathcal{V}_3$ generated by forms of degree k.

1. Introduction. Let (\mathcal{M}, g) be a Riemannian manifold and \mathcal{V} a distribution on \mathcal{M} . If \mathcal{V} is integrable, then Bott's theorem [1] says that Pont^k $(\mathcal{V}^{\perp}) = 0$ for $k > 2 \dim (\mathcal{V}^{\perp})$, where Pont^k (\mathcal{V}^{\perp}) is the subspace of the Pontrjagin algebra of \mathcal{V}^{\perp} generated by forms of degree k. On the other hand, Pasternack [7] has proved that if \mathcal{V} is integrable and the metric is bundle-like with regard to the corresponding foliation, then Pont^k $(\mathcal{V}^{\perp}) = 0$ for $k > \dim (\mathcal{V}^{\perp})$. In this paper we prove a result on flags of two foliations that turns out to be a generalization of the foregoing ones. In fact, let $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$ be mutually orthogonal distributions of dimensions p_1, p_2, p_3 on (\mathcal{M}, g) , such that the tangent bundle $T\mathcal{M} = \mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \mathcal{V}_3$, where we identify each distribution with the vector bundle determined by it. We assume that \mathcal{V}_1 and $\mathcal{V}_1 \oplus \mathcal{V}_2$ are integrable and that \mathcal{V}_2 is a totally geodesic distribution, in the sense that any geodesic of \mathcal{M} with initial tangent vector in \mathcal{V}_2 remains tangent to \mathcal{V}_2 . Then, Pontⁱ(\mathcal{V}_2) Pont^j(\mathcal{V}_3) = 0 for $j > 2p_3$ or $i + j > p_2 + 2p_3$. This condition is stronger than the one obtained by L. A. Cordero and X. Masa in [2] for flags of two foliations (subfoliations) without the additional hypothesis on \mathcal{V}_2 .

We thank V. Miquel and A. Montesinos for some useful comments.

This work has been partially supported by the Ministerio de Educación y Ciencia of Spain.

2. The generalized second connection. In order to find a suitable expression for the Pontrjagin polynomials of the bundle $\mathcal{V}_2 \oplus \mathcal{V}_3$, we define what we call the generalized second connection $\overline{\nabla}$. Since its construction is valid for an arbitrary number of distributions, we shall consider, within this section, *k* mutually orthogonal distributions \mathcal{V}_1 , ..., \mathcal{V}_k on a Riemannian manifold (\mathcal{M}, g) such that $\mathcal{V}_1 \oplus \ldots \oplus \mathcal{V}_k = T\mathcal{M}$.

latical Society 1985.

Received by the editors September 14, 1983 and, in revised form, May 10, 1984.

AMS Subject Classification (1980): 53C15.

Key words and phrases: flag manifolds, bundle-like metrics, Pontrjagin algebra of a vector bundle. © Canadian Mathematical Society 1983.

March

If v_i is the projector of $T\mathcal{M}$ onto \mathcal{V}_i , $1 \le i \le k$, and ∇ is the Levi-Civita connection, we set

$$\tilde{\nabla}_{A_i}B_i = v_i(\nabla_{A_i}B_i)$$
 for $1 \le i \le k$

and

$$\nabla_{A_i}B_j = v_j[A_i, B_i]$$
 for $1 \le i, j \le k$ and $i \ne j$.

Throughout the paper the subscripts of the vector fields, if any, indicate the distribution to which they belong.

It is clear that $\tilde{\nabla}$ is a well-defined connection on $T\mathcal{M}$ which satisfies

(*i*) For all $i, 1 \le i \le k, \tilde{\nabla} v_i = 0$, or, equivalently, the restriction of $\tilde{\nabla}$ to each \mathcal{V}_i is a connection in \mathcal{V}_i .

(*ii*) $A_i(g(B_i, C_i)) = g(\tilde{\nabla}_{A_i}B_i, C_i) + g(B_i, \tilde{\nabla}_{A_i}C_i)$, since the \mathcal{V}_i 's are mutually orthogonal and $\nabla g = 0$.

(*iii*) If *T* is the torsion tensor of $\tilde{\nabla}$, i.e., $T(M, N) = \tilde{\nabla}_M N - \tilde{\nabla}_N M - [M, N]$ for all $M, N \in \mathfrak{X}(\mathcal{M})$, then $g(T(A_i, M), B_i) = 0$ for all $M \in \mathfrak{X}(\mathcal{M})$ and $A_i, B_i \in \mathcal{V}_i$, $1 \le i \le k$, as a consequence of the symmetry of ∇ .

Furthermore, we have

THEOREM 1. Let (\mathcal{M}, g) be a Riemannian manifold and $\mathcal{V}_1, \ldots, \mathcal{V}_k$ mutually orthogonal distributions on \mathcal{M} such that $\mathcal{V}_1 \oplus \ldots \oplus \mathcal{V}_k = T\mathcal{M}$. There exists a unique connection in T \mathcal{M} satisfying (i), (ii) and (iii).

PROOF. Only uniqueness has to be proved. Assume ∇^* is such a connection in $T\mathcal{M}$ and let T^* be its torsion tensor; then, for any A_i , B_i , C_j with $i \neq j$, we have

$$0 = g(T^*(A_i, C_j), B_i) = g(\nabla^*_{A_i}C_j - \nabla^*_{C_j}A_i - [A_i, C_j], B_i)$$

= $-g(\nabla^*_{C_j}A_i + v_i[A_i, C_j], B_i),$

and since B_i is an arbitrary vector field in \mathcal{V}_i , we get

$$\nabla_{C_j}^* A_i = -v_i [A_i, C_j] = \tilde{\nabla}_{C_j} A_i.$$

On the other hand,

$$g(T^*(A_i, B_i), C_i) = 0$$

implies

$$\nabla_{A_i}^* B_i - \nabla_{B_i}^* A_i = v_i [A_i, B_i].$$

Now, the Riemannian connection satisfies

$$2g(\nabla_{A_i}B_i, C_i) = A_i(g(B_i, C_i)) + B_i(g(A_i, C_i)) - C_i(g(A_i, B_i)) + g([C_i, A_i], B_i) + g([C_i, B_i], A_i) + g([A_i, B_i], C_i).$$

and a substitution in this formula gives $g(\nabla_{A_i}B_i, C_i) = g(\nabla_{A_i}^*B_i, C_i)$, whence

$$\nabla_{A_i}^* B_i = v_i (\nabla_{A_i} B_i) = \tilde{\nabla}_{A_i} B_i. \parallel$$

78

It is easily seen that the semicanonical connection defined by Vaisman [9] satisfies the conditions of theorem 1, so that both connections are the same.

Let *S* be the curvature tensor of $\tilde{\nabla}$, i.e.

$$S(L, M, N, O) = g(\tilde{\nabla}_M \tilde{\nabla}_L N - \tilde{\nabla}_L \tilde{\nabla}_M N + \tilde{\nabla}_{[L, M]} N, O)$$

for all L, M, N, $O \in \mathfrak{X}(\mathcal{M})$.

As a consequence of properties (i), (ii) and (iii) of $\tilde{\nabla}$, we have

PROPOSITION 2. Let (\mathcal{M}, g) be a Riemannian manifold and $\mathcal{V}_1, \ldots, \mathcal{V}_k$ mutually orthogonal distributions on \mathcal{M} such that $\mathcal{V}_1 \oplus \ldots \oplus \mathcal{V}_k = T\mathcal{M}$. If S is the curvature tensor of $\tilde{\nabla}$, then, for $i \neq j$:

(a) $S(M, N, A_i, B_j) = S(M, N, B_j, A_i) = 0,$

(b)
$$S(A_i, B_i, C_j, D_j) = -g([A_i, v_j[B_i, C_j]], D_j) + g([B_i, v_j[A_i, C_j]], D_j) + g(\nabla_{C_j} v_j[A_i, B_i], D_j) + g([[A_i, B_i], C_j], D_j),$$

(c)
$$S(A_i, B_j, C_j, D_j) - S(A_i, C_j, B_j, D_j) = -\sum_{h \neq j} g([v_h[B_j, C_j], A_i], D_j),$$

(d)
$$S(A_i, B_i, C_i, D_i) + S(A_i, B_i, D_i, C_i) = \sum_{h \neq i} g(\nu_h[A_i, B_i], \nabla_{C_i} D_i + \nabla_{D_i} C_i),$$

(e) $\underset{A_i,B_i,C_i}{\mathfrak{S}} S(A_i, B_i, C_i, D_i) = 0. \parallel$

COROLLARY 3. If one of the three following conditions is satisfied for $i \neq j$

(a) \mathcal{V}_j is integrable,

(b) $\bigoplus_{h\neq j} \mathcal{V}_h$ is integrable,

(c) For every $h \neq j$, $\mathcal{V}_h \oplus \mathcal{V}_i$ is integrable;

then,

$$S(A_i, B_j, C_j, D_j) = S(A_i, C_j, B_j, D_j).$$

COROLLARY 4. If \mathcal{V}_i is integrable, then

(a)
$$S(A_i, B_i, C_i, D_i) = -S(A_i, B_i, D_i, C_i)$$

(b)
$$S(A_i, B_i, C_i, D_i) = R'(A_i, B_i, C_i, D_i)$$

where R' is the curvature tensor of the Levi-Civita connection of the leaves of \mathcal{V}_i .

If, further, there exists j, $i \neq j$, such that

(1) $\bigoplus_{h\neq j} \mathcal{V}_h$ is integrable, or

(2) for every $h, h \neq j, \mathcal{V}_i \oplus \mathcal{V}_h$ is integrable, then,

(c)
$$S(A_i, B_i, C_i, D_i) = 0.$$

Henceforth, we will consider an additional condition on one of the distributions, namely,

1985]

[March

DEFINITION [3], [6]. A distribution \mathcal{V} will be said to be of type D_1 if $(\nabla_A v)A = 0$ for all A in \mathcal{V} ; where v is the orthogonal projection onto \mathcal{V} .

THEOREM 5. A p-dimensional distribution \mathcal{V} in an n-dimensional Riemannian manifold (\mathcal{M}, g) is of type D_1 if and only if every geodesic of \mathcal{M} with initial tangent vector in \mathcal{V} remains tangent to \mathcal{V} .

PROOF. Let σ be a curve in \mathcal{M} , and let $\alpha = \dot{\sigma}$ be its tangent vector field, which is a curve in $T\mathcal{M}$. Then, σ is a geodesic if and only if α is an integral curve of the spray ξ associated to ∇ . Let $\{E_1, \ldots, E_n\}$ be a local frame defined in an open set U of \mathcal{M} such that $E_1, \ldots, E_p \in \mathcal{V}$ and $E_{p+1}, \ldots, E_n \in \mathcal{V}$. This frame defines a trivialization TU $\cong U \times \mathbb{R}^n$. Under this identification the field ξ can be written as

$$\xi = \sum_{i} p^{i} E_{i} - \sum_{i,j,k} p^{i} p^{j} \theta^{k} (\nabla_{E_{i}} E_{j}) \frac{\partial}{\partial p^{k}},$$

where the p^{i} 's $(1 \le i \le n)$ are the standard coordinates on \mathbb{R}^n , and $\{\theta^k\}$ is the dual frame of E_1, \ldots, E_n . On the other hand, the condition of \mathcal{V} being of type D_1 is clearly equivalent to the fact that, for all $a, b = 1, \ldots, p$ and $u = p + 1, \ldots, n$,

(*)
$$\theta''(\nabla_{E_a}E_b) + \theta''(\nabla_{E_b}E_a) = 0.$$

Further, the subbundle of $T\mathcal{M}$, determined by \mathcal{V} , which will be eqally denoted by \mathcal{V} , is a regular submanifold of $T\mathcal{M}$, and a tangent vector to $T\mathcal{M}$ is tangent to \mathcal{V} if and only if it is a linear combination of $E_1, \ldots, E_p, \partial/\partial p^1, \ldots, \partial/\partial p^p$ (under the above identification). So, (*) is equivalent to the fact that the restriction of ξ to \mathcal{V} be tangent to \mathcal{V} ; in other words, the fact that the integral curves of ξ with initial values in \mathcal{V} be contained in \mathcal{V} , whence the result follows. $\|$

Notice that if \mathcal{F} is a foliation in (\mathcal{M}, g) , then \mathcal{F} is of type D_1 if and only if the metric is bundle-like [6], and thus, theorem 5 generalizes Reinhart's result about geodesics in a foliated manifold with bundle-like metric [8].

EXAMPLE. Consider the sphere S^{4n+3} and the Hopf fibration onto the quaternionic *n*-space $S^{4n+3} \to \mathbb{H}^n$. Let \mathcal{V} be the distribution determined by the vector spaces tangent to the fibres, and let $\mathcal{H} = \mathcal{V}^{\perp}$. On the other hand, consider $S^r \times \mathbb{R}^t$, where r + t = 4m + 3 for some integer *m*. As an orientable hypersurface in \mathbb{R}^{4m+4} , $S^r \times \mathbb{R}^t$ has a global normal vector field *N*. If J_1 , J_2 , J_3 are the three canonical almost-complex structures on $\mathbb{R}^{4m+4} = \mathbb{H}^m$, then J_1N, J_2N, J_3N are vector fields tangent to $S' \times \mathbb{R}^t$ which span a 3-dimensional distribution \mathcal{V}' . Then, on $S^{4n+3} \times S^r \times \mathbb{R}^t$, $\mathcal{H} \oplus \mathcal{V}'$ is a non-integrable distribution of type D_1 , whose orthogonal complement is not integrable. For more details and further examples, see [5].

PROPOSITION 6. If \mathcal{V}_i is of type D_1 , then

(a) $S(M, N, A_i, B_i) = -S(M, N, B_i, A_i)$

(b) The curvature tensors S and R of ∇ and ∇ , respectively, agree when acting upon arguments of \mathcal{V}_i if and only if \mathcal{V}_i is integrable with totally geodesic leaves.

The proof follows by computation from properties (i), (ii), (iii) and the following.

LEMMA 7. If \mathcal{V}_i is of type D_1 and $M \in \bigoplus_{h \neq i} \mathcal{V}_h$, then

$$M(g(A_i, B_i)) = g([M, A_i], B_i) + g(A_i, [M, B_i]),$$

or, equivalently,

$$(\mathscr{L}_{M}g)(A_{i}, B_{i}) = 0 \parallel$$

where \mathcal{L} denotes the Lie derivative. $\|$

COROLLARY 8. If \mathcal{V}_i is of type D_1 and if further one of conditions (a), (b), (c) of corollary 3 is satisfied, then $S(A_i, B_i, C_i, D_i) = 0$.

3. The obstruction theorem. Let *E* be a vector bundle on \mathcal{M} , which we can assume as a subbundle of $T\mathcal{M}$, with fibre \mathbb{R}^r and *D* a connection in *E*. If we consider the associated principal bundle we have the Weyl homomorphism [4]

w:
$$I(Gl(r, \mathbb{R})) \to H^*(\mathcal{M}, \mathbb{R})$$

where $I(Gl(r, \mathbb{R})) (= \sum I^k(Gl(r, \mathbb{R})))$ is the graded algebra of ad-Gl (r, \mathbb{R}) -invariant polynomials on $g\ell(r, \mathbb{R})$, the Lie algebra of $Gl(r, \mathbb{R})$. The image of this homomorphism is the algebra of characteristic classes of *E* and will be denoted by Pont (*E*). For each k, $w(I^k(Gl(r, \mathbb{R})))$ is the space of characteristic classes of degree 2k, and will be denoted by Pont^{2k}(*E*).

The algebra Pont (*E*) is spanned by the classes $w(f_0)$, $w(f_1)$, ..., $w(f_{2m})$ with r = 2m or 2m + 1, where f_0, f_1, \ldots, f_r are ad-Gl (r, \mathbb{R}) -invariant polynomials on $g\ell(r, \mathbb{R})$, defined by

det
$$\left(\lambda I_r - \frac{1}{2\pi}X\right) = \sum_{k=0}^r f_k(X)\lambda^{r-k}$$

for all $X \in g\ell(r, \mathbb{R})$, where I_r is the identity matrix of dimension $r \times r$. For each $k \in \{0, \ldots, m\}$ the class $w(f_{2k}) \in H^{4k}(\mathcal{M}, \mathbb{R})$ is the k-th Pontrjagin class $p_k(E)$ of the bundle E.

From the relations between the curvature tensor *S* and the curvature form Ω of *D*, it follows that if *f* is an invariant homogeneous polynomial of degree *k*, then there exists a representative α in w(f) such that, if $\{Y_j\}_{j=1,\ldots,r}$ is a local orthonormal frame of *E* and X_1, \ldots, X_{2k} are linearly independent vector fields on \mathcal{M} , then $\alpha(X_1, \ldots, X_{2k})$ is a homogeneous polynomial of degree *k* in the variables $\{S(X_1, X_m, Y_i, Y_j)\}, i, j \in \{1, \ldots, r\}, m, 1 \in \{1, \ldots, 2k\}$, so that, within each monomial, the first two arguments of each factor perform a permutation of X_1, \ldots, X_{2k} .

Now, let (\mathcal{M}, g) be a Riemannian manifold and let $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$ be three orthogonal distributions on \mathcal{M} of dimensions p_1, p_2, p_3 , respectively, such that $\mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \mathcal{V}_3 = T\mathcal{M}, \mathcal{V}_1$ and $\mathcal{V}_1 \oplus \mathcal{V}_2$ are integrable, and, v_i being the projector of $T\mathcal{M}$ onto \mathcal{V}_i , (i = 1, 2, 3)

$$(\nabla_{A_2}v_2)A_2 = 0$$

for all $A_2 \in \mathcal{V}_2$, where ∇ is the Levi-Civita connection.

https://doi.org/10.4153/CMB-1985-007-8 Published online by Cambridge University Press

1985]

82

Then, we have

Lemma 9.

$$S(A_1, B_1, C_2, D_2) = S(A_1, B_1, C_3, D_3)$$

= $S(A_1, B_2, C_2, D_2)$
= $S(A_1, B_2, C_3, D_3) = 0.$

PROOF. It follows from corollary 4 (*c*), that $S(A_1, B_1, C_3, D_3) = 0$. From proposition 2(*b*), and the integrability of $\mathcal{V}_1 \oplus \mathcal{V}_2$, we get $S(A_1, B_1, C_2, D_2) = 0$. $S(A_1, B_2, C_2, D_2) = 0$ follows from proposition 2(*c*), and 6(*a*). Finally,

$$S(A_1, B_2, C_3, D_3) = g([v_1[A_1, B_2], C_3], D_3) + g([v_2[A_1, B_2], C_3], D_3) + g([B_2, v_3[A_1, C_3]], D_3) - g([A_1, v_3[B_2, C_3]], D_3) + g([[A_1, B_2], C_3], D_3) - g([v_3[A_1, B_2], C_3], D_3) = 0$$

by the integrability of $\mathcal{V}_1 \oplus \mathcal{V}_2$ and the Jacobi identity.

From this lemma and the preceding remarks, we have

THEOREM 10.

Pont^{*i*} (
$$\mathcal{V}_2$$
) Pont^{*j*} (\mathcal{V}_3) = 0 for $j > 2p_3$ or $i + j > p_2 + 2p_3$.

PROOF. If w_2 and w_3 are forms representing elements of Pont^{*i*} (\mathcal{V}_2) and Pont^{*j*} (\mathcal{V}_3), respectively, with $i + j > p_2 + 2p_3$, then $w_2 \wedge w_3$ decomposes as a sum of monomials, each of which vanishes due to the saturation of the exterior products of curvature forms that, according to lemma 9, are not zero. \parallel

Observe that if $p_2 = 0$ (resp. $p_3 = 0$), Bott (resp. Pasternack) theorem is obtained [1] (resp. [7]).

REFERENCES

1. R. Bott, *Lectures on characteristic classes and foliations*, Lecture Notes in Mathematics, Springer-Verlag, **279** (1972), pp. 1–80.

2. L. A. Cordero and X. Masa, *Characteristic classes of subfoliations*, Ann. Inst. Fourier, Grenoble **31**, 2 (1981), pp. 61–86.

3. O. Gil-Medrano, On the geometric properties of some classes of almost-product structures, Rend. Circ. Mat. Palermo **32** (1983), 315–329.

4. S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. I and II, Interscience, 1963, 1969.

5. V. Miquel, Some examples of Riemannian almost-product manifolds, Pac. J. Math. 111 (1984), 163-178.

6. A. M. Naveira, A classification of Riemannian almost-product manifolds, Rendiconti di Matematica, **3** (1983), 577–592.

7. J. S. Pasternack, Foliations and compact Lie group actions, Comm. Math. Helv. 46 (1971), pp. 467-477.

8. B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), pp. 119-131.

1985]

PONTRJAGIN ALGEBRA

9. I. Vaisman, Almost-multifoliate Riemannian manifolds, Ann. St. Univ. "Al. I. Cuza", XVI (1970), pp. 97-104.

Departamento de Geometría y Topologia Facultad de Matemáticas Universidad de Valencia Burjasot (Valencia), Spain