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1. Lower case italics will denote rational integers, while lower case Greek 
letters will denote algebraic integers. The Law of Quadratic Reciprocity can be 
formulated as follows: 

If p and a are distinct odd primes, then a is a quadratic residue (mod p) if and 
only if ( — l)(p~1)/2p is a quadratic residue (mod q). 

Let Xp denote the non-principal quadratic character (mod p) and let fp be a 
primitive pth. root of unity. Then 

( - 1 ) * - » / ^ = T(Xp)\ where r(Xp) = £ xM)tv-
n=l 

This suggests the following generalization, due to N. C. Ankeny: 

Let r be an odd prime. Let Q(ÇT) denote the cyclotomic field obtained by adjoining 
a primitive rth root of unity f T to the field of rationals Q. Let qbe a prime different 
from r. If f is the smallest positive integer such that qf = 1 (mod r), and ef = 
r — 1, then the ideal (q) is decomposed into O1Q2 • . • O e , where the Q , are prime 
ideals in Q (f r). 

Let p be a prime = 1 (mod r). Let Xv oe a primitive rth power multiplicative 
character (mod p). Let 

p-i 

T(XP) = X) Xp(n)£p
n. 

T(XP) is called a Gaussian sum, or Lagrange's resolvent. Note that r(xP) r € 
<2(fr),butr(xPM<2(fr). 

Ankeny proved that 

(1) r{XpYf-1 - XP(q)-f (mod q). 

Consequently, if Q is any one of the prime divisors of (q) in Ç(fr), q is an rth 
power (mod p) if and only if T(XP)T is an rth. power residue in Q(f r ) / Q ; i.e., 

(2) Xp(q) = 1 if and only if T(XP)T = Pr (mod Q) 

for some 0 G (?(fr) (1, Theorem 2). 
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Let 

If q == 1 (mod r), then Ç(fr) /Q is the ground field of integers (mod q), since 
all the rth roots of unity are contained in the ground field. If h satisfies hT = 1 
(mod q), h ?£ 1 (mod q), (2) becomes 

r - l 

Xp(ç) = 1 if and only if ]T) 6̂ - A; is an rth power (mod q) 
3=1 

(1, Theorem B). 
If q ^ 1 (mod r), applying the reciprocity criterion necessitates working with 

congruences in algebraic number fields. There are, however, rational integral 
criteria which do not involve reciprocity. For example, let q = 2 and let r be a 
prime of form 2* — 1. Then, by (1), 

r ( x P ) r ^ X P ( 2 ) - ' ( m o d 2 ) . 

This means that x?(2) = 1 [2 is an rth power residue (mod p)\ if and only if 
all the bj are odd (1, pp. 1123-1124). Otherwise just one of the b3 is odd, and 
knowing which b3 is odd enables one to determine easily the character of 2. 

I f / i s even, let u = f/2. qu = — 1 (mod r). The following, where applicable, 
enables one to find XP(Ç) with less computation than (1) requires. 

THEOREM 1. r(X p) ? u + 1 = PxP(q)u (mod q). 

Proof. 

r(x„yu = [ £ xM)tP\ = £ xAnTsr 

- £ XÀnY^r - X,(2") £ X,(nfl")-V" 

= XP(g)Mr(Xp~
1) (modg). 

Hence 
r(x,) ç u + 1 = r(xP)r(x,-1)x,(g)w = PXvtvY (mod g), 

since T(XP) and r(xP
-1) are complex conjugates with absolute value \/p. This 

completes our proof. 

If q = 2 and r is a prime of form 2U + 1, then 

r ( x , ) r ^ ^ ( 2 ) M ^ x P ( 2 ) M ( m o d 2 ) . 

Hence x?(2) = 1 if and only if all the bj are odd. If XP(2) ^ 1, just one of the 
^̂  is odd. 

If q = 2, r = 11, then M = 5. r(X p)3 3 = £x,(2)5 = xP(2)5 (mod 2). So 
T{XV)11 = ^Xp(2)9 (mod 2), where 0 is a cube root of unity (mod 2). Since the 
three cube roots of unity are 
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1, f 11 + fn 3 + fn4 + f n 5 + fn9 , and fn 2 + f n 6 + fn 7 + f n 8 + fn 1 0 , 

XP(2) = 1 if and only if bi = bz = J4 = 65 = bQ (mod 2), and b2 = b& = b7 = 
os = ôio (mod 2). 

This method for ascertaining x?(2) can be generalized to other values of r. 
For q s= — 1 (mod r) there is a rational integral criterion involving the t race 

of r (x P ) r . This is derived in Section 2. Special criteria for r = 5, q = 3, 7, and 
for r = 7, g = 3, 5, are also presented. 

Earlier authors have discovered r th power residue criteria, for r = 3, 5, and 
7, which are related to the rational integral coefficients of the Jacobi function 
IT(XP1> XP1) = T(XP)2/T(XP2)' Relations between Jacobi function criteria and 
those involving r th power Gaussian sums are explored in Section 3. A counter­
example to an old conjecture is presented. 

Although the simplest way to ascertain whether XP(<L) = 1 is to use Euler ' s 
criterion, the criteria in this paper are useful where the relevant Gaussian sums 
or Jacobi functions are available. Coefficients of r th power Gaussian sums for 
r = 5, p < 14,431; r = 7, p < 10,781; r = 11, p < 10,627 appear in (6). Note 
t h a t the tabula ted coefficients are a ; = bj/p,j = 1, . . . , r — 1. (The aj} r a ther 
t han the bj, are used in (1) and (6).) Tables of the Jacobi function for r — 5 
can be found in (8, p . 229) for p < 1000 and in (9, pp. 256-262) for 1000 < 
p < 10,000. 

Some of the results in this paper are drawn from the author ' s dissertat ion 
(5). T h e au thor wishes to express his appreciation to Professor N . C. Ankeny, 
M.I .T . , for his guidance and assistance. 

T h a n k s are also due to the Research Laboratory for Electronics, Depa r tmen t 
of Electrical Engineering, M.I .T . , for permission to use the T X - 0 computer to 
compute values of Jacobi functions. 

2. If q = —1 (mod r), let O be a fixed prime ideal divisor of q in (?(f r). 
( ? ( f r ) / Q = K is a. quadrat ic extension of the field of integers (mod q). 

Given any a £ K, the only other element of K with the same trace and norm 
is aQ. a is an r th power if and only if aQ is. Thus for q = — 1 (mod r) the reci­
procity law can be given the following rational integral formulation: XP(<?) = 1 
if and only if r (xP)T has the trace and norm of an rth power in K. 

If p = u2 (mod q) for some u, the norm of u~rT(xP)r is equal to p~~T -pr = 1 
(mod q). U~TT(XPY is an r th power if and only if r(xp)r is. T h u s if p is a quadra t ic 
residue (mod q), Xp(ç) = 1 if and only if U~TT(XPY has the trace of an r th power 
in K whose norm is = 1 (mod q). 

Let n be a fixed quadrat ic non-residue (mod q). If p is a quadrat ic non-residue 
(mod q), then p = v2n (mod g), for some v. The norm of v~rT(xP)r is 

v~2Tpr = v~2rv2rnr = nr (mod g). 

Hence if p is a quadrat ic non-residue (mod g), XP(Ç) = 1 if and only if z>~rr(xp)r 

has the trace of an r th power in K whose norm is = nr (mod q). For each g = — 1 
(mod r), therefore, it suffices to tabula te the traces of all r th powers in K with 
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norms 1 and nT. Then one ascertains whether the trace of U~TT{XV)T o r V~TT(XP)T 

appears on the appropriate list. 
There can be at most 2r elements in K whose rth powers have a given trace 

and a given norm. If ($ has norm n, then the elements 0, /3f r, £f r
2, . . . , 0f/~1, 

£*» /5^ r , /̂ ^fr2, . . . , /3flf Z"1 are 2r distinct elements whose rth powers have the 
same norm ^ r and the same trace /3r + firq. Since exactly g + 1 of the elements 
of K have norm n and thus rth powers with norm nr, exactly (g + l ) /2 r trace 
values correspond to elements of i£ with norm nr which are rth powers. 

Similarly, g + 1 of the elements of K have norm 1. Two of these, 1 and — 1, 
are elements of the ground field. Since each is its own conjugate, the number of 
rth power trace values associated with quadratic residues (mod g), is one more 
than the number associated with quadratic non-residues (mod g). Thus, 1 + 
(g + l ) /2r trace values correspond to rth powers in K with norm 1. (Two of 
these trace values are 2 and —2, corresponding to 1 and —1.) 

a is an rth power if and only if —a is. They have the same norm, but traces 
of opposite sign. Thus if t is the trace of an rth power with a given norm, then 
so is — t. Note that if g = 1 (mod 4), (g + l ) /2r is odd, so that the trace value 
zero appears just on the quadratic non-residue list. If g = 3 (mod 4), 1 + (g + 
l ) /2r is odd, so the trace value zero appears just on the quadratic residue list. 
(See Table I.) 

Computing the rth power trace values (by hand) is laborious. The following 
algorithm reduces this computation to a minimum. 

Let fT and f/ = fr
q be a basis for K. Let x£r + y£r' have rth power norm 

1 (or nT). Compute its rth power trace. Call it t. Then a sequence of elementary 
computations gives all the other elements of K whose rth powers have norm 1 
(or nr) and trace t or — t. Redundant computation of t or — t can thus be 
avoided. 

The algorithm depends upon the following theorem. The proof presented 
here is due to N. C. Ankeny. S{6) will denote the trace of 6. 

THEOREM 2. If a = x£r + 3/if / , /3 = x£r + y«Çr
r, yi ^ ^2, and a and (3 have 

the same norm, then S(aT) + S(fir) = 0 (mod g). 

Proof. Since a and (3 have the same norm, there exists X £ K such that 
a = (3\Q-K 

(/3X*-1 - /?)'«-» = (a- 0)'«-D = [(yi - y2)ïr']riQ-l) = 1. 
Thus 

P-T{Q-1) = (X*-l _ l ) r (« - l ) = [ ( X «- l _ 1)«/(X«-1 _ l ) ] r 

= [(x1-* - lVCx*-1 - i ) ] r - -\r^-Q\ 

Hence X^1"^ = -$r{l-q). Also, \r^-^ = -^^K Then 

S(ar) + S(l3r) = ar + arq + f3r + (3rq 

= I3r\r(q-V + ^\m-<z) + y + prq 
— _ ftr+r(q—l) _ firq+r(\-q) _|_ or _|_ or? 

= - £ r ( ? - /3r + 0r + £r* = 0. 
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If (x£T + yÇr'Y has norm 1 or n\ let m denote the norm of xfr + yÇT'\ i.e., 
(Xtr + yïr) (*f / + yf r) = W, Or 

(3) x2 + y + (fr
2 + ir'2)xy = m. 

Step 1 of algorithm: Set x = 0. Go to step 3. 
Step 2: Increase x by 1. If the new value of x has appeared in a previously-

generated cycle, go to Step 2. 
Step 3: For this value of x, does (3), as a congruence (mod q), have roots? 

If not, go to Step 2. 
Step 4: Generate a cycle of values, as follows: Set x = So, and let the two 

roots of (3) be z-\ and Z\. If x = Zi, then y = z0 is a root of (3), by symmetry. 
Call the other root 22. Again by symmetry, if x = 22, y = zi is a root. Call the 
other root £3. Continuing this process generates a cyc/e. It is shown in (5, pp. 
30-35) that zo + zr = 0 (mod g), so that the cycle has period 2r. 

Step 5: Compute the rth power trace value t (or —t) for the cycle. If all the 
rth power trace values for the list have been found, stop. Otherwise, go to 
Step 2. 

For all zn in the cycle, znÇT + 2n+if/ and znÇr + zn-if / have norm m, since 
(zn, zn+i) and (zw, zn-i) satisfy (3). By symmetry and Theorem 2, 

S((2ofr + «-if/)') = -5((2ofr + «if/)') = -S((Sif f + «of / ) 0 
= 5((Siff + S2f/)0 = S((s2fr + «lf/)r) = - 5 ( f e f , + 28f/)r) 

= -5((»8fr + *2frT) = ^ ( ( ^ r + 24f/)r) = 5((»4fr + ^ f / ) 0 

Thus all the rth. power trace values are the same except for sign. The 4r 
pairs (zn, zn±i), n = 0, 1, 2, . . . , 2r — 1, are distinct (so that all the elements in 
K having norm m and rth power trace dzt have been exhausted) except for 
two cases. In one, which always occurs on the quadratic residue list, the cycle 
contains x = 0, y = =hl, and entries with x = y. Each pair occurs twice in the 
cycle. The rth power trace values are 2 and —2. In the other case, the cycle 
contains values of x for which the two roots of (3) are equal and entries with 
x + y = 0 (mod q)\ Each pair occurs twice in the cycle and the rth power 
trace value is zero. 

Table I contains rth power trace values for several values of g = — 1 (mod r), 
r = 5, 7, 11. 

If both g and r are small, one could list all the b3 combinations (mod g) and 
determine which correspond to rth powers in (?(f r)/Q. 

is an rth power in Q ( ? r ) / 0 if and only if its image 

£ bj^kj
y l < k < r - l , 

under the automorphism f T —> f r
k, is an rth power. The same holds for 
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TABLE I 

TABLE OF RESIDUE CLASSES (mod q) FOR THE TRACE OF u~rT(xP)r OR v~rr(xp)r IF AND ONLY 
IF p is AN rra POWER RESIDUE (mod q) 

p (mod q) 

Q. Quadratic residue Quadratic non-residue n 

r = 5 
19 0, ± 2 ± 8 2 
29 ± 1 , ± 2 0, ± 3 2 
59 0, ± 1 , ±2, ±11 ±8 , ±11, ±19 2 

79 0, ±2, ±9, ±13, ±25 ±2, ±13, ±31, ±39 3 
89 ± 1 , ±2, ±12, ±36, ±41 0, ±6, ±27, ±38, ±44 3 

109 ±2, ±19, ±28, ±32, ±41, ±44 0, ± 1 , ±13, ±20, ±28, ±52 2 
139 0, ±2, ±5 , ±23, ±29, ±37, ±46, ±54 ±2, ±8 , ±11, ±29, ±39, ±47, ±54 2 

149 ± 1 , ±2, ±8 , ±21, ±32, ±40, ±41, 0, ±17, ±29, ±42, ±49, ±52, ±55, 2 
± 6 2 ± 6 6 

179 0, ± 1 , ±2, ±6, ±19, ±34, ±46, ±8, ±13, ±16, ±19, ±29, ±72, 2 
±76, ±80, ±82 ±73, ±80, ±87 

199 0, ±2, ±8 , ±20, ±61, ±62, ±67, ± 1 , ±2, ±18, ±30, ±37, ±38, ±42, 3 

±72, ±81, ±90, ±93 ±79, ±92, ±95 

r = 7 
13 ± 2 0, 2 
41 ± 1 , ± 2 0, ± 1 3 
83 0, ± 1 , ±2, ±13 ±13, ±16, ±29 2 
97 ±2, ±25, ±30, ±41 0, ±23, ±27, ±34 5 

139 0, ±2 , ±30, ±56, ±63, ±64 ±13, ±14, ±16, ±49, ±64 2 
167 0, ± 1 , ±2, ±8 , ±13, ±21, ±62 ±6, ±17, ±55, ±58, ±64, ±72 5 
181 ±2, ±32, ±45, ±53, ±64, ±69, ±89 0, ±8 , ±13, ±20, ±22, ±62, ±88 2 

r = 11 
43 0, ± 2 ±21 2 

109 ±2, ±10, ±11 0, ±27, ±30 2 
131 0, ± 1 , ±2, ±38 ±5 , ±62, ±64 2 
197 ± 1 , ±2, ±6, ±28, ±34 0, ±31, ±38, ±49, ±69 2 

r - l 

X) tbjÇr*', l < * < r - l , l < * < g - l , g ^ l (mod r). 

I t suffices, therefore, to examine one of these elements. We shall t ake the 
element ("representat ive") whose coefficients, juxtaposed, give the smallest 
number . 

Since the product of r ( x P ) r and its complex conjugate T(XV~1Y i s Pr> a ra t ional 
integer, 

r-2 r-1 

(4) 2 M m = E M / + » , * = 2, . . . , (r - l ) / 2 , 
j=i j=i 

where bn+r = K, bT = 0 (1 , p . 1115). I t is therefore necessary to consider only 
those sets which satisfy (4) as congruences (mod q). 
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This approach was used for the following four cases: r = 5 , g = 3 , 7 ; r = 7, 
g = 3, 5. The r th power representatives were determined by using Theorem 1. 

The juxtaposed coefficients of the representatives are presented in Table I I . 

TABLE II 

REPRESENTATIVES OF SETS WHICH SATISFY (4) (mod q) 

Quadratic residues (mod q) Quadratic non-residues (mod q) 

rth rth 
powers Not rth powers powers Not rth powers 

5-3 
r = 5 

1111 0001 1221 0121 

2 = 3 111111 000001 010112 001011 001101 010111 

r = 7 112122 

2 = 5 011413 000001 010112 001011 001101 010111 

r = 7 111111 010114 010231 013434 010113 012124 

112122 010242 010433 114144 013223 013341 

012322 
114241 

113321 014331 
112323 

014412 

2 = 7 0001 0125 0163 0141 0132 0154 

r = 5 1111 1136 
1241 

1152 1661 1143 

1351 

1165 

(5) 

(6) 

(7) 

(8) 

T h e following conclusions are apparent from Table I I : 

3 is a fifth power (mod p) if and only if 
bi = bi (mod 3) and b2 = £3 (mod 3). 

3 is a seventh power (mod p) if and only if 
bx = b2 = £4 (mod 3) and Z>3 = b$ = b& (mod 3). 

5 is a seventh power (mod p) if and only if 
either b\ = bo = b4 (mod 5) and 63 = £5 = b& (mod 5) 
or bi + b2 + b4 = 63 + #5 + #6 = 0 (mod 5). 

7 is a fifth power (mod p) if and only if the 
following is satisfied: 

Define bo = 0. If p is a quadratic residue (mod q),four of the five bj are congruent 
to each other (mod 7). If p is a quadratic non-residue (mod q), there are two pairs 
of congruent coefficients (mod 7). 

3 . Define the Jacobi function 

*(*,*, Xvj) = r ( x / X x / ' ) A ( x / + y ) , 

Let 7T (i,j) denote ir(xp\ xP
j)-

i, ji i + j ^ 0 (mod r). 
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(9) T(*,J) = E x / M x / U - n) € e(Tr) (3,/». 152). 
w = l 

This relation is used to compute Jacobi functions. Given the Jacobi functions, 
one can compute the rth power Gaussian sums, as 

r(XpY = p n T(1J) (3, £.152). 

Reciprocity criteria can be formulated in terms of Jacobi functions. The 
simplest cases are described by the following theorem. 

THEOREM 3. (a) If q= 2 (mod r) and 2 r _ 1 ^ 1 (mod r2), then xP(q) = 1 if 
and only if 7r(l, 1) is an rth power in (?(f r ) / Q . 

(6) If q = -2 (mod r), r > 3, and 2 ^ ^ 1 (mod r2), fie» X P ( ? ) = 1 if and 
only if 7r(l, 1) is aw rth power in Q(£r)/Q. 

iVo/e. The restriction 2 r _ 1 ^ 1 (mod r2) excludes only r = 1093 and r = 3511 
out of all the primes less than 500,000 (4). 

Proof of (a). 

- xM's £ x*(«<z)3r/3 = x,(s)~MV) 

= XP(g)~2r(xP
2) (modg). 

Hence 

XM~2 = T(XVY/T{XJ) - r(xP)q~2r(xPy/r(xP
2) 

= T(xP)Q-2Tra, 1) (mod q). 

L e t / b e the least positive integer such that qf = 1 (mod r). Raise both sides 
of the congruence to the (qf — l)/r power: 

T(xpYq-2){qf-l),r*(h lYQf~1)/r = Xp(q)-2(gf~1)/r (mod 2 ) . 

Let q = hr + 2. Then 

g' - 1 = (hr + 2)f - 1 = 2f~frh + 2f - 1 = 2~lfrh + 2 ' - 1 (mod r2), 

since 2f = gr = 1 (mod r). Then 

r ( x P ) " ( ? / - 1 ) 7 T ( l , l ) C ^ - l > / r _ X p ( ^ ) - / ^ 2 ( 2 / - l ) / r ( m o d g ) > 

Applying (1) gives 

XP(<7)-'Ml, l ) e ' - » / ' = Xj,((7)-'»-2(2/-i)/r (mod (/), 

or 

TT(1, 1)<*'-O/ ' EE xP(g)"2(2 /-1) / r (mod g). 
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Since r2 does not divide 2r~1 — 1, it does not divide 2f — 1. Since 

Hh 1) € Ç(fr)/iD, 

which contains ffr elements, the theorem follows. 

The proof of (b) is similar. 

Let 

x(i,i) = £ ^r/. 
3=1 

Then 

*(*,*) = E ^ r A 
Pepin showed that XP(2) = 1 if and only if all the dj,j= 1, . . . , r — 1, are 

odd (7). Specifically, ir(j,j) = Xp~2j(%) (mod 2). This is an easy consequence of 
(9). We have 

(10) x(*f *)< = I £ ^f/'* | = 2 ^ f r ' * ' - *(*ff, iff) (mod ff). 

Since the product of 7r(l, 1) and its complex conjugate is p, a rational integer, 

r-2 r - l 
E dyd^+i = E djdj+k, k = 2, . . . , £(r — 1), 

where dr+n = dn, rfr = 0. Table II is therefore applicable to the dj also. 
It follows from Theorem 3 that (5), (7), and (8) hold if the bj are replaced 

by dj. (6) also holds if the dj replace the b3: 

r(xv)7 = r(xP)8A(x,2)4-r(Xp
2)4A(x,4)2-T(x,4)2A(x,) 

= i r ( l , l ) M 2 , 2 ) M 4 , 4 ) 
ss TT(1, 1) TT(3, 3) TT(2, 2)2 ^(4, 4), by (10), 

= pv(5, 5)3TT(2, 2)2 

= ^s ^ 5) = ^7 r(5 f 5) ( m o d 3), 

These criteria for ff = 3, r = 5, 7, were given by Pepin (7). 
Bickmore suggested the following generalization (2, p. 35): 3 is an rth power 

residue (mod p) if and only if all the dj whose subscripts are quadratic residues 
(mod r) are congruent to each other (mod 3) and all the other dj are congruent to 
each other (mod 3). This is incorrect. 3 is an 11th power residue (mod 683). 
But the dj, j = 1, . . . , 10, as generated by the primitive root g = 5, are 
6, 10,22, 16, 12,7, 14, - 6 , 16, 12. 
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