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1. Introduction

Diophantine equations involving factorials have a long history. For example, in 1876 Bro-
card [6] asked for the integral solutions of n! + 1 = x?; this was asked again (apparently
independently) by Ramanujan [17] in 1913. The Brocard-Ramanujan equation is still
an unsolved problem today; see D25 in Guy’s book [13]. Other Diophantine equations
involving factorials have proved more tractable. For example, Erdés and Oblath [11]
showed that the equation zP + y? = n! has no solutions with z, y coprime and p > 2.
Many have considered equations of the form P(xz) = nl, where P is a polynomial; the
best results so far appear to be those of Berend and Harmse [1], who show that there
are only finitely many solutions if P has an irreducible factor of relatively large degree.

Diophantine equations involving Fibonacci numbers have been no less popular, as
documented in [13, D25] and in the historical sections of [8] and [7]. Moreover, there
have been several papers attacking Diophantine equations that involve both factorials
and Fibonacci numbers. For example, in [12] it is shown that if & is fixed, then there are
only finitely many positive integers n such that

Fy=mil+mal 4+ 4+ my!

holds for some positive integers my, ..., my, and all solutions of the above equation with
k < 2 have been determined. It is conjectured in [12] that if m1 < mo < -+ < my
holds in the above equation, then k itself must be bounded. Some results on this problem
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can be found in [3]. In [16], it was shown that the largest solution of the Diophantine
equation
Fanng ce Fnk = m1!m2! ce mZ!

withl<ni<---<npand2<my <---<myis F1FYF3F,FsFgFoFigF1o = 11!
In this paper we prove the following result.

Theorem 1.1. Let (F),).m>0 be the Fibonacci sequence given by Fy =0, F; =1 and
Foyo = Foy1 + Fy, for all m > 0. The only factorials expressible as the sum of at most
three Fibonacci numbers are

0'=1=F = Fy, 2Q0=F, + F, = F> + F| = F5 + I, = F3,
Nt Py =Fs+ P =Fs+ Fo= Py + Fy+ Py = Fy + Fy + Fy = Fy + Fy + Fy,
A= Fy 4 Fy=Fy+ Fy+ Fs= Fo+ Fo+ Fy = Fs+ Fs + Fy = Fs + Fs + F,
6! = F15 + Fio + Fio = Fi5 + Fi1 + Fs.

It is not hard to show that every positive integer N has a representation, called the
Zeckendorf decomposition, of the form N = F,,, + F,,, +--- + F,,_, where n, — 1,41 > 2,
and that, up to identifying F; with F5, this representation is unique. Our problem is
therefore related to the Zeckendorf decomposition of factorials. Denote by Z(IN) the
number s of Fibonacci numbers appearing in the Zeckendorf decomposition of N.

Conjecture. Z(n!) tends to infinity with n.

We are unable to prove our conjecture, but our Theorem 1.1 determines all positive
integers n such that Z(n!) < 3.

It is appropriate to point out some analogous results to our conjecture that appear
n [15]. Let b > 2 be a positive integer. For a positive integer N let s5(N) be the
sum of the base b digits of n. In [15], it is shown that the inequality sp(n!) > logn
holds for all positive integers n, where the implied constant depends on b. Thus, the
complexity of representing n! in base b grows as n tends to infinity. The method of proof
is elementary and it is based on the observation that n! is a multiple of ™ — 1 for all
m=1,2,...,|logn/logh|.

Particular Diophantine equations of the form

ai’ +---+apF =nl,

where aq,...,ar are given positive integers and x1,...,xr,n are non-negative integer
unknowns, have been studied in [10]. For example, all the solutions of the Diophantine
equation

271 4 3%2 4 5% 4 7% 4 1175 = (1.1)
have n < 6.

For the purpose of the present paper, as Fy = 0, it suffices to determine all solutions
to the following Diophantine equation:

F,+F,+F,=n!, z,y,220, n>1. (1.2)
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Before doing this, we explain very briefly why our method for solving this equation is far
more complicated than the method for solving (1.1) in [10]. To solve (1.1), all we have
to do is find a positive integer M such that the congruence

271 4 372 4 5% 4 7% 4 11% =0 (mod M)

has no solutions. Once this is done, we know that, for any solution to (1.1), M { n!, giving
a bound on n. This elementary idea cannot be used for (1.2); for example, Fo+F_o+F; =
0, and so the congruence F, + F, + F, =0 (mod M) has solutions for all M.

Our strategy for (1.2) is as follows. Let (L,,)m>0 be the Lucas sequence defined by
Ly =2, Ly =1 and Lyyte = Ly + Ly, for all m > 0. Let m > 6 be an even
integer such that L,,/; < n. We compute the first few terms of an expansion of F;
as an ‘F), p-adic’ power series, in a way that is very similar to Strassman’s Theorem
(see [9, pp. 59-73]), except that we do not require F,, /5 to be prime. From this, we deduce
congruence conditions modulo m and modulo F),/ on the unknowns z, y, z in (1.2);
the idea here is reminiscent of Skolem’s method (see [9, pp. 228-231] and [4, pp. 290—
300]). We use the Chebyshev f-function to combine the information obtained from all
even m > 6 with L,,/, < n. For n very large, this shows that x, y, z are too large
compared with n for Equation (1.2) to hold, and so gives a bound on n. Our initial
bound obtained in this way is n < Lsg1 < 5.045 x 10194, An iterative argument, using
the same information derived from the ‘Strassman’ expansion, is applied 50 times to
reduce the bound to n < L3y = 54018521. The proof is completed using a sieving
argument.

2. Inequalities
In this section, we gather some inequalities that will be useful later.

Lemma 2.1. For all integers n > 2,
log(n!) < (n+ 3)logn —n+1 < nlogn. (2.1)

Proof. By Stirling’s formula,

n n
nl = 27m<) et
e

1 < Ap <
12n+1 " 12n

where

Hence,
log(n!) < (n+ 1)logn —n + 1log(2m) + Ap.

But $log(2m) 4+ A, < 2 log(27) + 55 < 1, leading to the first inequality in the statement
of the lemma. To obtain the second, we need to show that

n> ilogn+1
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holds for all n > 2. This is in fact true for n = 2, and so is true for all real n > 2 since

d logt 1
[l = =1 - — > 2.
T (t > 1) T >0 forallt

O

We write « = (14 v/5) and 8 = 1(1 — /5) for the two roots of the characteristic
equation A2 —\—1 = 0 of the Fibonacci sequence. It is well known that the Binet formula

a — ﬁn
a—f
holds for all n > 0. We will find it convenient to extend the Fibonacci sequence to negative

subscripts either using Binet’s formula directly or by defining F,,_s = F,, — F,,_1 for all
n =1,0,—1,.... The Binet formula for the Lucas numbers is

F, =

L,=a"+ 3" foralln>0.

As with the Fibonacci numbers, we will sometimes make use of negative subscripted Lucas
numbers. It is easy to see that if n > 0, then F_,, = (=1)""'F,, and L_,, = (=1)"L,.
Here are a few inequalities involving the Fibonacci and Lucas numbers.

Lemma 2.2. Any solution to the Diophantine equation (1.2) with n > 3 satisfies

nlogn

<
max(x,y, z) og o

Proof. From F, < n! and the Binet formula, we obtain that o® < v5n! + 1. Hence,

log(n!) + log(V/5) 4+ log(1 + 1/(v/5n!))
(n+ 3)logn —n+ 1+ log(v/5) + log(1 + 1/(6V5)).

zloga <
<

The lemma follows from the inequality

n > Slogn + 1+ loga + log(V5) + log(1 + 1/(6V/5)),

which is easily established for n > 3 by modifying the argument at the end of the proof
of Lemma 2.1. O

Lemma 2.3. Lety > 1. If x > 2.0791ogy + 2.441, then F, > y. Moreover, if y > 200
and x < 2.076logy, then L, < y.

Proof. For the first part, note that 2.079loga = 1.0004... to four decimal places.
Thus,

xloga > logy + 2.441log
> log V5y + log(1 + 1/v/5)
> log V5y + log(1 + 1/(V/5y)).

Hence, a® > /5y + 1, giving F,

WV

Y.
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For the second part, observe that 2.076log v = 0.998996 . .. to six decimal places. So,
xloga < 0.999logy, and therefore

1 1
@ISy LS Y 90001 Tggp ) <Y

1

Lemma 2.4. For x > 0, we have log(1+2) < x. For 0 <z < 3,

—2x.

we have log(1 —x) >

2.1. The Chebyshev function
We shall need some estimates involving the Chebyshev function
6(x) = logp,
pP<ZT

where the sum is taken over all primes less than or equal to z. It is well known that
O(x)/xz — 1 as  — oo. Here, we need lower estimates for this ratio for small values of x.

Proposition 2.5. For all real z > 1, §(x) < 1.001102x. Moreover,

if10 < = < 20, then 0(x)/x > 0.4861,
if 20 < z < 30, then 6(zx)/x > 0.6628,
if 30 < = < 40, then 0(x)/x > 0.7033,
if 40 < = < 50, then 6(x)/x > 0.7228,
if 50 < x < 500, then 0(x)/x > 0.7615,
if 500 < = < 1000, then 6(z)/x > 0.9194,
if > 1000, then 0(x)/x > 0.9456.

Proof. Theorem 6 of [18] gives §(x) < 1.001102z if 0 < z, and 6(z) > 0.998684x if
x > 1319007. To obtain the lower bounds claimed by the proposition, we used a simple
MAGMA [5] script to determine the infima of #(x)/z in the finite ranges above as well
as in the range 1000 < = < 2 x 10°. Note that over the interval [p, p'], where p, p’ are
primes, the infimum of 6(z)/x is 6(p)/p’. O

3. Elementary lemmas

We shall also need the following elementary properties of the Fibonacci and Lucas num-
bers. Properties (3.1)—(3.3) are well known (see, for example, [14]) and can be proved
immediately using the Binet formulae for the Fibonacci and Lucas numbers. For integers
n’

Fyp = F, L, Loy, = 5F2 +2(=1)", L2 =5F% 4 4(-1)". (3.1)

For all pairs of integers m and n,

2Fyin = FpLy + FoLp,  2Lmin = LinLn + 5, F. (3.2)
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If m and n have the same parity, then

Froamy /2Lt if m= d4),
Fy 4 Fy = 4 Fonem2Lnomyz ifm=n (mod4) (3.3)
F(m_n)/QL(m+n)/2 if m 7_é n (mod 4)

Lemma 3.1. Let m be a non-zero integer. Then
F2 = (—1)AYmAZE2 - (mod F2).
Moreover, if m is even, then

Fam = (-1)"AD2AF, (mod FJ ,).

Proof. Define

o F)\m 2 - a2)\m +ﬂ2)\m 72(71))\771
AT Fm - (a’m _ ﬁm)Q :

This is a ternary recurrence sequence with characteristic polynomial
(X = a®™)(X = F")(X = (1)) = (X? = Lem X + 1)(X = (=1)™).
However, from (3.1) we have Ly, = 2(—1)™ (mod F2). Hence,
Hy,3=3(—1)"Hx,o — 3Hxso + (=1)™Hy (mod F2).

Moreover, Hy = 0, H; = 1 and Hy = L?, = 4(—1)™ (mod F?2), again by (3.1). An easy
induction shows that
Hy = (—1)XY™A2 (mod F?),

and multiplying by F2 completes the proof of the first part of the lemma.
The proof of the second part is similar, but easier, using the binary recurrence sequence
of general term G\ = F;,/Fin- a

Lemma 3.2. Let m be a non-zero even integer. Then
Fpotoom = Fry  (mod F,), (3.4)
and
2Fyyam = 2(—1)" 2 Fy, + 2(~1)" D2 E Lo X4+ 5F2 F A (mod FY ). (3.5)
Proof. Using (3.2), we see that

2Fw0+2)\m = F£0L2)\m + LxOFQ/\m
= Fﬂ30(2 + 5F)?m) + LwoFQ)\m-

However, F,, divides F\,, and Fay,,. If 2 1 F,,, then (3.4) follows. Suppose now that
2| Fy,. Then 2 | L,,, and we note that 2F,, divides both Ffm and Ly, Fry = Fam, | Foxm.-
Hence, 2F, +oxm = 2F;, (mod 2F,,). This completes the proof of (3.4).
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We now drop the requirement that 2 divides F),, and we move on to prove (3.5). To
this aim, we combine (3.1) and (3.2) with Lemma 3.1 to obtain

2on+)\m = Fsz)\m + LIOF)\m
= Fxo(2(_1)m/2 + 5F)\2m) + onF)\m
= Fo 2(=1)™? + 5ELN?) + (=1)"PTD2E, Ly A (mod FY ),

which gives (3.5). O

4. Some congruences

The following two results are useful in applying the ‘Strassman procedure’ alluded to
in §1.

Lemma 4.1. Let m > 4 be even and let —m < xg,yo < m be integers such that x is
odd, yo is even and F,,, + F,,, =0 (mod F,,). Then (x¢, yo) € {(£(m—1),m—2), (£1,2)}.

Proof. Since zg,yo € (—m,m] and m > 4, it follows that if either F,, or Fy, is
negative, then it is less than F,, in absolute value. Thus, F,, + Fy, € {—F,0, Fy,,2F;,}.

The case Fy, + F,, = 2F;, is impossible since F,, < Fy,, Fy, < Fy, and at least one
of these two inequalities is strict because xy is not equal to yg.

Assume that F,, + F,, = F},. Since both z¢ and yo are at most m, it follows that
F,, > 0 and F,, > 0. Furthermore, both these inequalities are in fact strict since equality
is achieved only in the case yo = 0, leading to F,, = F},, so £o = m, which in turn is
impossible because xy must be odd. Thus, both F,  and Fy, are positive and less than
Fo. If max{F,,, Fy,} < Fp_2, then

Fm—3+2Fm—2:Fm:F;EO+Fy0 <2Fp_2,

leading to F},,_3 < 0, which is impossible. So one of F, or F,, equals F},,_;, and therefore
the other one is I}, — Fy,—1 = Fy,,—2. By parity arguments, we get that F,, = Fj;,_2 and
Fiy = Fin_1; 80 (zo,y0) = (£(m —1),m — 2).

Assume that F,) + F,, = 0. Then F,, = —F,, = F_,,, since yg is even. Since z is odd,
F,, is positive, so yo < 0. If yo = —2, we then get F,, = F» =1, leading to 29 = £1.
This gives us the possibilities (zg,yo) = (£1,—2). Finally, if yo < —4, then 2o = +yo,
which is false since zg must be odd.

Assume that Fy, + F,, = —F,,. Then F,, > |F,,| = |-Fyn — Fy,| = Fr + Fyy > Fin,
again because Fy, > 0, but this last inequality is false. This completes the proof of this
lemma. ]

Lemma 4.2. Let m > 6 be even and let —m < xg, Yo, 20 < m be integers satisfying
F,,+ F,, + F,, =0 (mod F,,). Then
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(i) either all three xg, yo, zo are even and their sum is a multiple of m, or

(ii) up to symmetries, (xo,yo, 20) equals (a,+£(a + 1), —a — 2) for some even integer a,
or

(iii) up to symmetries, (zo, Yo, 20) equals one of (£3, —2, —2), (£1, £3, —4), (m, £1, —2),
(m,x(m —1),m —2), (x(m —1),£(m —3),m —4), (m —2,m — 2,£(m — 3)) or
(0,£(m —1),m —2).

Proof. Assume that one of x, 0,20 € {0, m}. Say zo € {0,m}. Then F,, + F,, =0
(mod F,). If yo and 2o have distinct parities, then, by Lemma 4.1, we get that, up to
symmetries,

(z0,¥0,20) € {(m,£(m —1),m — 2), (m,£1,—2)}.

Assume now that yo and zy have the same parities. If yo € {0,m}, then F,, | F.,,
so that zg € {0,m} and xo + yo + 20 = 0 (mod m). Assume now that neither of
Yo, 2o is in {0,m}. If they are even, then |F, | < Fi,,—2 and |F,,| < F),—_2, therefore
|Fyo + Fo| < 2F—2 < Fp, so By, + F,, =0, leading to F,, = —F,, = F_,,. Since both
1o and zo are even, we get that yog = —zg, so indeed all three numbers xg, yg, 2o are even
and zg + yo + 20 = 0 (mod m). If yo and zp are odd, then we may replace yo and zo by
their absolute values and note that Fy, and F., are both positive. Assume that yo > 2.
If yo < m — 3, then Fy, + F,, < 2F,,_3 < F};,, which is impossible. If yg = m — 1, then
F,, = Fpn — F—1 = Fi_o, leading to zg = m — 2 (because m — 2 > 4), which is false
since zg is odd.

From now on, we assume that xg,yo,20 € (—m,m) and that none of them is zero.
Then |F,, + Fy, + F,,| < 3F,—1 < 2F,,, so that F,  + F,, + F,, € {0,£F,,}. Assume
that F,, + F,, + F, = 0. Since none of these numbers is zero, it follows that at least one
of them is negative. Say zp is such that F, is negative and has the largest absolute value
(among the negative numbers from the set {F,, Fy,, F», }). Then 2y is even and negative
and Fy, + F,, = F_,,. Assume first that F,, and F,, are positive. Then |yo| < |2o|. If
lyo| = |z0] —1 = —zp — 1, we then get that F,, = F_, _o. If |29| = 6, then zqg = —zp — 2.
Putting xy = a, we get that 29 = a, yo = £(a + 1), 20 = —a — 2. Thus, we obtain the
possibility

(20,Y0,20) = (a,£(a+1),—a — 2), for some even a.
If z9p = —4, then |yo| = 3 and F,, = F3, and therefore zy € {£1,2}. The case xg = 2
is part of the previous parametric family with a = 2, while, for xyp = £1, we obtain the
possibilities
(330, Yo, ZO) = (:|:17 :|:3, —4).
Continue to assume that Fy, + F,, = F_,, but that one of F;, and F},, is negative. Say

F,, < 0. Then yo is even and negative. Thus, F,, = F | + F|;,|. If [20] = 2, then |yo| = 2
and we get that F,, = 2, so 9 = £3. Thus, we obtain the possibility

(1‘07 Yo, ZO) = (j:37 _27 2)
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If [20] > 4, then either Fly | + Fi.,| = 2F 2| € (F|2o|+1, Flz|+2), so this is not a Fibonacci
number, or |yo| < |20] — 2, therefore Fi. | < Fi.;| + Fyo| < Flzo| + Flzg)—2 < Flzg|41, 50
F.,| + Fjy,) is not a Fibonacci number either.

Now assume that F,, + Fy, + F,, = F,. If max{F,,,F,,,F,} < Fy_3, we then
get that Fy, + Fy, + F,, < 3F,,_3 < F,, which is impossible. So, let us assume that
Fypo € {Frn—1, F—2} and that F,, > F,, > F.,. If F,) = F,,,_1, then F,, + F,) = Fp,,_o.
If Fy, = Fp,—1 also, then F, ) = F,,_9 — Fy;,_1 = —Fj;,—3, which is impossible since m — 3
is odd. Clearly, Fy, # F),—2, since the contrary leads to F,, = 0. If F;; = Fj,,_3, then
F,y = Fp—2 — Fi_3 = F,—4. Thus, we have obtained the possibilities

(x07y0aZO) = (:l:(m - 1)7i(m - 3)7m - 4)

If Fyy < Frp—a,then F,) = F,,_o — Fyy > Fpy_3 > F,,,_4 > Fy, which is impossible. This

takes care of the case when F,; = Fy,—1. Assume now that F,,, = Fp,_2. Then Fy +F, =
Fp_1. If Fyy < Fyy_3, then Fy, + F,) < 2F,,_3 < F,_1, which is a contradiction. Thus,
Iy, = Fp_o, giving F, ) = F,,_3. Hence,

(20,Y0,20) = (M —2,m — 2, +(m — 3)).

Now assume that F,, + F,, + F,, = —F,, = F_,,. If at most two of the Fibonacci
numbers involved are negative, then they are in absolute value less than or equal to F,,_o
(because their indices are even). Thus, F,, = |F,, + F,, + F5,| < 2F),—2, which is false.
Consequently, all three Fibonacci numbers are negative, so all their indices are negative
and even. Changing (g, yo, 20) to (—xo, —Y0, —20) = (|zol, |yol, |20|), we get a solution to

Flao| + Flyo| + Flzo| = Fim-
If at most two of the Fibonacci numbers involved are less than or equal to Fj,,_o, then
Fp, :F|:v0| +ﬂy0| +ﬂz0\ < 2Fn 2+ Fiy < Fiy,

which is impossible, while if all three of them are F,,_o, we then get 3F,,_o = F,,, which
is also impossible for m > 6 since the left-hand side is in fact larger than the right-hand
side.

This completes the proof of Lemma 4.2. O

5. Skolem’s method

In this section we show—using an argument similar to Skolem’s method—that if x, y, z, n
is a solution of the Diophantine equation (1.2), then certain linear forms in z, y, z are
multiples of m or F), /, for all even integers m > 6 such that F, is not too large with
respect to n. Throughout this section we study the equation

Fo+ Fy+ F. =nl

in non-negative integers x, y, z with n > 7. From now on we make the following conven-
tion. If precisely two of the unknowns x, y, z are even, then we shall suppose that these
are x and z. If exactly one of them is even, we shall suppose that it is x.
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Lemma 5.1. Let x, y, z, n be as above. Let m > 6 be an even integer such that both
F,, and 2F7fl/2 divide n! (a sufficient condition for both of these to divide n! is Ly, 2 < n).
Then
(
(

a) not all of x, y, z are odd,

b) if x, y, z are all even, m divides z + y + z,

)
)
(¢c) if z is even and y, z are odd, m divides x + 4,

(d) if z, z are both even and y is odd, either m divides x + z + 2 or Fy,/, divides
3z &+ 4y + 3z; moreover, this latter expression is non-zero.

Proof. Let m > 6 be an even integer. First, we prove the observation that L,,,; <n
implies that both Fj,, and 2F31/2 divide n!. Thus, suppose that L,, /o < n. Then F,, /5 <
Ly,2 and Fy, = F, /9Ly, /2. Hence, F, divides n!. Clearly, ZF%/2 divides n! for m = 6.
Suppose m 2> 8, so I, /5 < %Lm/g. Thus, 2an/2 divides n!. This proves the observation.

From now on we drop the condition that L,,,» < n but assume that both Fj, and
QF%/2 divide n!. Write

T =x0+ 2Am, Yy = yo + 2um, z = 29 + 2em,

where —m < x¢, Yo, 20 < m. By (3.4), Fy, + Fyy, + F,, =0 (mod F,,). Lemma 4.2 gives
a number of possibilities for zg, yo, 2z9. Clearly, x, y, z have the the same parities,
respectively, as xg, Yo, 20- By examining the possibilities in Lemma 4.2, we see that x,
y, z are not all odd, and that if x, y, z are all even, then m divides = + y + z.

Suppose that two of x, y, z are odd and one is even. By our convention above, x must
be even. Then, from Lemma 4.2, we see that (x,y, z) is congruent modulo m to one of

(=4, 41, +3), (=4, +3,+1),

showing that m divides x + 4.

There now only remains the case in which precisely two of x, y, z are even and one
is odd. By our convention, z, z are even and y is odd. From Lemma 4.2, we see that
(z,y, 2) is congruent modulo 2m to one of

(av :l:(a + 1)7 —a - 2)7 (7@ - 27 :l:(a + 1)70‘)7 (mv :t(m - 1)7m - 2)5
(m - 2a :I:(m - 1)am)a (Oa j:(m - 1)a m— 2)7 (m - 2a :I:(m - 1)v 0)7
(m,+1,-2), (=2,+1,m),

or to one of (—2,£3,-2), (m — 2,£(m — 3),m — 2). In all but the last two cases, m
divides = + z + 2.

It remains to consider the case where (z,y,z) is congruent modulo 2m to one of
(=2,43,-2), (m—2,+(m—3), m—2). Note here that z = z (mod 4) and that (z,y,z) =
(—2,43,-2) (mod m). We now write

T=—-24 \im, y =23+ um, z=—-2+4¢€m.
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Observe that A1, u1 and €; have the same parity. Moreover, F_o + Fy3+ F o = 0. It
follows from (3.5) that

2n! = +2F,, (Lo 1 + Laspn + Loger) + 5F, (F_ oA + Fazp? + Foe})  (mod Fy, j5).

Here, our observation that A1, 1 and €; have the same parity is crucial. We now consider
two subcases. The first is 3 { m. This means that F,, /o, Ly,/2 are odd and coprime.
Recall that 2an/2 divides n!. From F,, = F,/2Ly,/2 and the coprimality of F,, /, and
Ly, /2, we obtain that F,,, divides L_oA1 + Ligus + L_g€e1 = 3A1 £ 4y + 3e1. Thus,
3z £ 4y + 3z = m(3\1 £ 41 + 3eq) is divisible by [, /5. The second subcase is 3 | m.
Hence, F), /o and L,, /> are both even, and their greatest common divisor is 2. We now
obtain that %Fm/Q divides 3A\; £ 41 + 3€;. But m is even. Thus, 3z &4y + 3z is divisible
by F}, /2 in this case as well.

All that it remains to prove is that the expression 3x + 4y + 3z does not vanish. This
is clearly true for 3x + 4y + 3z. Suppose that 3z — 4y + 3z = 0. Recall our observation
above that = z (mod 4). Then y = 3(z + 2), and using (3.3) we obtain

nl=Fy + F, + F3ui2)/4a = Flatzy2ba—z)2 + Faayz)/a-

The right-hand side is divisible by F(,.)/4, and so this divides n!. If i(x +z) < 12, then
we can list all the solutions. Hence, suppose that i(x +z) > 12. By the Primitive Divisor
Theorem [2], F(;4.)/4 has some prime divisor p such that p = +1 (mod 1(z + 2)). But
p | n!, which gives that p < n. Thus,

(x+2)<n+1,

N

and so z < 4n +4, y < 3n+ 3 and z < 4n + 4. However, Floax(z,y,2) = %n!, giving a
contradiction for n > 7. O

6. Bounds on n when « is even and y, z have the same parity

6.1. Case I: x, y, z are all even

Let us suppose that n > 200. In this case, we know from Lemma 5.1 that all even m > 6
with L, /o < n satisfy m | (z +y + 2).
Let p run through the integers

3 < p<2.076logn.
By Lemma 2.3, L, < n, and so 2p divides x 4 y + z. Thus, by Lemma 2.2,

3nlogn
loga )°

6(2.076logn) < log(z + y + z) < log (

The first bound that we prove for n is n < L31. Suppose that n > L3; + 1. Then
2.076logn > 30, and so, by Proposition 2.5,

6(2.0761logn) > 0.7033 x 2.076logn > 1.46logn.
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Hence,
3nlogn

1.46logn < log ( loga

) = logn + loglogn + log(3/ log a).

This is impossible for n > L3; + 1. Thus, n < L3;.
Hence,

3n logn

< 279962 456.
log o

rT+y+z<

Suppose that n > Lig. Then x + y + 2 is divisible by 2p for all integers 3 < p < 19.
However,

lem(6, 8, . .., 38) = 465585 120 > 279962456 > x + y + 2,

giving a contradiction. Thus, n < L1g. Repeating the argument shows that n < Li3 and
ﬁnally that n < Ly; = 199. This contradicts our initial assumption that n > 200, and so
< 199.

6.2. Case II: x is even and y and z are odd

In this case we know from Lemma 5.1 that all even m > 6 with Lm/g < n satisfy
m | (x +4). A similar argument to the one above now shows that n < 199.

7. Bound for n when x, z are even and y is odd

7.1. An initial bound

Suppose that n > 200. Let 0 < v < 1 be a real number to be chosen later. Let p be a
prime satisfying
2.079vlogn + 2.441 < p < 2.076 logn.

By Lemma 2.3, we have that L, < n and F}, > n”. We know, by Lemma 5.1 applied to
= 2p, that either 2p divides z + z + 2 or F), d1v1des one of the (non-zero) expressions
3x + 4y + 3z.
From Lemma 2.2,

2n1 10n 1
r+z+2< nogn, |3xi4y+32|<w.
log v log o
Suppose that k is a positive integer satisfying
p+t) 5, 10n108™ (7.1)

log o

Then at most k of the numbers F), for the primes p in the given range divide 3z +4y+ 3z,
and at most another k of these divide 3x — 4y + 3z. Note that here we are making use of
the fact that the F), are coprime as p runs through the primes; this is a consequence of

the well-known property ged(F,, F,) = F,

ged(u,v) for all integers u and v.
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It follows that for all but at most 2k primes p in the range above, 2p divides = + z + 2.
Hence,

0(2.076logn) — 6(2.079ylogn + 2.441) — 2k 1og(2.076 logn)

2nlogn
log «v

< log(z + z + 2) < log ( ) < logn + loglogn + 1.425.  (7.2)

Now suppose that k and ~ are fixed and that n is very large. Recall that for large x,
O(x) =z + o(x) as © — oo. Thus, the above inequalities give

(1.076 — 2.0797) logn < o(logn) as n — oo,

showing that n must in fact be bounded provided that v is small enough. We use this
idea to obtain an explicit bound for n.

We first show that n < Lso1. So, suppose that n > Lsg; +1. We let £ = 2 and v = 0.35.
It is easy to show that (7.1) holds. Moreover,

2.076logn > 500,
and so, by Proposition 2.5, we have
0(2.076logn) > 0.9194 x 2.076logn > 1.908 logn
and
0(2.079vlogn + 2.441) < 1.001102(2.079ylogn + 2.441) < 0.729logn + 2.444.

Equation (7.2) gives
0.188logn < 5loglogn + 6.791.

This is impossible for n > Lso; + 1. Hence, n < Lgo; < 5.045 x 10104,

7.2. A recursive procedure for reducing the bound

We now give an iterative argument that will be used repeatedly to reduce the above
bound. Our argument is reminiscent of that given at the end of §6 but is substantially
more complicated. Write

E=x+2+2, F =13z + 4y + 32)(3x — 4y + 3z)|.
For a positive integer b > 2 we put

60L?2(log Ly)?

Cep=—/—, Crp = (log )2

Lemma 7.1. If n < Ly, then £ < Cgp and F < Crp.

Proof. This follows from Lemma 2.2. ]

https://doi.org/10.1017/50013091508000874 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508000874

760 F. Luca and S. Stksek

For positive integers v and a with 2 < u < a define
H,(u) =1em{F,:3<v<a, u|v}
For 2 <up <ug < -+ <u, <a define
H,(u, ... up) =lem(Hy(ur), ..., Ho(uy)).

Lemma 7.2. Suppose that n > L, and that 2 < u < a. If u{ &, then Hy(u) | F. If
2<u <ug <+ <u,<aandallu; &, then Hy(uq,...,u,) divides F.

Proof. Let v be an integer satisfying 3 < v < a and u | v. Write m = 2v. Then m is
an even integer satisfying m > 6 and L,,/» < L, < n. By Lemma 5.1, either m divides
£ or F, = F,, /5 divides 7. But w | v | m and u { €. Thus, m { £, and so F, divides F as
required. O

Now let 2 < a <b. Put
Po={u:2<u<a, uis a prime power}.
We define a sequence of subsets of the powerset of P, as
So(a,b) = {0}, Si(a,b) ={{u}:2<u<a, Hyqo <Crp},
and, for k > 1, we define Si11(a, b) to be the set of (k+1)-tuples {uy, ..., ugt1} satisfying
(i) 2<u <ug <+ <ugyr < a,
(ii) {u1,...,ur} € Sk(a,b),
(iii) {ur+1} € S1(a,b),
(iv) Ho(u1,...,ugt1) < Cryp.

We put
S(a,b) = | Sk(a,b).
k>0
Lemma 7.3. Let 2 < a < b and suppose that L, <n < Ly. Let V={u € P, : u | E}.
Then P, \'V € S(a,b).

Proof. Write P, \V = {u1,...,u;}, where u; < --- < u;. No u; divides &, and so, by
Lemma 7.2, Hy(u1,...,u;) divides F. By Lemma 7.1, we have H,(u1,...,u;) < Crp.
Clearly, for each k < j — 1, Hy(uq,...,ux—1) < Crp and H,(ux) < Crp. This shows
inductively that {wi,...,ux} € Sk(a,b) for & = 1,...,j. Thus, P, \ V € S;(a,b) C
S(a,b). O

Lemma 7.4. Let 2 < a < b. Suppose that for each U € S(a,b) we have
lem(P, \U) > Cgp.

Then there is no solution to the Diophantine equation (1.2) with x, z even, y odd and
La g n g Lb.
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Proof. Suppose that L, <n < Lp. Let V={ueP,:u|E} and let U =P, \ V. By
Lemma 7.3, U € S(a,b). Moreover,

lem(P, \U) =lem(V) | £.
However, by Lemma 7.1, £ < Cg . This gives a contradiction. O

We have shown previously that n < Lsp;. We shall apply Lemma 7.4 to repeatedly
reduce this bound on n. First we let a = 490 and b = 501. We used a simple MAGMA
script to compute P, and Sk (a,b). We found that P, has 112 elements, S;(a,b) has 84
elements, Sa(a,b) has 2565 elements, S3(a, b) has 8609 elements, S4(a,b) has 16 elements
and Sy (a,b) = 0 for k > 5. Altogether, S(a,b) has 11275 elements. We check the criterion
of Lemma 7.4 and find that it holds for all U € S(a,b). Thus, there are no solutions to
(1.2) with x, z even, y odd, and Ljgp < n < Lsp1. This shows that n < Lygo. Repeating
the above argument another 50 times shows that n < L3y = 54018 521.

8. The final sieve

We know from the previous three sections that all solutions of the Diophantine equation
(1.2) satisfy n < 54018 521. In this section, we shall determine all solutions to (1.2) with
n < 6 x 107 and thus complete the proof of Theorem 1.1.

Lemma 8.1. In (1.2), suppose that x > y > z. Then

log n! O <w< logn!

1XTx

log o log o

where

o GVE) “ VB log(vVE) + 1/(6v5)

log log v

Proof. The lemma is easily checked for n < 2, so suppose n > 3. Clearly,
%n! < F, <nl,

and so
%\/gn!—lgofg\/gn!le.

Taking logarithms, we find that
zloga < logn! 4 log V5 + log(1 4+ 1/(n!V/5)) < logn! 4+ log V5 4 1/(6+/5)
by using Lemma 2.4 and the fact that n > 3. Moreover,
zloga > logn! +log(1v/5) +log(1 — 3/(n!V/5)) > logn! + log(3Vv/5) — 1/V/5,

again using Lemma 2.4 and n > 3. This completes the proof. 0
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For the purpose of searching for all solutions to (1.2), we may without loss of generality
suppose that x > y > z. The last lemma above gives, for each n, an interval containing
at most three integers x.

Now let

Iy = Fy3 = 433494437, lo = Fy7 =2971215073.

Both these Fibonacci numbers are prime and they have been chosen because the period
of the Fibonacci sequence modulo each [; is particularly small; the periods are 172 and
188, respectively. Let

Ty ={F,+ F, (modl;):0<u<171}
and

Ty ={F,+ F, (modls) : 0 < u < 187}.
Using MAGMA, we find that T} has 2821 elements and 75 has 3453 elements. Thus,
#T1 /1, = 6.5 x 1076, #T5 /15 ~1.16 x 1075,

Now our MAGMA program for determining the solutions of (1.2) with n < 6 x 107 is as
follows. For each n we need to compute three quantities. The first is log(n!)/log(a), the
second is n! (mod [;) and the third is n! (mod l5). Knowing these for n = k — 1 quickly
gives these for n = k. For each n, we determine the integers x in the interval (8.1). For
each x, we compute F, (mod l;) and F, (mod l3). If n! — F,, modulo {; does not belong
to T1, or n! — F,, modulo I3 does not belong to T5, then we know that there is no solution
to Equation (1.2) with the given values of n and x. Computing F,, (mod ;) can be done
in O(logz) = O(logn) steps as it involves only computing o* modulo [;, and so it is
very fast. Our script took less than six hours to run on a dual core 3.00 GHz Opteron
and produced only the following pairs of values of (x,n) for which n! — F, belongs to T;
modulo I; (i =1,2):

(0,1), (1,1), (0,2), (1,2), (2,2), (3,2), (3,3), (4,3), (5,3),
(6,4), (7,4), (8,4), (9,5), (11,5), (14,6), (15,6).

From this, we easily recover our list of solutions in Theorem 1.1.

Note that the probability of a random integer belonging modulo /1 to 77 and modulo 5
to Ty is less than 10711, Since the possibilities for (z,n) are most 3 x 6 x 107 < 2 x 108,
it is not at all surprising that our sieve found only pairs of (x,n) for which there are
solutions (n,z,y, ) to (1.2).
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