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Compact Subsets of the Glimm Space of a
C∗-algebra
Aldo J. Lazar

Abstract. If A is a σ-unital C∗-algebra and a is a strictly positive element of A, then for every compact
subset K of the complete regularization Glimm(A) of Prim(A) there exists α > 0 such that K ⊂
{G ∈ Glimm(A) | ‖a + G‖ ≥ α}. This extends a result of J. Dauns to all σ-unital C∗-algebras.
However, there exist a C∗-algebra A and a compact subset of Glimm(A) that is not contained in any
set of the form {G ∈ Glimm(A) | ‖a + G‖ ≥ α}, a ∈ A and α > 0.

1 Introduction

The lack of good separation properties on the primitive ideal space of a C∗-algebra
is a serious obstacle in obtaining useful non-commutative versions of the Gelfand–
Naimark theorem for the commutative algebras. One way to circumvent this imped-
iment is to pass to the complete regularization of the primitive ideal space. A method
to obtain the complete regularization of Prim(A) for a C∗-algebra A was given in
[4, III, §3], and we shall briefly review it here. Two primitive ideals P1 and P2 are
equivalent, P1≈P2, if f (P1) = f (P2) for every bounded continuous real function f
on Prim(A). Each equivalence class is a hull-kernel closed subset of Prim(A) and
one associates with it its kernel. The family of ideals thus obtained was denoted in
[2, p. 351] by Glimm(A), and the quotient space Prim(A)/≈ was naturally identified
with it. The quotient map qA takes a primitive ideal P to the kernel of its equiva-
lence class. Two topologies that can be put on Glimm(A) are of interest to us. One
is the quotient topology τq; the other is the weakest topology for which the functions
on Glimm(A), defined by dropping to this space the bounded real continuous func-
tions on Prim(A), are continuous. The latter topology is completely regular and is
denoted τcr. Obviously τq ≥ τcr and cases when equality does or does not occur were
discussed in [2, 7]. Ways to represent A as an algebra of continuous fields with base
space (Glimm(A), τcr) were discussed in [2,4]. Other uses of Glimm(A) can be found
in [6].

The continuous fields that appear in [4] have to vanish at infinity. To topologize
the disjoint union Glimm(A) ∪ {∞} one has to use the complements in this set of
a family of τcr-compact sets that is closed under finite unions and whose union is
Glimm(A). The family considered in [4] is that of the τcr-compact sets

{G ∈ Glimm(A) | ‖a + G‖ ≥ α} , a ∈ A and α > 0.
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The complements of these sets are the basic neighbourhoods of the point at infinity.
This is the topology that appears in the statement of [4, Corollary 8.13]. A more nat-
ural choice would be the family of all the τcr-compact subsets of Glimm(A), which
yields the finest one point compactification. This is the standard one point com-
pactification of Glimm(A). Wanting to work with this topology in the context of
[4] motivated [3] where it was shown that if A is quasicentral, that is, no primitive
ideal of A contains the center of A, then each τcr-compact subset of Glimm(A) is
included in a set of the form {G ∈ Glimm(A) | ‖a + G‖ ≥ α} for some a ∈ A and
α > 0, meaning that the two compactifications are the same; see [3, Theorem 2.5].
In [2, p. 351] this result was improved by showing that a can be taken in the center of
A. Dauns pointed out in [3, p. 43] that the general case, that is, without an additional
assumption on the algebra A, remained open. Here one should point out the fact that
despite the claim in [3, p. 42], the standard one point compactification of Glimm(A)
is Hausdorff only when the latter is locally compact, and this is not always the case.

Our aim is to show that one can cover the τcr-compact subsets of the Glimm
space by sets determined by norm inequalities as in [3, Theorem 2.5] in two other
situations: when the C∗-algebra has a countable approximate identity or when the
quotient map qA onto the Glimm space is open. We hope this result will help to
invigorate the interest in representing C∗-algebras as continuous sections of certain
bundles. We also show that there are situations when the τcr-compact sets cannot be
covered in this manner.

We shall use the well-known fact that a C∗-algebra has a countable approximate
identity (often also called a σ-unital C∗-algebra) if and only if it has a strictly positive
element a that is, an element such that aAa is dense in A; see [8, 3.10.5]. We shall
freely make use of the following two equalities for x an element of the C∗-algebra A
and α > 0:

qA

(
{P ∈ Prim(A) | ‖x + P‖ > α}

)
= {G ∈ Glimm(A) | ‖x + G‖ > α} ,

qA

(
{P ∈ Prim(A) | ‖x + P‖ ≥ α}

)
= {G ∈ Glimm(A) | ‖x + G‖ ≥ α} .

They follow immediately from these facts:

(i) qA(P) ⊂ P for every P ∈ Prim(A);
(ii) for each G ∈ Glimm(A) and x ∈ A there is P ∈ hull(G) such that ‖x + P‖ =

‖x + G‖.
The last claim is a consequence of [5, 3.3.6].

2 Results

Theorem 2.1 Let A be a C∗-algebra with a countable approximate identity and a ∈ A
a strictly positive element. Then for every τcr-compact subset K of Glimm(A) there exists
α > 0 such that K ⊂ {G ∈ Glimm(A) | ‖a + G‖ ≥ α}.

Proof The existence of a countable approximate identity implies τq = τcr by [7,
Theorem 2.6] so we shall work with τq in what follows.
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For every natural number n let

On := {P ∈ Prim(A) | ‖a + P‖ > 1/n} ,

Cn := {P ∈ Prim(A) | ‖a + P‖ ≥ 1/n} ,

Kn := qA(Cn),

where qA : Prim(A)→ Glimm(A) is the quotient map. Then On is open in Prim(A),
and Cn is compact by [5, Propositions 3.3.2 and 3.3.7]. Thus Kn is a compact, hence
closed, subset of the Hausdorff space Glimm(A). We have Prim(A) = ∪∞n=1On =
∪∞n=1Cn, since a is strictly positive, Glimm(A) = ∪∞n=1Kn, and Kn ⊂ Kn+1 for every n.

A subset F of Glimm(A) is closed if and only if each F∩Kn is closed. It is clear that
if F ⊂ Glimm(A) is closed, then F∩Kn is closed. Suppose now that F∩Kn is closed for
every n. We want to show that q−1

A (F) is closed. To this end, let P0 ∈ qA
−1(F). Then

P0 ∈ Om and qA(P0) ∈ Km for some m. Let U be an arbitrary open neighbourhood
of qA(P0) in Glimm(A). Thus q−1

A (U ) ∩ Om is an open neighbourhood of P0, hence
there exists P ∈ q−1

A (F) ∩ q−1
A (U ) ∩ Om. We get qA(P) ∈ F ∩U ∩ Km. We showed

that U ∩ F ∩ Km 6= ∅ and we can conclude that qA(P0) ∈ F ∩ Km = F ∩ Km. But
then P0 ∈ q−1

A (F ∩ Km) ⊂ q−1
A (F). It follows that qA

−1(F) = q−1
A (F).

Now we claim that if K ⊂ Glimm(A) is τq-compact, then there exists m such that
K ⊂ Km = {G ∈ Glimm(A) | ‖a + G‖ ≥ 1/m}. If not, then there exists Gn ∈ K \Kn

for every n. We shall show that the infinite set F := {Gn | n ∈ N} is both closed and
discrete. Being a subset of the compact set K, this a contradiction, and by this our
claim will be established. Let F1 be any subset of F. Since the sequence {Kn} is non-
decreasing, F1 ∩ Kn is finite for every n. By the previous paragraph, F1 is closed, and
we are done.

For a quasicentral C∗-algebra with a countable approximate identity one can im-
prove a little the strengthened version of [3, Theorem 2.5] outlined in [2, p. 351].

Corollary 2.2 Let A be a quasicentral C∗-algebra with a countable approximate iden-
tity. Then its center, Z(A), contains a strictly positive element z of A so for every
τcr-compact subset K of Glimm(A) there exists α > 0 such that

K ⊂ {G ∈ Glimm(A) | ‖z + G‖ ≥ α} .

Proof As observed in [2, p. 351], Glimm(A) is homeomorphic to the maximal ideal
space of Z(A). Thus the latter space is σ-compact, hence Z(A) contains a strictly
positive element z for Z(A). But no positive linear functional of A can be trivial on
Z(A), since A is quasicentral. Thus z is strictly positive for A, and the conclusion
follows from Theorem 2.1.

It is possible to describe precisely when a τcr-compact subset of the Glimm space
of a C∗-algebra can be covered by a compact set determined by a norm inequality:
it must be the image by the quotient map of a compact subset of the primitive ideal
space.
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Proposition 2.3 Let A be a C∗-algebra and K a τcr-compact subset of Glimm(A).
There are a ∈ A and α > 0 such that K ⊂ {G ∈ Glimm(A) | ‖a + G‖ ≥ α} if and
only if there exists a compact subset C ⊂ Prim(A) such that qA(C) = K. A τcr-compact
subset that satisfies the above conditions is also τq-compact.

Proof Suppose the compact subset C of Prim(A) satisfies qA(C) = K. For every
P0 ∈ C let x0 be a positive element in A \ P0. Then

P0 ∈ {P ∈ Prim(A) | ‖x0 + P‖ > ‖x0 + P0‖ /2} ,

and in this way we get an open cover of C . By compactness we get positive elements
{xi}n

i=1 of A and positive scalars {αi}n
i=1 such that

C ⊂ ∪n
i=1 {P ∈ Prim(A) | ‖xi + P‖ > αi} .

With x :=
∑n

i=1 xi and α := min {αi | 1 ≤ i ≤ n}, we have

C ⊂ ∪n
i=1 {P ∈ Prim(A) | ‖xi + P‖ > αi} ⊂ {P ∈ Prim(A) | ‖x + P‖ > α} .

Then

K = qA(C) ⊂ qA

(
{P ∈ Prim(A) | ‖x + P‖ > α}

)
= {G ∈ Glimm(A) | ‖x + G‖ > α} .

Thus K ⊂ {G ∈ Glimm(A) | ‖x + G‖ ≥ α}
Suppose now that K ⊂ {G ∈ Glimm(A) | ‖x + G‖ ≥ α} for some x ∈ A and

α > o. Then C := q−1
A (K) ∩ {P ∈ Prim(A) | ‖x + P‖ ≥ α} is compact, being a rel-

atively closed subset of the compact set {P ∈ Prim(A) | ‖x + P‖ ≥ α}, and qA(C) =
K, since

qa

(
{P ∈ Prim(A) | ‖x + P‖ ≥ α}

)
= {G ∈ Glimm(A) | ‖x + G‖ ≥ α} .

Obviously, K = qA(C) is τq-compact.

The first part of the previous proof shows that the question for the primitive ideal
space, analogous to that which we treat here for the Glimm space, always has a pos-
itive solution. Namely, for every C∗-algebra A and every compact set C ⊂ Prim(A),
there exist a ∈ A and α > 0 such that C ⊂ {P ∈ Prim(A) | ‖a + P‖ ≥ α}.

To obtain another situation in which the conclusion of [3, Theorem 2.5] holds, we
need the following lemma.

Lemma 2.4 Let the Hausdorff space Y be a quotient of the locally compact space X. If
the quotient map, q, is open, then for every compact subset K of Y there exists a compact
subset C of X such that q(C) = K.
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Proof For each x ∈ q−1(K) let Ex be a compact subset of X such that x ∈ int(Ex).
Then

K ⊂
⋃

x∈q−1(K)

q
(

int(Ex)
)
.

By passing to a finite subcover of this open cover of K we get {xi}n
i=1 ⊂ q−1(K) such

that K ⊂
⋃n

i=1 q(int(Exi )) ⊂
⋃n

i=1 q(Exi ). Now D :=
⋃n

i=1 Exi is a compact subset of
X and C := q−1(K) ∩ D is a relatively closed subset of it hence compact too. Clearly
q(C) = K.

If qA is τq-open, then τq = τcr by [2, p. 351]; if qA is τcr-open then obviously it is
also τq-open. The following proposition follows immediately from Proposition 2.3
and Lemma 2.4.

Proposition 2.5 Let A be a C∗-algebra for which the quotient map qA : Prim(A) →
Glimm(A) is open. Then for every τcr-compact K ⊂ Glimm(A) there exist a ∈ A and
α > 0 such that K ⊂ {G ∈ Glimm(A) | ‖a + G‖ ≥ α}.

Observe that by [2, Theorem 3.3] Proposition 2.5 applies to the class of quasi-
standard C∗-algebras.

In view of the above results it is natural to ask if the conclusion of [3, Theorem 2.5]
always holds when A is a C∗-algebra for which τcr = τq on Glimm(A).

3 Examples

We know now three classes of C∗-algebras for which the τcr-compact subsets of their
Glimm spaces satisfy the conclusion of [3, Theorem 2.5]: the quasicentral C∗-alge-
bras, the C∗-algebras that have a countable approximate identity, and those for which
the quotient map of the primitive ideal space onto the Glimm space is open. In this
section we shall show that none of these classes contains any other.

In the following ω will denote the first infinite ordinal, and Ω will stand for the
first uncountable ordinal. All the spaces of ordinals will be considered with their
order topology.

For the first two examples, at the referee’s suggestion, we shall use the C∗-algebra
A of [1, Example 4.12]. This is the algebra of all the sequences x = {xn} of 2 × 2
scalar matrices such that {x3n} converges to the diagonal matrix diag(λ1(x), λ2(x)),
{x3n+1} converges to diag(λ2(x), λ3(x)), and {x3n+2} converges to diag(λ3(x), λ1(x)).
A is unital hence τq = τcr by [2, p. 351]. Every primitive ideal of A is of the form
Pn = {x ∈ A | xn = 0}, n ≥ 1, or Qm = {x ∈ A | λm(x) = 0}, m = 1, 2, 3.
Clearly A is quasicentral. The sequence {P3n} of Prim(A) converges to Q1 and Q2,
and so on. The Glimm space of A consists of the sequence {Pn} together with its limit
Q1 ∩ Q2 ∩ Q3, and it is obvious that qA is not τq-open.

Example 3.1 Let A1 be the direct sum of the above C∗-algebra A with an abelian
non σ-unital C∗-algebra, for instance C0([0,Ω)). Then A1 is quasicentral and does
not have a countable approximate identity, and qA1 is not τq-open.
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Example 3.2 Now let H be a separable infinite dimensional Hilbert space, K(H)
the algebra of compact operators on H, and A2 := A⊕K(H). Then A2 is a separable
C∗-algebra, hence σ-unital, for which qA2 is not τq-open. A2 is not quasicentral, since
its direct summand K(H) is not quasicentral, having a trivial center.

Example 3.3 Now we are going to discuss an example of a non σ-unital non qua-
sicentral C∗-algebra A for which qA is open. As above let K(H) be the C∗-algebra
of all the compact operators on an infinite dimensional Hilbert space. Then A :=
C0([0,Ω),K(H)) is not σ-unital, since Prim(A) is homeomorphic to [0,Ω), and this
space is not σ-compact. The center of A is trivial, thus A cannot be quasicentral.
Finally, qA is just the identity map on Prim(A).

Lastly we shall show that there exist a C∗-algebra A and a τcr-compact subset K
of Glimm(A) that is not τq-compact. By Proposition 2.3, for such K, there do not
exist a ∈ A and α > 0 such that K ⊂ {G ∈ Glimm(A) | ‖a + G‖ ≥ α}. Moreover,
for this C∗-algebra, τcr is locally compact, so the local compactness of this topology
on the Glimm space does not guarantee the possibility of covering the τcr-compact
sets by sets defined by a norm inequality as above. The C∗-algebra that we treat is
a particular case of a class of C∗-algebras constructed by D. W. B. Somerset in the
Appendix of [7] for which τcr 6= τq.

Example 3.4 Let

Y := [0,Ω]× [0, ω] \ {(Ω, ω)}, S := {Ω} × [0, ω), and T := [0,Ω)× {ω}.

Let y be an element not in Y and consider the space X := Y ∪ {y} with the topology
determined by the requirement that Y is embedded homeomorphically into X and
{y} is an open subset whose closure is S∪{y}. Then X is a locally compact T0-space,
and, following [7, p. 155], we shall produce a C∗-algebra A whose primitive ideal
space is homeomorphic to X.

For B := C0(Y ) and D := C0(S) let π1 : B→ D be the restriction map. Let {pn}∞n=1

be a sequence of infinite dimensional mutually orthogonal projections on the infinite
dimensional separable Hilbert space H. We define an embedding ρ : D → L(H) by
ρ( f ) :=

∑∞
n=1 f (Ω, n)pn. Remark that ρ(D) ∩K(H) = {0}. Set E := ρ(D) + K(H)

and let π2 : E → D be the natural quotient map. We denote by A the pullback of π1

and π2; that is, A := {(b, e) ∈ B⊕ E | π1(b) = π2(e)}. It is easily seen that Prim(A)
is homeomorphic to X.

The quotient map qA maps every point in Y \ S to itself, and S ∪ {y} is a ≈-class
that we shall denote by z. Thus the Glimm space of A can be identified with G :=
(Y \ S) ∪ {z}. Moreover, the restriction of qA to the open subset Y \ S of X is a
homeomorphism onto the τq-open subset Y \ S of (G, τq). We claim that K := T ∪
{z} is a τcr-compact subset of G that it is not τq-compact. The τcr-compactness of
K follows immediately once we prove that every τcr-neighbourhood of z contains
a set of the form ((α,Ω) × {ω}) ∪ {z} for some ordinal α, since [0, α] × {ω} is
clearly compact. A basic τcr-neighbourhood U of z is given by a bounded real valued
continuous function g on G such that g(z) = 1: U = {t ∈ G | |g(t)− 1| < 1}. The
continuity of g on ([0,Ω) × {n}) ∪ {z} for 0 ≤ n < ω entails the existence of
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an ordinal αn, 0 ≤ αn < Ω, such that g(β, n) = 1 whenever αn < β < Ω. Set
α := supn αn; then 0 ≤ α < Ω and g(β, n) = 1 for α < β < Ω and 0 ≤ n < ω.
It follows that g(β, ω) = 1 if α < β < Ω, thus ((α,Ω) × {ω}) ⊂ U as needed. The
subset T = qA(T) of K is τq-closed, since q−1

A (T) = T and T is closed in X. Therefore
K cannot be τq-compact, since its τq-closed subset T, that is homeomorphic to the
subset T of X, is not τq-compact.

We show now that τcr on G is locally compact (and Hausdorff, of course). The
points of Y \ S clearly have a neighbourhood base of compact sets. We claim that
U ′ := {t ∈ G | |g(t) − 1| ≤ 1/2} is a τcr-compact neighbourhood of z contained
in U. To prove the compactness of this set let {tι} be a net contained in U ′ \ {z}
with tι := (ωι, nι). We may suppose that {ωι} converges to Ω. Given a bounded real
valued continuous function h on G one can find, as above, an ordinal αh such that
h(β, n) = h(z) for αh < β < Ω and 0 ≤ n < ω. We conclude that {h(tι)} converges
to h(z), and we are done.
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