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Abstract

Folds within layered rock systems are critical for comprehending the historical processes of
deformation and the rheological behaviour of rocks. The current study employs finite element
modelling to investigate the development of folds in a layered rock system, with a particular
focus on the impact of thinner layers on the folding of adjacent thicker layers and their
subsequent interactions. The analysis indicates that harmonic folds can evolve into
polyharmonic or disharmonic configurations because of the intricate interactions occurring
within the contact strain zone of the thinner layer. Our numerical findings demonstrate that the
geometry of folds is significantly affected by the reciprocal interactions between thinner and
thicker layers, initiated by the folding of the thinner units and their consequent influence on the
thicker layers, and vice versa. This dynamic interplay, however, may frequently diverge from
predictions made by more simplistic models, as suggested by earlier studies. Furthermore, this
research highlights the potential of utilizing higher-order fold geometries to estimate the
relative viscosity between the layers and the embedded medium.

1. Introduction

Folds are one of the most common geological features in ductile compressional regimes. It is a
wavy and continuous structure that provides valuable insights into the deformation history and
rheological properties of deformed rocks (Schmalholz et al, 2001; Bastida et al., 2005;
Schmalholz, 2006; Druguet et al., 2009; Hudleston and Treagus, 2010; Yakovlev, 2012a, 2012b;
Llorens et al., 2013). Over the past few decades, scientists have worked on the formation of
various fold geometries using analogue modelling (e.g., Currie et al., 1962; Ramberg, 1963;
Hudleston, 1973; Abbassi and Mancktelow, 1992), analytical techniques (e.g., Biot et al., 1961;
Johnson and Fletcher, 1994; Hunt et al., 1996) and numerical simulations (e.g., Dieterich, 1970;
Cobbold, 1977; Zhang et al., 1996; Mancktelow, 1999; Schmalholz et al., 2001).

Depending on the number of layers involved in the folding event, folds can be categorized as
either single-layer or multilayer structures. Ramberg (1960, 1961) first clarified a layered system
as a true multilayer or as independent single layers based on the spacing in relation to the
dominant wavelength. Later, Schmid and Podladchikov (2006) redefined true multilayers (1/4,
< h/s < Ap) and effective single layer (h/s < 1/4,) on the basis of the ratio of thicknesses of soft to
hard layers (s/h) and viscous dominant wavelength (4,). Hudleston and Treagus (2010) grouped
the classical layered system into three subsystems: effective single layer, true multilayer and
independent layer.

In nature, independent single-layer folding is rare, as the ideal assumption of an infinite
surrounding medium without influence from adjacent layers is seldom met. Folding of
multilayer is relatively more complex, as it involves more number of controlling parameters than
independent layer folding. These complexities give rise to various fold patterns such as chevron
folds (e.g., Williams, 1980; Ramsay, 1974; Bastida et al., 2007), parallel and similar folds
(e.g., Johnson and Pfaff, 1989), kink folds (e.g., Dewey, 1965) and parasitic folds (e.g., Frehner
and Schmalholz, 2006; Frehner and Schmid, 2016; Liu et al., 2020).

Such layered systems produce harmonic, polyharmonic and disharmonic folds (Fig. 1).
Typically, harmonic folds refer to different folded layers with similar wavelength and axial
planes, which are in vicinity with each other (Fig. 1a). Typical harmonic folds, completely free of
higher-order folds, are formed in true multilayer system. In independent layered system, as the
spacing is large enough for the layers to behave independently within an effectively infinite
medium, disharmonic folds of different orders develop depending on the thickness, spacing, and
viscosity contrast between the layers and the embedded medium (Fig. 1b). When layer
thicknesses differ and the spacing lies between the above two scenarios, polyharmonic folds
develop (Fig. 1c). These are characterized by small-scale folds with short wavelengths and low
amplitudes within larger folds having greater amplitudes and wavelengths (Ramsay and Huber,
1987; Price and Cosgrove, 1990).

Unlike classical concept, harmonic folds can also be developed in layered mediums, which
belong to neither ‘true multilayer’ nor ‘independent layer’. The present study is based on a model
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Figure 1. Schematic diagram of (a) Harmonic
folds, (b) Disharmonic folds and (c)
Polyharmonic folds.

in which competent layers of different thicknesses are embedded
within an infinitely extended incompetent matrix, as opposed to
being sandwiched between thin incompetent units, as typically
observed in multilayer systems. Consequently, the notion of a
systematic alternation of competent and incompetent layers does
not align with the conceptual framework of this research.
Furthermore, the system under investigation involves individual
competent layers that influence each other’s folding behaviour
within their respective contact strain zones (Ramberg, 1963).
While the setup may resemble a multilayer system, the
underlying conceptual distinctions are significant, and the
current study specifically addresses a different class of layered
system.

Biot (1957) introduced the concept of the ‘dominant wave-
length’ of a folded structure, governed by the viscosity contrast and
layer thickness. Previous studies (Biot, 1957; Ramberg, 1962, 1964)
also reveals that, in a system with similar rheological contrasts,
thinner layers are folded first during deformation and subsequent
folding of thicker layers play a crucial role in determining the
geometry of large-scale folds (Fig. 1). During progressive
deformation, higher-order folds in thinner layers are rarely
preserved, rather mimic the geometry of thicker layers with
longer wavelengths (lower-order folds), resulting in secondary
folding. Using Biot’s theory of dominant wavelength, we often
estimate viscosity contrast from folded layers. However, natural
systems often deviate from this ideal scenario, leading to potential
misinterpretations of viscosity contrasts based on observed fold
geometries, as adjacent layers can influence local strain
distribution.

In deformed terrains composed of metasedimentary rocks,
alternating layers of varying competence and thickness are
common. If both thinner and thicker layers have the same
rheology, the thinner layer is typically perturbed first during early
deformation stages (Ramberg, 1962). According to Ramberg
(1960), the mutual, layer-perpendicular influence of a folded layer
extends significantly only up to a distance equal to its initial
wavelength on either side. Beyond this distance, the influence
decreases exponentially and becomes negligible if the spacing
exceeds twice the initial wavelength — a region referred to as the
‘contact strain zone’ (Ramberg, 1963). During progressive
deformation, folding of the thinner layer may influence the
instability patterns and development of folds in adjacent thicker
layers within the contact strain zone.

Since the primary objective of this study was to investigate the
effect of mutual interaction on fold development in a layered
system, all thicker layers were placed within the contact strain zone
of the central thinner layer and aligned parallel to the shortening
direction. In this study, we use finite element modelling (FEM) to
investigate fold development in a layered system, focusing on
mutual interactions between layers. We also examine deviations in
fold wavelength from the dominant wavelength as defined by
Biot (1957).
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2. Numerical modelling
2.a. Model considerations

2.a.1. Material

To understand the effect of mutual interaction on fold geometry,
we considered a three-layer system of similar rheology embedded
within a relatively softer medium. Numerical simulations were
performed using the commercial FEM software ABAQUS (Liu
et al., 2016, 2020). All simulations were conducted in two
dimensions under plane strain conditions (Ramsay and Lisle, 2000;
Arslan et al., 2008; Samanta and Deb, 2014; Samanta et al., 2017;
Basu Majumder and Samanta, 2023). Both the layers and the
embedding medium were modelled with Maxwell viscoelastic
rheology (cf. Zhang et al., 1996; Mancktelow, 1999; Passchier and
Druguet, 2002; Samanta and Deb, 2014; Basu Majumder and
Samanta, 2023) to simulate high-pressure and high-temperature
lower crustal conditions (Turcotte and Schubert, 1982).

The Poisson’s ratio and relaxation time were kept constant at
0.25 and 8 X 10® s, respectively (Larsen ef al., 2005; Samanta et al.,
2017; Basu Majumder and Samanta, 2023), for all materials used.
The rheological behaviour is defined by the following constitutive
equation:

de 1 do

d G d M

=lQ

where ¢, o and t are the instantaneous strain (finite under steady-
state deformation), stress, and time, respectively; G and # are the
Maxwell shear modulus and viscosity (Passchier and Druguet,
2002, Arslan et al, 2008, Arslan et al., 2012, Samanta and Deb,
2014, Samanta et al., 2017; Basu Majumder and Samanta, 2023).

2.a.2. Model specification

To obtain optimal results within reasonable computational limits,
a rectangular block of 5000 X 3000 units was used (e.g., Passchier
et al., 2005; Eckert et al., 2014; Liu et al., 2016, 2020; Damasceno
et al., 2017), as shown in Fig. 2. A central thinner layer of 5 units
thickness (t,) was placed at the centre. Two thicker layers of equal
thickness (2nd, 4t or 61,) were symmetrically placed on either side
of the thinner layer, with variable initial spacing (s) between
adjacent layers.

A bulk layer-parallel shortening of 30% was applied throughout
the simulation (e.g., Biot, 1957; Ramberg, 1964). All simulations
were carried out using the designated “‘VISCO’ step in ABAQUS
(Liu et al., 2016, 2020), employing a full Newtonian solution
technique and a direct equation solver. The model was discretized
using structured quadrilateral meshing with a global mesh size of
2.5, and element type CPE4 (4-node bilinear plane strain
quadrilateral). The total number of elements was approximately
2,400,000. A constant natural strain rate of 107® s was
maintained (e.g., Jeng et al., 2002; Barraud et al., 2004; Hobbs
et al., 2008; Ord and Hobbs, 2013) under steady-state conditions.
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Table 1. Material properties used in numerical modelling
Competent layer
Competency contrast Viscosity Elastic modulus Shear modulus Bulk Modulus Poisson’s Relaxation time
(ng) (Pa. s) (Pa) (Pa) (Pa) Ratio (s) R-value
1 1 x 10% 3.13x10 1.25x101 2.08x10 0.25 8x108 0.01
Incompetent medium
100 1x 10 3.13x10° 1.25x10° 2.08x10° 0.04
p . . . 0.25 8x10° —
500 2x10 6.25X10 2.5%10 4.17x10 0.08
1000 1 x 10%7 3.13x108 1.25x10°8 2.08x108 0.10

According to Ramberg (1964), layer buckling requires the
presence of flaws or heterogeneities either within the layers or in the
surrounding medium, especially in the absence of geometric
irregularities. In the present study, sinusoidal as were applied only
to the central thinner layer (e.g., Biot, 1957, 1959a, 1959b; Schmid
and Podladchikov, 2006; Frehner and Schmid, 2016). Since the
primary objective of this study was to investigate the effect of mutual
interaction on fold development in a layered system, all thicker
layers were placed within the contact strain zone of the central
thinner layer and aligned parallel to the shortening direction (Fig. 2).

The nature of the initial perturbation depends on the R factor,
which determines whether a layer behaves viscously (R < 1) or
elastically (R > 1) during folding (Schmalholz and Podladchikov,
1999; Schmalholz et al., 2001; Liu et al., 2016, 2020). The R factor is
defined as the ratio between the viscous dominant wavelength (1,,)
and the elastic dominant wavelength (4,,.):

s/Iny [P 5/1 1 .
——/ = =1/-mr\/ 54 2
6m VG 677R G Nmé 2)

Where gz = 51/n1 is the viscosity ratio of the competent layer
(7z) to the embedding medium (77,y), G is the shear modulus, Py is
the initial layer-parallel stress, and ¢is the strain rate.

In our simulations, the R-value ranged between 0.01 and 0.10,
indicating deformation occurred within the viscous regime

/Idv
R= ==
j'de
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(Table 1). Therefore, a sinusoidal perturbation with an initial
amplitude of 0.005 4, (i.e., 0.5% of the dominant wavelength) was
imposed on the central thinner layer. The dominant wavelength
for a viscous layer (Biot, 1957) is given by:

3

Agy = 2ty NR (3)

[N

Where 1, is the initial thickness of the competent thinner layer.
No perturbation was applied to the thicker layers, which remained
straight and aligned parallel to the shortening direction. The
central thinner layer’s thickness was fixed at 5 units, while the
thicker layers had thicknesses of 10 (2t,), 20 (4t;,) and 30 (6t;,) units
in three different models (Fig. 2). In our simulation, the spacing
among layers was varied according to:

S = nly, = 2nnty, 13/ nR (4)

Where the spacing factor n=10.5, 1.0, 1.5 and 2.0.

Throughout all simulations, the viscosities of the thinner and
thicker layers were kept the same, while the viscosity ratio 7z
between the layers and the surrounding medium was varied across
different models (Table 1).

AN


https://doi.org/10.1017/S0016756825100216

D Basu Majumder et al.

AT a W o W Wl T a e aUall @ v a e Ua 't ala

®

] N _ 2 A
A e '\\J-/j\\’,/m\"v'/v“v‘*’ o

Figure 3. Progressive development of folds. Viscosity contrast (;g) is 100. Thicknesses of the thin and thick layers are 5 and 20 units, respectively. The spacing between adjacent
thick and thin layers is 1.5 A4, The percentage of shortening of the models (a to f) ranges from 5% to 30% with an interval of 5%. Note that initial sinusoidal perturbation with
wavelength 14, and amplitude 0.00514, (Eqn. 3) was imposed only on the central thin layer. Adjacent thick layers was initially straight and folded later by the heterogeneous strain
produced by the central thin layer and the fold geometry gradually transforms from disharmonic to polyharmonic in progressive deformation.

2.0.3. Boundary conditions

The entire model was compressed using layer-parallel shortening
under pure shear conditions. Bulk shortening was fixed at 30% to
maintain the overall thickness of the individual layers throughout
their length. The equations for the applied shortening, expressed in
terms of displacement at all four boundaries, are as follows:

U, = —kx (5)

k

In our case, since bulk shortening was fixed at 30% for all
simulations, k =0.3.

2.b. Model results

Total 36 number of numerical simulations were run by varying
three fundamental parameter of buckle fold. They are: a) viscosity
ratio (g = n1/m) of layer to embedded medium, b) thickness ratio
of thick to thin layers and ¢) spacing between two adjacent layers
(s). The aim of this study is to find out how the layers of same
competency, with different thicknesses and their mutual spacing,
affect the final fold geometry. To achieve the objective, we
introduce W-factor (4,5 /4y), the ratio of wavelength obtained from
numerical simulation (4,,) to the wavelength derived after 30%
shortening of the dominant wavelength (if = 0.744) of the
respective layer. If W = 1, it means that the dominant wavelength is
preserved after deformation. W > 1 indicates the deviation from
the dominant wavelength.

2.b.1. Progressive development of fold geometry

The focus of this study is to examine how minute instabilities in a
thinner layer can perturb adjacent, initially straight, thicker layers
embedded in a homogeneous medium. It is well established that a
homogeneous layer embedded in a uniformly distributed medium
will not buckle if it is oriented parallel to the shortening direction,
even if the viscosity contrast exceeds the critical threshold for
buckling (Ramberg, 1962; 1964).
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To investigate this, we placed thicker layers on either side of a
minutely perturbed thinner layer (see Section 2.a.2) with identical
rheology and observed the resulting fold geometry during
progressive layer-parallel shortening. In the first setup, the
layer-to-medium viscosity ratio (z) and the thickness of the
thicker layers were 100 and 20 units, respectively, with a spacing of
1.544, (as defined in Equation 4).

At 5% shortening, there was no visible instability in the thicker
layers (Fig. 3a). At 10% shortening, the amplitude of the thinner
layer increased, and mild instabilities appeared in the thicker layers
(Fig. 3b). Our numerical results reveal that higher-order folds in
thinner layer exhibit asymmetry along the limbs of lower-order
folds, while maintaining symmetry in their hinge zones, which are
similar to the findings of Ramberg (1963). At 15% shortening, well-
developed folds became visible in the thicker layers (Fig. 3¢), and
the thinner folded layer began to mimic the large-scale folds,
forming a polyharmonic pattern. With further shortening (30%),
the fold amplitude of the thicker layers increased (Figs. 3d-3f),
while the folds in the thinner layer were modified, resembling
chevron-like fold in a few cases (Figs. 4 and 6).

Overall, homogeneous thickening at the hinge of the thicker
layer was only 0.95% after 30% shortening, which further
decreased with increasing viscosity contrast. For example, with
nr=1000, the thickening was only 0.3%, which was deemed
negligible in this study. These results suggest that minimal
perturbation in the central thinner layer can both initiate and
control instability in adjacent thicker layers during -early
deformation stages.

2.b.2. Effect of viscosity ratio

In our simulations, the viscosity ratio (nz) of the layers to
embedded medium was taken 100, 500 and 1000 (Fig. 4). It was
observed that increasing viscosity contrast reduces the preserva-
tion of higher-order folds in the central thinner layer; these are
mostly retained at hinge zones. While visual inspection shows
minimal impact of viscosity ratio on fold geometry, the graphs
provide more precise insight (Fig. 5). W-factor decreases with
increasing spacing factor (n), regardless of viscosity ratio.
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Figure 4. Patterns of harmonic folds generated by varying viscosity contrast. (a) 7z = 100, (b) 7r = 500 and (c) 7z = 1000. Thicknesses of the thin and thick layers are 5 and 30 units,
respectively. Spacing (1.5, between layers increases with increasing viscosity contrast (i7z) following Eqn. 4. Finite shortening is 30%.
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Figure 5. Graphical comparison of fold geometry of thick (solid line with open
marker) and thin (dashed line with solid marker) layers for different layer thickness
(ts). (@) nr = 100, (b) 7r =500 and (c) #r = 1000. Hollow diamond, triangle and square
markers represent 10, 20 and 30 units thickness of the adjacent thick layer,
respectively. Similarly, solid markers represent thin layers under the influence of
corresponding thick layers. Finite shortening is 30%. Note that deviation from
deformed dominant wavelength (4) is more for thicker layer and it increases with the
decreasing spacing.
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However, W increases significantly with higher viscosity ratio at
lower n-values. Comparatively, the W-factor for the thinner layer
shows limited variation relative to the thicker layer, indicating that
higher-order folds in thinner layers effectively represent rheologi-
cal contrasts.

2.b.3. Effect of layer thickness

To analyse the influence of layer thickness, we fixed the thinner
layer’s thickness at 5 units and varied the thicker layers’ thickness
to 10, 20, and 30 units. The graph of W-factor versus spacing factor
(n) shows a pattern similar to viscosity ratio changes (Fig. 7).

As thicker layer’s thickness increases, the fold geometry shifts
progressively from disharmonic to polyharmonic, and the number
of small-scale folds diminishes (Fig. 6). Unlike viscosity ratio
effects (Section 2.b.2), the impact of layer thickness on fold
harmonicity is more prominent.

2.b.4. Effect of spacing

As the spacing factor (n) increases, the discretization of layers is
preserved, leading to a smaller deviation from the single-layer
results, where ‘deviation’ refers to the W-factor (4,5 /Ay, indicating
how the observed wavelength differs from the dominant wave-
length in a deformed state. This deviation is demonstrated by the
shift in slope from steep to gradual at the transition point of n = 1.
Beyond this point, the deviation slowly decreases as the spacing
factor increases. This pattern indicates that the discrete nature of
the layers diminishes, resulting in interactions within the contact
strain zone, as depicted in Figures 5 and 7.

With increasing spacing, the fold geometry transitions from
harmonic to polyharmonic, and eventually to disharmonic (Fig. 8).
As spacing increases, fold harmonicity decreases, and the number
of small-scale folds in the thinner layer increases.

From the W-factor versus layer thickness graph, it is evident
that increasing spacing reduces the W-factor, suggesting a
diminishing effect from the contact strain zone (Fig. 9).

3. Discussions

3.a. Influence of contact strain zone on the harmonicity of
thinner-layered folds

From the results presented in Section 2, it is evident that the
‘contact strain zone’ (Ramberg, 1960) plays a pivotal role in
determining the harmonicity of fold geometry. One of the most
striking findings of our study is that even a slight instability in a
thinner competent layer can induce perturbation in a thicker layer
placed at a distance up to twice the initial wavelength of the thinner
layer. This observation reinforces Ramberg’s theory and analogue
models (1960, 1962, 1963 and 1964), confirming the significance of
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Figure 7. Graphical comparison of fold geometry of thick (solid line with open
marker) and thin (dashed line with solid marker) layers for different viscosity contrast
(nr)- (a) 2tp, (b) 4t, and (c) 6t5. Hollow diamond, triangle and square markers represents
thick layers with viscosity contrast (1) of 100, 500 and 1000, respectively. Similarly,
solid markers represent thin layers under the influence of corresponding thick layers.
Finite shortening is 30%. Note that deviation from deformed dominant wavelength (1)
increases with the decreasing spacing.

the contact strain zone. In our case, higher-order folds in thinner
layers are modified and imitate the geometry of lower-order folds
of thicker layers, resulting in secondary folding in later stage of
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deformation. This gives rise to a wide variety of fold geometries,
ranging from harmonic to disharmonic.

Interestingly, the overall fold pattern becomes disharmonic
when the small-scale primary folds of the thinner layer are
preserved. These higher-order folds typically vanish when the
thicker layer is positioned too close to the thinner layer. This
obliteration is most pronounced when the spacing factor (n) is 0.5,
as also documented by Ramberg (1964). Within this close spacing,
the individual identities of discrete layers are lost, and the system
behaves as a single package. With increasing spacing, this loss of
identity gradually reduces. In other words, the mutual interaction
of adjacent layers within their respective contact strain zones
dictates the final fold geometry. The degree of influence is largely
governed by the initial wavelength: larger wavelengths dominate
the final geometry, but their impact diminishes as spacing between
layers increases. A thinner layer with higher-order folds can mirror
a thicker layer’s large-wavelength folds only if the thicker layer is
adequately close; otherwise, the thinner layer’s original folds tend
to be preserved as spacing increases (Fig. 8). In overall, our
numerical results (Fig. 4 to 9) align with Ramberg’s (1960) theory
of folding within the contact strain zone.

3.b. Estimation of viscosity ratio

In Section 3.a, we attempted to identify the possible causes behind
folds with varying harmonicity. Thicker layers, due to their longer
wavelengths, often appear to govern the overall fold pattern in a
layered medium. It is commonly believed that the dominant
wavelength is preserved most clearly in the thicker layer. However,
this notion may lead us up the garden path - it could result in
inaccurate estimations of finite shortening and mislead us in
calculating the viscosity ratio between layer and medium. This
effect was recognized by Sherwin and Chapple (1968) for folds in
single layer, showing that thicker layers undergo significant
uniform layer—parallel shortening during folding - causing their
observed wavelength—to-thickness ratios to fall below the
prediction of Biot et al. (1961) — whereas thinner layers, which
better satisfy Biot’s small-shortening assumptions, preserve the
dominant wavelength more accurately.

From Figures 5, 7 and 9, it is evident that the W-factor is
sensitive to both the thickness of the layers and the spacing
between adjacent layers, even under a constant rheological
contrast. As our results suggest, the dominant wavelength of a
thinner layer is preserved more clearly in the higher-order folds
located at the hinges of its larger, secondary folds. This is because
the thinner layer is typically the first to undergo folding without
significant interference from neighbouring layers.

In the gneissic rocks of Purulia, India, quartzo-feldspathic
layers of varying thickness, embedded within a biotite-rich matrix,
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deformed dominant wavelength (1) increases with the thickness of the adjacent layer.
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Figure 10. Example of natural folding in gneissic
rock, generated by the mutual interaction among the
layers. Photographed from Purulia, India. (23.16°E,
86.28°N). Scale bar is 4 cm. Details of measurement are
mentioned in Table 2.

Figure 11. Example of natural folding in gneissic rock,
generated by the mutual interaction among the layers.
Photographed from Purulia, India. (23.16°E, 86.28°N)
Scale bar is 4 cm. Details of measurement are mentioned
in Table 2.

exhibit folded structures with different spacing (Figs. 10 and 11).
Natural data collected from the broad folds of thicker layers and
the residual small folds of thinner layers in the hinges of secondary
folds (Table 2) show striking similarity with our numerical
findings. We observed that the wavelength-to-thickness ratio
decreases as the layer thickness reduces and as the spacing between
two adjacent layers increases. The study reveals that this ratio for
thinner unit are more close to the result of single-layer model
(horizontal line in Fig. 12). Therefore, if the bulk shortening is
known, plotting the graph of the wavelength-to-thickness ratio
against interlayer spacing allows us to estimate the viscosity ratio
between the layer and the embedding medium (Fig. 12).

The data presented in the graph indicates that in layered rock
system, higher-order folds in thinner units also provide a more
precise estimation of rheological contrast compared to thicker
units. In summary, the thinner layers are critical for determining
the more accurate viscosity ratio in a layered system, which is in
conjunction with the work of Sherwin and Chapple (1968), done in
single-layer fold system.

4. Limitations

In this research, we examined a simplified model that employs
homogeneous materials and a three-layered configuration consisting
of layers with two distinct thicknesses, yet exhibiting the same
rheological contrast in relation to the surrounding medium. It is
important to note that natural geological environments frequently
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F2

F3

F1

)b

F2

F3

Table 2. Measurements from natural folds

F1 122.3 18.1 6.76

F2 131 2.9 4.52

F1 88.23 10.56 8.36
F2 55.76 777 7.18
F3 3.13 0.8 391

feature layers with variable thickness, spacing, and viscosity, which
can lead to significantly more complex and intricate fold geometries.
Nevertheless, our study establishes a foundational understanding by
concentrating on the evolution of fold geometries as a result of the
interactions among layers within this specific system.

5. Conclusions

Based on the above observations and results, the following
conclusions can be drawn:
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Figure 12. Estimation of viscosity contrast from folded layers of different
thicknesses. Horizontal line represents an ideal single layer. Square and triangular
markers denote thick and thin layers, respectively. (a) nr = 100, (b) 7r =500 and (c)
nr = 1000. Finite shortening is 30%. Note that the competency contrast can be
estimated more precisely from the folds of thinner unit.

i) Inalayered rock system, the overall fold geometry is primarily
influenced by the folding behaviour of the thinner layer, which
perturbs the surrounding strain field and subsequently affects
the folding of adjacent thicker layers.

ii) During progressive deformation, the thicker layers influence
the folds in thinner layers, causing transitions from harmonic
to polyharmonic, and eventually to disharmonic folds as finite
strain increases.

iii) The contact strain zone has a significant impact on the
development of fold geometries within a layered system.

iv) Apart from the contact strain zone, parameters such as
viscosity ratio, relative layer thickness, and interlayer spacing
are major determinants of the final fold geometry.

v) The geometry of higher-order folds in thinner layers provides
the most reliable estimates for determining the viscosity
contrast between the layer and the embedded medium.
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