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We present a frame-invariant method for detecting coherent structures from Lagrangian
flow trajectories that can be sparse in number, as is the case in many fluid mechanics
applications of practical interest. The method, based on principles used in graph
colouring and spectral graph drawing algorithms, examines a measure of the kinematic
dissimilarity of all pairs of fluid trajectories, measured either experimentally, e.g.
using particle tracking velocimetry, or numerically, by advecting fluid particles in the
Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics
remain similar throughout the time interval for which trajectory data are available,
regardless of their physical proximity to one another. Through the use of several
analytical and experimental validation cases, this algorithm is shown to robustly
detect coherent structures using significantly less flow data than are required by
existing spectral graph theory methods.
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1. Introduction
The concept of coherence in fluid flows has historically been used to delineate

packets of fluid elements that persist while the flow evolves without significant
mixing with the surrounding fluid regions. Coherence can frequently be visualized
qualitatively by observing the evolution of passive tracers in a flow (e.g. Huhn et al.
2012; Haller 2015). However, mathematical frameworks are needed to quantify such
structures objectively. Eulerian techniques for coherent structure identification include
the q-criterion (Hunt, Wray & Moin 1988), λ2-criterion (Jeong & Hussain 1995) and
the Okubo–Weiss parameter (Okubo 1970; Weiss 1991). All of these methods are
frame-dependent, however. Frame invariance is an important characteristic of a method
for determining coherent structures. If a method identifies a structure boundary in one
frame of reference, but not in another (for example, in a rotating reference frame),
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Coherent structure colouring 469

then the method may not be self-consistent in its characterization of fluid coherence
(Haller 2005).

As an alternative, Lagrangian techniques have also been developed, many based
on analysis of the deformation gradient tensor of the flow field (Haller & Yuan
2000; Shadden, Lekien & Marsden 2005). These methods use information regarding
the trajectories of fluid particles, as opposed to their velocity or acceleration, which
ensures frame invariance since relative particle position does not depend on the
reference frame in which it is measured.

Despite the vast array of current applications, identification of coherent structures
based on the deformation gradient has some limitations as well. For instance,
knowledge of a discretized version of the entire flow field is typically required,
of the sort obtained from computational analysis or particle image velocimetry
(PIV). However, some common empirical tools for fluid flow measurement do not
provide velocity data in the whole flow field. One such technique, particle tracking
velocimetry (PTV) (e.g. Chang, Wilcox & Tatterson 1984; Racca & Dewey 1988),
is particularly useful in applications where velocity data in three dimensions are
required, or where the entire flow cannot be densely and uniformly seeded, as in
studies of ocean currents. Particle tracking algorithms often result in much sparser
velocity measurements than techniques such as PIV. For example, Davis (1991)
reviews a wide range of studies utilizing artificial ocean drifters to study nominally
two-dimensional ocean surface flows, where the number of drifters ranges from
14 to 300 per study. In three dimensions, a number of PTV studies have utilized
between 800 and 5000 particle trajectories (Virant & Dracos 1997; Lüthi, Tsinober
& Kinzelbach 2005; Murai et al. 2007; Kim, Hussain & Gharib 2013). Recently,
several PIV and PTV techniques have been developed to increase the density of data
collected (Elsinga et al. 2006; Schanz, Gesemann & Schröder 2016). Despite these
advances, in many situations seeding the flow with a large number of particles can
be extremely difficult, e.g. in situ measurements of atmospheric and oceanic flows
that rely on naturally occurring particulate fields (Katija & Dabiri 2008; Ho et al.
2014). Hence, the need for techniques to analyse sparse data persists.

Deformation-gradient-based methods for identification of coherent structures fail for
sparse trajectory data due to the assumptions inherent in analysing the deformation
gradient tensor, ∂x/∂X, where x = x(X) maps the initial location of a fluid element,
X, to its location x at a later time. The principal assumption that is no longer satisfied
is the initial close separation of flow trajectories, since the trajectory spacing cannot be
controlled a priori. Moreover, the determination of the finite-time Lyapunov exponent
(FTLE) field requires linearization of the flow map (Haller & Yuan 2000), which also
breaks down for well-spaced flow trajectories. Therefore, an alternative approach is
needed to extract coherent structures from sparse velocity data.

Several methods have been developed recently in an attempt to address this issue,
a number of which are reviewed by Allshouse & Peacock (2015). One such method
is based on braid theory (Allshouse & Thiffeault 2012), which maps two-dimensional
fluid particle trajectories into three dimensions, where time is the third dimension.
Plotted in this way, the entwinement of trajectories with each other can be analysed,
and surfaces surrounding sets of trajectories that do not grow with time can be
identified, indicating the presence of coherent structures. While the braid method is
useful for two-dimensional datasets, its extension to higher spatial dimensions has not
yet been achieved. Additionally, the braid-based analysis can become quite complex
and computationally expensive for large numbers of trajectories.

A second method developed for use with sparse datasets is the cluster-based
approach by Froyland & Padberg-Gehle (2015), and it is well suited for PTV datasets
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due to its ability to handle both sparse and incomplete fluid particle trajectories. The
method uses the Euclidean distance from each particle to the centre of each of a
predetermined number of clusters to assign to each fluid particle a probability of
belonging to each cluster while simultaneously determining the location of the cluster
centres. This is accomplished using the iterative fuzzy c-means algorithm developed
for use in cluster theory (Bezdek, Ehrlich & Full 1984). While the authors proved
that this method can accurately detect coherent structures from a variety of benchmark
flows, in addition to global ocean drifter data, it has the distinct disadvantage that
the number of clusters be known a priori.

In order to address the need to determine the number of clusters a priori in
the cluster-based approach of Froyland & Padberg-Gehle (2015), Hadjighasem et al.
(2016) recently developed a method based on spectral graph theory. This method
relies on the concept of a graph, or a set of nodes connected by edges, where,
in this case, the nodes represent Lagrangian particles, and the edges are weighted
by the inverse of the average distance between particle pairs. By examining the
smallest-magnitude eigenvalues associated with the generalized eigenvalue problem
of the graph Laplacian, the authors developed a heuristic for determining the number
of coherent structures in the flow. The authors use this information as input to the
K-means clustering approach to determine the centres of the coherent structures in
the flow. The test cases used by the authors in validating this approach demonstrate
its effectiveness in identifying coherent structures without knowing the number of
clusters a priori. However, for most flows analysed, the number of trajectories used,
of the order of tens of thousands, far exceeds the number of trajectories available
for most PTV and ocean drifter datasets. It is also important to note that the method
for determining the number of coherent structures is heuristic and therefore difficult
to generalize. Other graph-theory-based methods have also been developed recently
to address the issues associated with current cluster- and braid-based approaches
(Banisch & Koltai 2016).

We propose an alternative graph-theory-based metric that weights the edges not
by the distance between corresponding particles, but by a metric of kinematic
dissimilarity, regardless of spatial proximity. This method is frame-invariant because
it does not consider particle velocity, only the spatial location of each fluid particle
relative to other particles in the flow. In analogy to graph colouring algorithms that
partition nodes with large connecting edge weights, the present method solves an
eigenvalue problem to partition fluid particle trajectories according to their kinematic
dissimilarity. This approach can be considered an application of spectral graph
drawing, which uses eigenvectors of matrices associated with a graph to visualize
certain characteristics of the graph (Koren 2005). The present method results in
a coherent structure colouring (CSC) field, where similar values of CSC indicate
regions of the flow that are coherent, according to the present definition. In this way,
all coherent structures in the flow can be identified simultaneously, without prior
knowledge of their number. Methods for extracting individual coherent structures
from the CSC field are discussed. The method was tested using three validation
cases, including two canonical analytic flows (i.e. an oscillating quadruple gyre and
a Bickley jet) and one experimental dataset (i.e. a two-dimensional cross-section of a
high-stroke-ratio vortex ring).

The following section details the mathematical derivation of the algorithm used
for coherent structure identification. Section 3 presents the results of the three test
cases described above and characterizes the sensitivity of the method to certain
parameters, including the number and initial location of the particles. Section 4
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Coherent structure colouring 471

compares the results of the CSC method to the results of other graph-theory-based
methods. Section 5 summarizes the results of the study and provides avenues for
future development.

2. Methods
Coherence, defined here as the kinematic similarity of Lagrangian fluid trajectories,

regardless of their spatial proximity, can be identified in flows with arbitrary time
dependence using a graph-theory-based approach. The graph G is defined as the
superset G = (V, E, W), where V represents the set of nodes in the graph, E is
the set of edges connecting the nodes, and W are the weights corresponding to the
edge set. Assuming that the trajectories of a set of N Lagrangian fluid particles are
known at T time steps, a graph representing the flow can be constructed, wherein
each node represents a fluid particle. Unlike previous methods that weight the edges
of such a graph based on the proximity of the fluid trajectories (e.g. using Euclidian
distance), here we use a weight based on kinematic dissimilarity. We hypothesize,
and later demonstrate, that coherent structures can be identified more robustly by
quantifying the extent to which fluid trajectory kinematics are different, rather than
the extent to which fluid particle trajectories remain in proximity over time. To this
end, each edge, representing the connection between a pair of particles, is weighted
by the standard deviation of the distance between the two fluid trajectories over their
duration, normalized by the average distance between the fluid particle trajectories
during the same period. The edge weights can be represented numerically using the
weighted adjacency matrix A, where aij contains the weight of the edge connecting
particle i and particle j,

aij = 1
rijT1/2

[
T−1∑
k=0

(rij − rij(tk))
2

]1/2

, (2.1)

where rij(tk) is the distance between two particles i and j at time tk, and rij is the
average distance between the two fluid particle trajectories.

Graph colouring is a labelling of nodes in a graph such that node pairs with
large edge weights are assigned dissimilar values (Muñoz et al. 2005). This makes
graph colouring a natural tool for coherent structure identification based on the
kinematic dissimilarity metric in (2.1). We pose this as the one-dimensional problem
of maximizing

z= 1
2

N∑
i=1

N∑
j=1

(xi − xj)
2aij, (2.2)

where N is the number of rows and columns in the weighted adjacency matrix A (i.e.
the number of particles) and X is a row vector containing the value of CSC associated
with each particle. By maximizing z we are in effect determining CSC values such
that fluid particle trajectories that are kinematically dissimilar (i.e. where the weight
of the edge between them aij is large) are assigned CSC values that are as different
as possible. Following Hall (1970), we define the degree matrix D, which contains the
row sums of the adjacency matrix along the diagonal, as

dij =


0, i 6= j,

N∑
k=1

aik, i= j. (2.3)
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We also define the graph Laplacian, L= D − A. The maximization problem can then
be manipulated as follows:

z = 1
2

N∑
i=1

N∑
j=1

(xi − xj)
2aij (2.4)

= 1
2

(
N∑

i=1

x2
i

N∑
k=1

aik − 2
N∑

i=1

N∑
j=1

xixjaij +
N∑

j=1

x2
j

N∑
m=1

amj

)
(2.5)

=
N∑

i=1

x2
i

N∑
k=1

aik −
N∑

j=1

N∑
i=1

xixjaij (2.6)

= X ′LX. (2.7)

In order to avoid the trivial case where x1 = x2 = · · · = xN = 0, and to bound X
to finite values, the constraint X ′DX = 1 is imposed (another finite constraint can be
imposed without loss of generality). Given this constraint, the maximization problem
can be written in Lagrangian form as z = X ′LX − λ(X ′DX − 1). As a necessary
condition for z to be a local maximum, dz/dX = 0, yielding 2LX − 2λDX = 0, which
can be written as

LX = λDX, (2.8)

which is the generalized eigenvalue problem for the graph Laplacian. The generalized
eigenvector X that maximizes z is the eigenvector corresponding to the maximum
eigenvalue of (2.8) (Hall 1970). Each element of X assigns that value of CSC
to the corresponding fluid particle at the final time of the interval over which
particle trajectories were compared. The CSC vector can be mapped to the space
of the original flow with arbitrary dimensionality based on the spatial locations
of the particles. Interpolation between the particles facilitates construction of the
corresponding CSC field. Thus, regions in the flow with a similar value of CSC
indicate coherence.

3. Results

The effectiveness of the CSC algorithm is demonstrated using three example flows.
The first, a quadruple gyre, is an extension of the double gyre, which is frequently
used in vortex detection algorithm verification (Allshouse & Peacock 2015; Froyland
& Padberg-Gehle 2015). Both the steady and the unsteady cases are examined. The
second verification case is the Bickley jet, which introduces complexities due to the
presence of multiple coherent vortices as well as a meandering jet. Finally, we apply
the CSC method to sparse trajectories derived from a PIV dataset of a long-stroke-
ratio vortex ring, where secondary and tertiary rings in addition to a trailing jet form
behind the primary vortex ring. This shows the robustness of the algorithm to errors
associated with experimental data. For the two analytical validation cases, a fifth-order
Runge–Kutta method was used to determine fluid trajectories. For the PIV dataset,
particle velocities were determined using linear interpolations between velocity vectors
and particles were advected using the Euler method.
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FIGURE 1. Steady quadruple gyre flow: (a) velocity vector field, (b) streamlines and
(c) CSC using 300 particles, particle locations indicated by black dots.

3.1. Quadruple gyre
First, we examine the characteristics of the CSC algorithm using the analytical
quadruple gyre flow. This flow is defined by

dx
dt
= −πA sin(πf ) cos(πy), (3.1)

dy
dt
= −πA cos(πf ) cos(πy)(2ax+ b), (3.2)

where x and y are the spatial coordinates, t is time and

a= ε sin(ωt), b= 1− 2ε sin(ωt), f = ax2 + bx. (3.3a−c)

Here we examine two parameter cases: the steady case where A = 0.1 and ε = 0;
and the unsteady case where A = 0.1, ε = 0.1 and ω = 2π/10. Figure 1 shows the
velocity vector field, streamlines and CSC for the steady quadruple gyre, tracking only
300 particles over 40 time units. CSC is able to clearly delineate the four quadrants of
the flow, and assigns a high value to the gyre centres. Gyres in opposite corners have
approximately the same value of colouring, due to their identical rotational orientation
(clockwise in the upper left and lower right, and anticlockwise in the upper right
and lower left quadrants). This is a result of having a measure of coherence that
does not conflate kinematic similarity and physical proximity. The latter does not
necessarily imply the former, and vice versa. Large weights in the present adjacency
matrix correspond to fluid particles that are kinematically dissimilar, and given
that the weights correspond to the standard deviation of the distance between two
particles divided by their average distance, the mean distance between particles and
the standard deviation in their distances both contribute to coherence as defined by
this algorithm.

The flow becomes significantly more complex when periodic oscillatory unsteadiness
is introduced. When comparing the coherence colouring to the FTLE of the same
flow computed using 65 000 particles, seen in figure 2(c), it is clear that the largest
positive value of coherence colouring correctly identifies all four vortex cores. The
negative values of CSC correspond to the regions in which particles have switched
quadrants due to the oscillatory nature of the flow, as indicated by the red dots in
figure 2(a). In this case, the largest kinematic dissimilarity in the flow is between
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FIGURE 2. Unsteady quadruple gyre, ε = 0.1, A= 0.1 and T = [2.5, 42.5]. (a) CSC using
300 particles; black dots show final locations of particles that remained in their initial
quadrant, and red dots show final locations of particles that switched quadrants during the
coherent structure calculation time interval. (b) Fluid trajectories for particles with highest
(black) and lowest (red) CSC values. (c) FTLE field, calculated over the time interval
T = [2.5, 42.5], using 65 000 particles.

those particles that remain near the centre of the quadrant in which they started, and
those particles that switch quadrants. This is highlighted by the particle traces shown
in figure 2(b), which shows the trajectories of the particles with the largest positive
value of colouring (in black) and those with the largest negative value of colouring
(in red). This result is in contrast to the steady case, in which the sign of vortex
rotation was the predominant distinguishing feature. Notably, the CSC algorithm can
be applied recursively to the subset of particles with similarly high values of CSC
in figure 2(a), in order to recover the vortex orientation information in figure 1(c).
This is demonstrated in figure 3. Here we see that, for an initial CSC field calculated
with 3000 particles, all four gyre centres are identified with a high CSC value. In
order to detect more subtle differences between the four gyre cores, a threshold
value of CSC> 0.0009 is set, indicated by the solid black lines surrounding the gyre
cores in figure 3(a). When the CSC algorithm is applied using only the particles
exceeding this threshold value, the information distinguishing the gyres that rotate
clockwise from those that rotate anticlockwise (as in the steady quadruple gyre case)
is recovered.

For this dataset, a cluster-based method using fuzzy c-means clustering would
correctly identify the four quadrants of the steady quadruple gyre as four separate
coherent structures, if it is assumed a priori that there are four clusters present. For
the unsteady case, assuming the presence of four structures, the four gyre cores
would again be correctly identified using this method. However, if more than four
coherent structures are assumed, the clustering method will detect the four cores and
a number of additional structures, some of which may correspond to fluid parcels
that did not switch quadrants but are not adjacent to the gyre cores (Allshouse &
Peacock 2015). A braid-based analysis for this flow would probably identify eight
structures, again assuming an extension of the results of the double gyre system in
Allshouse & Peacock (2015). In summary, the cluster-based method requires a priori
knowledge of the number of structures present, and the braid-based analysis cannot
be easily extended to three dimensions and is computationally expensive. The CSC
method addresses all of these issues.
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FIGURE 3. Unsteady quadruple gyre, ε = 0.1, A = 0.1, T = [2.5, 42.5] and 3000 total
particles. (a) CSC; black dots show final locations of particles that remained in their initial
quadrant, and red dots show final locations of particles that switched quadrants during the
coherent structure calculation time interval. Black lines trace contours of CSC = 0.0009.
(b) CSC, algorithm applied recursively only to particles whose initial CSC value was
greater than 0.0009.

3.2. Bickley jet
The Bickley jet, another analytical example, is frequently used as a model of zonal jets
in the Earth’s atmosphere (Rypina, Brown & Beron-Vera 2007). It is a periodic flow
comprising a spatially undulatory jet with counter-rotating vortices above and below.
The flow is described by the streamfunction ψ =ψ0 +ψ1, where

ψ0 = c3y−UL tanh(y/L), (3.4)

ψ1 =UL sech2(y/L)
3∑

n=1

εn cos(kn(x− σnt)). (3.5)

We use similar values of the parameters as in Hadjighasem et al. (2016): U =
62.66 m s−1, L= 1770 km, kn = 2n/r0, c= [0.1446U, 0.205U, 0.461U], σ = c− c(3)
and ε = [0.0075, 0.15, 0.3]; and the flow is computed on the interval x = [0, 20 ×
106] m, y = [−3 × 106, 3 × 106] m, over the time interval t = [0, 40] days, divided
into 607 discrete time steps. The flow was considered periodic in x. For calculation
of the CSC, particles were initialized randomly in the domain and advected with
the flow. The particles were followed over the entire time interval, even if they left
the domain, analogous to how ocean drifters are tracked. The velocity magnitude of
the flow overlaid with streamlines is shown in figure 4, along with the FTLE field
calculated using 48 000 particles.

Figure 5 shows the results of the CSC algorithm using only 480 particles: (a) shows
the CSC field overlaid with black dots indicating the final particle positions, and (b)
shows particle tracks for the highest positive colouring values (in black) and the
highest negative colouring values (in red). Without specifying the number of coherent
structures a priori, the algorithm is able to accurately detect the centres of the three
vortices above the jet and two full and two half vortices below. However, if the
seeding density was too low, such that one of the vortices contained no particles, or
only a few, the structure could not be identified. The jet itself is aligned with the most
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FIGURE 4. Bickley jet: (a) velocity magnitude with sample streamlines; and (b) FTLE
field, calculated over the time interval t= [0, 3456× 103] s using 48 000 particles.
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FIGURE 5. Bickley jet: (a) CSC contours overlaid with dots indicating final particle
positions, 480 particles, t = [0, 3456 × 103] s; and (b) particle tracks for particles with
highest (black) and lowest (red) CSC values.

negative colouring contours, indicating that the largest kinematic dissimilarity detected
is between the jet and the vortices flanking it. It is noteworthy that the eigenvector
associated with the largest eigenvalue of the generalized eigenvalue problem (i.e.
the CSC) provides information about all of the coherent structures simultaneously,
as opposed to N-cut approaches that recover one structure per eigenvalue among
those selected heuristically. This is in part because the present algorithm avoids
unnecessarily restricting the definition of coherence to particles that are physically
close; even the relative kinematics of particles that are far apart provides useful
information regarding the coherent structures in the flow.

The Bickley jet flow can also be used to characterize the robustness of the CSC
method to broken or incomplete fluid particle trajectory information. Two types of
incomplete datasets are examined, each corresponding to a specific experimental
circumstance in which data might be lost. First, we examine the case in which a
fluid particle trajectory is lost and later recovered, but is still identified as the same
particle as before the data loss. This could be the case for ocean drifters, e.g. when
a drifter temporarily goes offline with associated data loss. Additionally, certain PTV
algorithms are capable of linking broken trajectories if datasets are sparse enough
and particle trajectory crossings do not occur when breaks occur (Li et al. 2008).
To characterize the response of the CSC method to this type of data loss, a dataset
containing full trajectories of 480 particles was manipulated to randomly remove
10 %, 50 % and 90 % of the trajectory data. When considering the weight of a
pair of particles, the CSC algorithm only considers the overlapping time interval in
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which both particles are present. If a particle is not present during the time step
for which the CSC field is computed, the trajectory information for that particle is
not considered in the calculation of the adjacency matrix. Hence, the size of the
adjacency matrix is np × np, where np is the number of particles present in the
domain during the time step in which the CSC field is calculated. For this analysis,
it was ensured that all 480 particles were present in the final time step so that their
trajectory information could be used to calculate the CSC field. This was done so
that the analysis would show the effect of intermittent data loss as opposed to the
effect of total number of particles. The results are shown in figure 6. From this figure
it is evident that, in the case where pieces of particle trajectories can be linked and
identified as broken pieces of the same trajectory, intermittent data loss does not
adversely affect the robustness of the CSC algorithm, as long as there are a sufficient
number of particles present in the time step for which the CSC field is calculated.

In order to characterize the CSC method in cases where broken trajectories cannot
be reconstructed and the particle tracks must be treated as independent fluid particles,
a baseline group of 480 particles was again examined. A portion of the position data
was then randomly deleted, and every time a break in the position data occurred,
the remainder of the track was recharacterized as a separate particle trajectory. The
results from this analysis are shown in figure 7. For the case with 480 unbroken
particle trajectories, shown in figure 5(a), all particles have a trajectory length that
spans the entire time domain. For the shorter particle trajectories shown in figure 7,
it is evident that, as the average particle trajectory length is shortened, the flanking
vortices appear to blend together into two large coherent structures, one below the
jet and one above. This result can be understood by considering the length of the
fluid particle trajectories relative to the eddy turnover time. Based on the flow velocity
around closed streamlines for the Bickley jet flow at t = 0, the eddy turnover time
is estimated to be approximately 279 × 103 s, and the time interval t = [0, 3456 ×
103] s is equivalent to approximately 12.4 eddy turnover times. Thus, while it is clear
that the CSC algorithm is capable of handling broken trajectories of this type, an
average trajectory length of approximately 2.6 eddy turnover times, as in figure 7(a), is
necessary to distinguish individual coherent structures. Otherwise, there is not enough
information available to effectively characterize the flow, even if the total observation
time is a larger multiple of the eddy turnover time.

It is also useful to analyse and understand the response of the method to a large
number of particles, approaching the quantity used for non-sparse methods such as
FTLE analysis. As such, a CSC analysis of a Bickley jet seeded with 12 000 particles
was examined, and the resulting CSC field is shown in figure 8. The features of
this CSC field are similar to what would be seen by clustering-based methods, if
thresholding of the CSC were used to separate the vortex cores into distinct structures.
There are also similarities with what would be seen if vortices were extracted from
the flow using the forward and reverse FTLE fields, including the five isolated vortex
cores and two half cores. Although not demonstrated here, the subsequent extraction
of the coherent structures from the CSC field can be performed in a manner similar
to the FTLE field analysis. For example, one option is to use thresholding of the
CSC field to determine boundaries of the coherent structures. Additionally, the spatial
gradients of the CSC field can be used to separate coherent structures from the
background flow.

In assessing the feasibility of high-resolution CSC analysis, computational time is
an important factor to consider. Table 1 provides a summary of computational run
times on a single processor for the Bickley jet with three seeding densities.
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FIGURE 6. Bickley jet, 480 particles: (a) unbroken particle trajectories; (b) CSC field
for unbroken particle trajectories; (c) particle trajectories, 10 % of position data deleted;
(d) CSC field for case where 10 % of particle position data is deleted; (e) particle
trajectories, 50 % of position data deleted; ( f ) CSC field for case where 50 % of particle
position data is deleted; (g) particle trajectories, 90 % of position data deleted; (h) CSC
field for case where 90 % of particle position data is deleted. Black dots indicate final
particle position.

3.3. Vortex ring

Next, we examine a PIV dataset of a forming vortex ring with a high maximum
stroke ratio. The vortex ring is created in a water tank using a piston forced at
speed U a distance L = Ut through a hollow cylinder of diameter D, which in turn
ejects fluid from an axisymmetric nozzle with a sharp edge. The shear layer formed
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FIGURE 7. Bickley jet CSC fields, 480 particles: (a) average trajectory length of 2.6 eddy
turnover times; and (b) average trajectory length of 1.7 eddy turnover times.
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FIGURE 8. Bickley jet CSC field, 12 000 particles; black dots indicate final particle
positions.

480 particles 2400 particles 12 000 particles

Adjacency matrix calculation (s) 2.8 79.1 2345.2
Eigen-decomposition (s) 0.3 1.9 213.2

TABLE 1. Run times for Bickley jet flow on a single processor.

inside the nozzle due to the motion of fluid through it rolls up at the nozzle exit,
forming a vortex ring. If the maximum stroke ratio, t∗max = Utmax/D, where tmax is
the total time over which the piston is moving, is greater than 4, then a trailing jet
and potentially secondary and tertiary vortex rings are formed behind the primary
vortex ring (Gharib, Rambod & Shariff 1998). The dataset examined here is of a
vortex ring formed using a piston travelling with a constant velocity until a maximum
stroke ratio of 8. The Reynolds number based on the diameter is approximately 1800.
Details of the experimental set-up and acquisition and processing of the PIV images
for this dataset can be found in Schlueter-Kuck & Dabiri (2016).

Figure 9(a) shows the vorticity field at t∗ = 10.2, after the piston has stopped
moving, where t∗ = Ut/D is the non-dimensional time, equivalent to the number of
piston diameters that the piston has travelled. At this point, the leading vortex ring,
as well as secondary and tertiary vortex rings and a trailing jet, are clearly visible.
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FIGURE 9. Vortex ring, t∗max = 8: (a) vorticity field, t∗ = 10.2; and (b) FTLE field,
calculated over the time interval t∗ = [8.0, 10.2], using 30 500 particles.
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FIGURE 10. Vortex ring CSC, for particles introduced at nozzle exit plane while vortex
ring is forming, calculated over the time interval t∗=[8.0, 10.2]: (a) 150 particles, (b) 300
particles, (c) 600 particles and (d) 2400 particles.

The corresponding backward FTLE field, computed using 30 500 particles, is shown
in figure 9(b). Figure 10 shows the CSC calculated using a total of 150, 300, 600
and 2400 particles initiated at the nozzle exit plane near the left of the frame between
t∗= 0.04 and t∗= 8.4. The CSC algorithm identifies all three vortex rings, which is in
qualitative agreement with the dark ridges of the FTLE field. While the resolution of
the CSC contours increases with the number of particles, it is clear that 300 particles
is sufficient to obtain a qualitatively similar result to the case with eight times as
many particles, and to the FTLE calculation based on 30 500 particles.

The sensitivity of the CSC method to the size of the domain of particles and the
time of release was also characterized using the vortex ring PIV data. In figure 11(a),
the entire flow field was initialized with randomly located particles at t∗ = 0, and
subsequently 1200 additional particles were added between t∗ = 0.04 and t∗ = 8.4
at the nozzle exit plane. Because the CSC algorithm groups regions with a low
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FIGURE 11. Vortex ring CSC, calculated over the time interval t∗ = [8.0, 10.2]: (a) 1200
particles initiated randomly in full domain at t∗ = 0 and 1200 particles introduced at
nozzle exit plane during vortex ring formation time, t∗=[0.04, 8.4]; and (b) 1200 particles
introduced at nozzle exit plane during vortex ring formation time, t∗ = [0.04, 8.4].

normalized standard deviation in relative particle separation, the nominally quiescent
background flow was assigned a CSC value that contrasts most sharply with the
entire starting jet flow. Consequently, details of the internal structure of the vortex
ring and trailing jet are lost. However, if we recursively apply the CSC algorithm
only to the flow trajectories in the starting jet, as shown in figure 11(b), we see that
the algorithm is able to detect the structure of the primary, secondary and tertiary
vortex rings in greater detail, despite the fewer number of total particles.

4. Comparison with other graph-theory-based methods

A related method for coherent structure detection that is also based on graph
theory uses the concept of an eigen-gap heuristic to determine the number of coherent
structures present in the flow (Hadjighasem et al. 2016). For this method, the weights
assigned to the edges of the graph are equal to the reciprocal of the average distance
between particle pairs. The generalized eigenvalue problem solved in this method is
Lx = λDx, where L = D − A is the graph Laplacian, and D is the diagonal degree
matrix, where dii is equal to the sum of the elements in row i of the adjacency
matrix A. This method assumes that, by examining the smallest eigenvalues of the
generalized eigenvalue problem, the number of coherent structures in a flow can be
determined by locating the largest numerical gap between successive eigenvalues; the
number of eigenvalues before the gap is assumed to correspond to the number of
coherent regions in the flow.

Here we present an analysis of the aforementioned technique and its response to
several input variables, comparing its robustness to the method introduced in this
paper. This analysis again uses the Bickley jet described by (3.4) and (3.5) and the
values of the parameters listed in § 3.2. The response of the eigenvalue spectrum for
the Bickley jet flow to changes in the initial position of tracer particles and to the
value of the sparsification parameter ε are shown in figure 12 for 1920 particles and
in figure 13 for 480 particles. For the case with 480 particles initialized randomly
in the domain, exactly the same particle trajectories were used as in the analysis in
§ 3.2 to allow for a direct comparison between the two methods.

Based on prior knowledge of the Bickley jet flow, we expect to resolve six
coherent structures: the five full vortices flanking the meandering jet, and due to
the periodic nature of the flow in the x-direction, and two half vortices identified
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FIGURE 12. Bickley jet eigenvalue spectra for 1920 particles: (a) randomized particle
initialization, sparsification of adjacency matrix for average particle pairwise distances
greater than 3×106 m; (b) randomized particle initialization, no sparsification of adjacency
matrix; (c) gridded particle initialization, sparsification of adjacency matrix for average
particle pairwise distances greater than 3× 106 m; and (d) gridded particle initialization,
no sparsification of adjacency matrix. Dotted vertical lines indicate the expected location
of the eigen-gap based on six coherent structures.

together as a sixth coherent structure. Thus, the eigen-gap heuristic should predict
a numerical gap between the sixth and the seventh eigenvalues. From figure 12(a,c)
we can see that for 1920 particles, regardless of whether particles are initialized on a
Cartesian grid or randomly throughout the domain, the largest gap in the smallest 20
eigenvalues is between the sixth and seventh eigenvalues, as expected. However, when
the adjacency matrix is not sparsified to remove weights corresponding to particle
pairs with an average distance greater than 3 × 106, as shown in figure 12(b,d),
the eigen-gap is located between the first and second eigenvalues for the random
particle initialization and between the second and third eigenvalues for the gridded
particle initialization. These results indicate that the eigen-gap heuristic is sensitive to
the level of sparsification used in the adjacency matrix. Consequently, without prior
knowledge of the size of the coherent structures to inform an appropriate level of
sparsification, this method is not able to robustly determine the number of coherent
structures in the flow.

The analysis of the eigenvalue spectrum for 480 particles, the same number as used
in the analysis of CSC for the Bickley jet flow in § 3.2, is shown in figure 13. Here
we see in figure 13(a) that, for random particle initialization with sparsification, the
eigen-gap is between the ninth and tenth eigenvalues. Additionally, if the particles
are initialized on a grid (figure 13c), or sparsification is not used (figure 13b), or
both (figure 13d), the eigen-gap is also not correctly identified. Based on this analysis,
we can conclude that for small numbers of tracer particles, on the order of 102–103,
use of the eigen-gap heuristic to determine the number of coherent structures in the
flow is ineffective based on the lack of robustness to initial tracer locations (often
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FIGURE 13. Bickley jet eigenvalue spectra for 480 particles: (a) randomized particle
initialization, sparsification of adjacency matrix for average particle pairwise distances
greater than 3×106 m; (b) randomized particle initialization, no sparsification of adjacency
matrix; (c) gridded particle initialization, sparsification of adjacency matrix for average
particle pairwise distances greater than 3× 106 m; and (d) gridded particle initialization,
no sparsification of adjacency matrix. Dotted vertical lines indicate the expected location
of the eigen-gap based on six coherent structures.
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FIGURE 14. K-means clustering of the Bickley jet with 480 randomly initialized particles;
five of the 10 total clusters identified are shown in (a) and the remaining five in (b).

beyond the control of the investigator for experimental applications) and to the level
of sparsification of the adjacency matrix (which requires a priori knowledge of the
size of the coherent structures, if sparsification is to be used effectively).

Despite an incorrect identification of the eigen-gap, the coherent structures can
theoretically still be identified using a K-means clustering of the eigenvectors
associated with the eigenvalues below the eigen-gap according to this method. To be
sure, if the eigen-gap heuristic overestimates the number of structures, some structures
might be split into several, and if the number of structures is underestimated, several
structures might be merged together. Thus, for the case where 480 particles were
randomly initialized in the domain and sparsification was used in the analysis
(i.e. figure 13a), the results of the K-means clustering is shown in figure 14,
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FIGURE 15. Eigenvectors corresponding to the eigenvalues below the eigen-gap for the
Bickley jet flow with 480 randomly initialized particles.

and the nine eigenvectors used in the clustering analysis are shown in figure 15.
The clustering analysis searched for 10 groups corresponding to the nine coherent
structures expected from the eigen-gap heuristic, in addition to one structure for the
incoherent background flow. In figure 14, these 10 clusters are plotted between two
separate panels to aid in visualization of the individual clusters. From the clustering,
we can see that the grey cluster roughly corresponds to the meandering jet, while
the flanking vortices are somewhat consistent with the purple, yellow and light green
clusters on the top and the dark green, cyan and magenta clusters on the bottom.
The black, red and blue clusters identify only a few seemingly random particles
each. Even if the three smallest clusters are ignored, the boundaries of the clusters
corresponding to the vortices are significantly different from the boundaries of the
vortices themselves, as observed in the FTLE analysis in figure 4(b). From observing
the eigenvectors used for this analysis, it is evident that the first, second and fifth
eigenvectors (figure 15a,b,e) are responsible for the small clusters identified by the
K-means analysis, while the remaining six eigenvectors roughly correspond to the
boundaries of groups of the flanking vortices and meandering jet. Although not shown,
if K-means clustering is performed using the third and fifth to ninth eigenvectors to
identify seven clusters, the clusters identified are almost identical to the clusters in
figure 14 excluding the small blue, red and black clusters. However, the boundaries of
these clusters are still not consistent with the boundaries of the jet and the vortices.

5. Conclusions
This paper presents an algorithm for detecting coherence in flows where only

sparse velocity data are available, as is often the case in particle tracking velocimetry,
or oceanographic tracking of surface floats. In this regime, alternative methods of
evaluating coherence either require knowledge of the number of coherent structures
a priori, or break down due to the sparsity of the data. The present method, based on
the concepts of graph colouring and spectral graph drawing, examines the kinematic
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dissimilarity of every pair of trajectories, and organizes these data into a weighted
adjacency matrix. As such, we consider a different definition of coherence from other
coherent structure detection methods, which only consider groups of particles that
remain close as time progresses without mixing with the surrounding fluid to be
coherent structures. The eigenvector associated with the maximum eigenvalue of the
generalized eigenvalue problem LX = λDX assigns a value of CSC to each particle,
such that similar CSC values indicate coherence in the flow. This algorithm has
several inherent strengths, including that the number of coherent structures does not
need to be known a priori. Additionally, information about all coherent structures in
the flow is contained in a single eigenvector of the generalized eigenvalue problem
associated with the graph Laplacian. The algorithm is also capable of detecting
coherent structures with the small number of trajectories associated with many PTV
and ocean drifter datasets, and was shown to be robust to different types of data
loss common in particle/drifter tracking applications. Although only two-dimensional
datasets were examined here, the kinematic dissimilarity metric in (2.1) and the
subsequent maximization problem can both be extended to higher dimensions
without loss of generality and with limited additional computational cost, since
the adjacency matrix scales with the square of the number of particles, independent
of the dimensionality of their trajectories. The CSC method has the potential to be
extended to analyse other properties of fluid flows in addition to coherence, and it
may also find application in other data analysis problems for which coherent structure
identification remains a challenge.

A MATLAB implementation of the CSC algorithm is available for free download
at http://dabirilab.com/software.
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