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Abstract. This paper gives examples to show that a polar operator is not
necessarily AC and an AC operator is not necessarily polar.

1. Introduction. Well-bounded operators are the building blocks of polar and
AC operators. First introduced by Smart in 1960, well-bounded operators were ori-
ginally studied by Smart and Ringrose [6], [7], [8]. These operators admit a spectral
decomposition which is, in some sense, analogous to that for self-adjoint operators
on Hilbert space. The spectral decomposition is simpli®ed when we consider well-
bounded operators of type (B).

By their de®nition, well-bounded operators have real spectra. In order to extend
the concept of well-boundedness to operators with complex spectra, we consider
trigonometrically well-bounded, polar and AC operators. The relevant facts about
well-bounded, polar and AC operators are outlined in the next section. For a
detailed account of the theory well-bounded operators see [4].

2. Background and notation. Throughout the following X will denote a complex
Banach space with dual space X� and B�X� will denote the algebra of all bounded
linear operators mapping X into itself. Given a compact interval J � a; b� � of the real
line, let BV�J� denote the Banach algebra of complex-valued functions of bounded
variation on J with norm

f


 



BV�J�� f�b��� ��� var
J

f

where var
J

f represents the total variation of f on J. Similarly, using T to represent

the unit circle, let BV�T� denote the Banach algebra of complex-valued functions of
bounded variation on T with norm

f


 



BV�T�� f�1��� ��� var
T

f;

where var
T

f is the total variation of f on T. Furthermore, the notation AC�J�
(respectively AC�T�) will denote the closed subalgebra of BV�J� (respectively BV�T�)
consisting of the absolutely continuous functions on J (respectively T).

Definition 2.1. An operator T 2 B�X� is said to be well-bounded if there exists a
constant K and a compact interval J � R such that

p�T�

 

 � K p


 



BV�J�;

for all polynomials p.
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Note that, in this case, the spectrum of T must be a subset of J.

Definition 2.2. Let J be a compact interval of the real line. An AC�J�-func-
tional calculus (respectively an AC�T�-functional calculus) for an operator T 2 B�X�
is a norm-continuous algebra-homomorphism 
 of AC�J� into B�X� (resp. AC�T�
into B�X�) which sends the identity map v�t� � t to T and the function identically 1
to I, the identity operator of B�X�. In addition, 
 is said to be weakly compact if, for
each x 2 X; 
���x is a weakly compact linear mapping of the domain of 
 into X.

Since the polynomials are dense in the set of absolutely continuous functions [7,
Lemma 10], we can say that an operator T is well-bounded if there exists a compact
interval J for which T has an AC�J�-functional calculus.

Definition 2.3. An operator T is said to be well-bounded of type (B) if, for
some compact interval J, T has a weakly compact AC�J�-functional calculus. (Note
that if X is a re¯exive space then every well-bounded operator on X is automatically
of type (B). See [5, p. 68].)

Definition 2.4. A spectral family in X is a projection-valued function
E��� : R! B�X� satisfying the following conditions:

(i) sup E���

 

 : � 2 R
� 	

<1;
(ii) E���E��� � E���E��� � E min �; �f g� � �; �;2 R� �;
(iii) E��� is strongly right continuous;
(iv) E��� has a strong left-hand limit at each point of R;
(v) E��� ! 0 (respectively E��� ! I) in the strong operator topology of B�X�

as �!ÿ1 (respectively �!�1).

Note. If E��� � 0 for all � < a, and E��� � I for all � � b, then E��� is said to be
concentrated on a; b� �.

If E��� is a spectral family in X concentrated on J � a; b� � and f 2 BV�J�, then
��
J

f���dE��� � f�a�E�a� �
�b
a

f���dE���

exists as the strong limit of the Riemann-Stieltjes sums

S�f; u� � f�a�E�a� �
Xn
j�1

f��j� E��j� ÿ E��jÿ1�
� 	

;

where u � ��0; �1; . . . ; �n� is a partition of J. Rearranging the above in the style of
integration by parts gives

S�f; u� � f�b�E�b� ÿ
Xn
j�1

f��j� ÿ f��jÿ1�
� 	

E��jÿ1�:

The following results concerning well-bounded operators maybe found in [4,
Part V].
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Proposition 2.5. The mapping

f!
��
J

f dE

is an identity-preserving algebra homomorphism of BV�J� into B�X� satisfying��
J

f dE





 



 � f


 



BV�J�sup E���

 

 : � 2 R
� 	

for every f 2 BV�J�.

Proposition 2.6. Let T 2 B�X�. Then T is well-bounded of type �B� if and only if
there exists a spectral family E��� in X such that

(i) E��� is concentrated on a compact interval a; b� �, and
(ii) T � ��a;b� � �dE���.
In this case E��� is uniquely determined and is called the spectral family of T.

Proposition 2.7. Let T 2 B�X� be well-bounded of type �B� and let E��� be its
spectral family. Then an operator S commutes with T if and only if S commutes with
E���, for all � 2 R.

Proposition 2.8. Let T 2 B�X� be well-bounded of type �B� and let E��� be its
spectral family. Then for each � 2 R; E��� ÿ E��ÿ�� 	

is a projection operator and

E��� ÿ E��ÿ�� 	
X � x 2 X : Tx � �xf g;

where E��ÿ� denotes the strong limit of E�s� as s! �ÿ.

Trigonometrically well-bounded, polar and AC operators all arise from well-
bounded operators. Their de®nitions are given below.

Definition 2.9. An operator T 2 B�X� is said to be trigonometrically well-
bounded if there exists a well-bounded operator A of type �B� on X such that T � eiA.

Proposition 2.10. If T is a trigonometrically well-bounded operator on the
Banach space X, then there is a unique well-bounded operator A of type �B� on X such
that T � eiA; ��A� � 0; 2�� �, and such that �p�A�, the point spectrum of A, does not
contain 2�.

Definition 2.11. The unique operator A in Proposition 2.10 is called the argu-
ment of T and is denoted by argT. For more on trigonometrically well-bounded
operators see [3].

Definition 2.12. An operator T 2 B�X� is said to be a polar operator if there
exist commuting type �B� well-bounded operators R and A on X such that T � ReiA.
The following results about polar operators will be required in Section 3.
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Theorem 2.13. See [1, Theorem 1]. Let T 2 B�X� be polar. Then T has a decom-
position T � ReiA such that

(i) R and A are commuting well-bounded operators of type �B�;
(ii) ��R� � 0;
(iii) F�0�eiA � F�0�, where F��� is the spectral family of R;
(iv) ��A� � 0; 2�� �; 2� 62 �p�A�.

This decomposition is unique and is called the canonical decomposition of T.

Theorem 2.14. See [1, Theorem 3.18(i)]. Let T be a polar operator with canonical
decomposition T � ReiA. Then the commutants of T;R and A satisfy the equality
Tf g0� Rf g0\ Af g0.

Polar operators are discussed further in [1] and [9]. The ®nal de®nition required
is that of an AC operator.

Definition 2.15. An operator T 2 B�X� is said to be an AC operator if there
exist commuting well-bounded operators C and D such that T � C� iD. AC
operators are studied in [2], from which the following result is taken.

Theorem 2.16. See [2, Lemma 4]. Let C and D be commuting well-bounded
operators of type (B) on X and let S 2 B�X� commute with C� iD. Then S commutes
with C and D.

It has been shown [3, Theorem 3.4] that an operator T is trigonometrically well-
bounded if and only if there exist commuting well-bounded operators A and B of
type (B) such that

T � A� iB �1�
and

A2 � B2 � I: �2�

With this in mind, it seems natural to pose the following questions.

(1) If T is polar, do there exist commuting well-bounded operators A and B (of
type (B)) such that (1) holds?

(2) If T � A� iB with A and B commuting well-bounded operators of type
(B), does it follow that T is polar?

We shall now give examples to show that the answer to both these questions is
negative. We shall use the following de®nitions and results from [4].

3. Examples. Let a 2 l2 and, for n 2 N, let Pn : l2! l2 be de®ned by

Pna � ha; ynixn;
where
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x2nÿ1 � e2nÿ1 �
X1
i�n

�iÿn�1e2i;

x2n � e2n;

y2nÿ1 � e2nÿ1;

y2n �
Xn
i�1
�ÿ�nÿi�1�e2iÿ1 � e2n �n 2 N�;

�1 � 0; �n � 1

nlogn
; �n � 2; 3; . . .�;

and "n is the element of l2 with 1 in its nth position and 0 elsewhere. Then each Pn is
a projection, PnPm � 0 whenever n 6� m, and I �P1n�1 Pn, the series converging in
the strong operator topology of B�l2�.

Proposition 3.1. See ([4, 18.5]). Let �nf g be a monotonic bounded sequence in R
and, for each n 2 N, let Pn be as above. Then the series

P1
n�1 �nPn converges strongly

in B�l2� and its sum is a well-bounded operator.

Note that in the proof of 18.4 in [4] it is shown that

Xn
j�1

P2j












!1 as n!1: �3�

We shall use this result in the example below.

Example. Let X � l2;Pn be de®ned as above, and de®ne sequences �nf g and
�nf g by

�n � n� 1

n

and

�2nÿ1 � �2n � cosÿ1
4n2 ÿ 1=2

4n2 � 2n

� �
;

for all n 2 N. In addition, de®ne

C �
X1
n�1

�nPn and D �
X1
n�1

�nPn:

By Proposition 3.1, each series converges strongly in B�l2� and C and D are well-
bounded operators (of type (B)). Furthermore, since C and D commute, it follows
that CeiD is polar.
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Now suppose that C cos D is well-bounded with spectral family E���. Then

�C cos D�Pn � ��n cos �n�Pn

�
n2 ÿ 1=2

n2

� �
Pn when n is even,

n2 � 2n� 1=2

n2 � 2n

� �
Pn when n is odd.

8>>><>>>:
Fix x 2 l2 and suppose that n is even. Observe that

Pnx 2 x 2 l2 : �C cos D�x � n2 ÿ 1=2

n2

� �
x

� �
: �4�

Furthermore, if

�C cos D�x � n2 ÿ 1=2

n2
x;

then

Pmx � n2

n2 ÿ 1=2
�C cos D�Pmx

and it follows that Pmx � 0 if m 6� n. Thus

x 2 l2 : �C cos D�x � n2 ÿ 1=2

n2

� �
x

� �
� PnX �5�

Combining statements (4) and (5), we see that

PnX � x 2 l2 : �C cos D�x � n2 ÿ 1=2

n2

� �
x

� �
: �6�

Also, by Proposition 2.8,

PnX � E
n2 ÿ 1=2

n2

� �
ÿ E

n2 ÿ 1=2

n2

� �ÿ� �� �
X:

Since

n2 ÿ 1=2

n2
< 1

for all n 2 N, it follows that E�1�Pn � Pn whenever n is even.
When n is odd, an argument similar to that above shows that

PnX � x 2 l2 : C cos Dx � n2 � 2n� 1=2

n2 � 2n

� �
x

� �
: �7�

As
n2 � 2n� 1=2

n2 � 2n
> 1;

for all n 2 N, it follows that E�1�Pn � 0 for n odd.
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Combining even and odd cases, we see that

E�1� �
X1
n�1

E�1�Pn �
X1
n�1

P2n;

with the series converging in the strong operator topology of B�l2�. Since E�1� is
bounded, the partial sums of the series

P1
n�1 P2n must be bounded in norm, giving a

contradiction to (3). Hence C cos D is not well-bounded.
Now suppose that T � CeiD � A� iB, where A and B are commuting well-

bounded operators. Since C and D commute with T it follows that C cos D com-
mutes with T and, by Theorem 2.16, C cos D commutes with A and B.

Next ®x n 2 N and suppose that y 2 PnX � x 2 X : C cos Dx � �n cos �nxf g.
Then

Ay � ��n cos �n�ÿ1A�C cos D�y � ��n cos �n�ÿ1�C cos D�Ay

and hence Ay 2 PnX. A similar argument shows that PnX is invariant under B. It
readily follows that A and B commute with Pn.

Now, since each PnX is one-dimensional (the PnX are the eigenspaces of C cos D
corresponding to the distinct eigenvalues �n cos �n), there exist �n and �n 2 R such
that

A PnX � �n and Bj jPnX � �n:
Thus, on PnX, we have

T � CeiD � �n cos �n � i�n sin �n

and also
T � A� iB � �n � i�n:

Equating real and imaginary parts gives �n � �n cos �n and �n � �nsin�n. Thus
A � C cos D on each PnX and it follows that A � C cos D. This contradicts the fact
that A is well-bounded. Hence T cannot be AC.

An example of an AC operator which is not polar now follows.

Example. Let X � l2 and, for n 2 N, let Pn be as in the example above. Now
de®ne

C �
X1
n�1

�nPn and D �
X1
n�1

�nPn;

where, for n 2 N,

�n �
�����������
n� 1

n

r
and

�2nÿ1 � �2n �
�������������������������������������������
�2nÿ 1� ÿ �4nÿ 2�ÿ1

2n

s
:
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By Proposition 3.1, C and D are well-bounded operators (of type (B)). Moreover, as
C and D commute, T � C� iD is AC.

Now suppose that T is polar with canonical form ReiA. By Theorems 2.14 and
2.16, R and A commute with C and D. It is readily checked that, for each
n 2 N;PnX � x 2 X : Cx � �nxf g;PnX is invariant under both R and A, and Pn

commutes with R and A.
Now, given n 2 N, there exist rn and �n 2 R such that

R PnX � rn and Aj jPnX � �n:

Furthermore, on PnX,

T � ReiA � rne
i�n

and

T � C� iD � �n � i�n:

Hence rne
i�n � �n � i�n and rn � ��2n � �2

n�1=2, for all n 2 N. Observe that

rn �
2ÿ 1

2n�nÿ 1�
� �1=2

for n even,

2n2 � 2n� 1=2

n2 � n

� �1=2

for n odd,

8>>><>>>:
so that rn <

���
2
p

if n is even and rn >
���
2
p

if n is odd. Notice also that

PnX � x 2 X : Rx � rnxf g:

If E��� is the spectral family of R then E� ���
2
p � is a bounded projection on X and, by

Proposition 2.8 and 2.4(ii),

E�
���
2
p
�PnX � E�

���
2
p
� E�rn� ÿ E�rÿn �
� 	

X

� E�rn� ÿ E�rÿn �
� 	

X for n even,

0 for n odd.

�
It follows that

E�
���
2
p
�Pn � Pn for n even,

0 for n odd.

n
This gives

E�
���
2
p
� �

X1
n�1

E�
���
2
p
�Pn �

X1
n�1

P2n;

where the series converges in the strong operator topology of B�l2�. As E� ���
2
p � is

bounded, the partial sums of the series
P1

n�1 P2n, must be bounded in norm. Again
we have a contradiction to (3) so that R cannot be well-bounded and T is not polar.

438 JULIE WILSON

https://doi.org/10.1017/S0017089599000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000026


REFERENCES

1. H. Benzinger, E. Berkson and T. A. Gillespie, Spectral families of projections, semi-
groups, and di�erential operators, Trans. Amer. Math. Soc., 275 (1983), 431±475.

2. E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and
well-bounded operators, J. London Math. Soc., 30 (1984), 305±321.

3. E. Berkson and T. A. Gillespie, AC functions on the circle and spectral families. J.
Operator Theory, 13 (1985), 33±47.

4. H. R. Dowson, Spectral theory of linear operators (Academic Press, 1978).
5. N. Dunford and J. T. Schwartz, Linear operators Part 1: General theory (Interscience,

1957).
6. J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc., 1 (1960), 334±343.
7. J. R. Ringrose, On well-bounded operators II, Proc. London Math. Soc. (3), 13

(1963), 613±638.
8. D. R. Smart, Conditionally convergent spectral expansions. J. Austral. Math. Soc., 1

(1960), 319±333.
9. J. Wilson, Polar and AC operators, the Hibert transform, and matrix-weighted shifts,

Ph. D. Thesis (University of Edinburgh, 1997).

POLAR AND AC OPERATORS 439

https://doi.org/10.1017/S0017089599000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000026

