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ABSTRACT

The theory of linear filtering of stochastic processes provides continuous time
analogues of finite-dimensional linear Bayes estimators known to actuaries as
credibility methods. In the present paper a selfcontained theory is built for
processes of bounded variation, which are of particular relevance to insurance.
Two methods for constructing the optimal estimator and its mean squared
error are deviced. Explicit solutions are obtained in a continuous time variation
of Hachemeister's regression model and in a homogeneous doubly stochastic
generalized Poisson process. The traditional discrete time set-up is compared to
the one with continuous time, and some merits of the latter are pointed out.

1. INTRODUCTION

A. Objective of the present study

The modern theory of linear filtering of stochastic processes provides powerful
generalizations of standard results on linear estimation from a finite set of
observations to the case where the observations are the values of a process
recorded continuously through some time interval. This has recently been
pointed out in the context of credibility theory by Hiss (1991), who obtains the
continuous time analogue of the credibility estimator in HACHEMEISTER'S
(1975) random coefficient regression model by application of the so-called
Kalman-Bucy filter, see e.g. KALLIANPUR and KARINDAKAR (1988) and
RUYMGAART and SOONG (1988). Similar results appear in earlier works,
notably the paper by NATHER (1984), who deals with more general random
fields. In that paper the optimal estimator is constructed in a direct manner,
minimizing the generalized mean squared loss by matrix algebraic methods.

The present paper undertakes to build a selfcontained theory, starting from
first principles with Hilbert space methods. This can be done at a fairly simple
mathematical level by restricting to processes of bounded variation, which are
particularly apt to describe claims processes in insurance and other cash flows.
(A function is of bounded variation if it is the difference between two
non-decreasing finite-valued functions). It turns out that this together with a
few more weak assumptions is sufficient to establish the basic results — no
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special distributional properties and no deep theory of stochastic integrals and
differential equations are needed.

B. Outline of the paper

Section 2 presents some prerequisites from Hilbert space theory. In Section 3
these are applied to the finite-dimensional case (where Hilbert space methods
can be dispensed with), and Hachemeister's random coefficient regression
model is taken as an example. Section 4 deals with estimation on the basis of a
stochastic process observed continuously over some time interval. A space of
linear estimators is defined and, adopting mean squared estimation error as
performance criterion, the normal equations determining the optimal estimator
are derived. The continuous time version of the normal equations is an integral
equation, which is a perfect analogue to the normal equations in the finite case.
When the stochastic process is of bounded variation, a useful alternative form
of the optimal estimator and the normal equations is obtained upon integrating
by parts. The mean squared error of the optimal estimator is given by a
compact expression. In Section 5 the continuous time random coefficient
regression model is revisited, and in Section 6 a generalized Poisson process
with stochastic intensity process in analysed. In Section 7 the two approaches,
discrete versus continuous, are compared, and it is concluded that the latter is
in a strong position from a practical as well from a theoretical point of
view.

2. REVIEW OF SOME BASIC CONCEPTS AND RESULTS
IN ESTIMATION THEORY

A. The Hilbert space of square integrable random variables

Let i? 2 be the family of all square integrable real random variables defined on
some probability space (Q, J?~, P). On identifying random variables that are
equal a.s. (almost surely), i£'2 becomes a Hilbert space with inner product C •> • ^
and corresponding norm ||-|| defined by

^ = E(mn), \\m\\2 = Em2,

m,ne SC1.
If ^m, i%y = 0, then m and n are said to be orthogonal, written mLn. If

m Ln for all n e ..# c jif2, then m is said to be orthogonal to //, written
m 1 J ? .

In general ||w + «||2 = ||m||2 + 2<^m, «J>+||«||2, and in particular

(2.1) ||m + «||2 = ||m||2+||«||2 if w i n .

B. Statement of the estimation problem

In an estimation context . y has a sub-sigmafield # representing observable
events. An estimand is a random variable m representing some unobservable
quantity (not #-measurable) that is to be estimated from the information
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provided by '%'. An estimator is an ^-measurable random variable m that is
used as an approximation of m. The quality of the approximation is measured
by the distance between m and m,

(2.2) \\m-m\\.

Thus, m and m are assumed to be in S/2, implying that m is restricted to the class
of all >f-measurable random variables in S'2, henceforth denoted by ,£.

C. Restricted optimal estimators

Often there are reasons for restricting m further to some subset .Jf of ,£. The
estimation problem then amounts to minimizing (2.2) as m ranges in .Jf, If ,_£
is closed, then there exists a unique minimizing point m in JOf, called the
projection of m onto .,£. The proof of this result, which is essentially a copy of
the proof of the completeness of i ? 2 (see e.g. BAUER, 1978, p. 78), gives no lead
to the construction of m, which therefore will have to be deviced ad hoc for
each given specification of //.

D. Optimal estimators in linear spaces

Things are simpler if restriction is made to some linear space. Let ..£ be some
linear subspace of //, not necessarily closed, and suppose there exists a point
m e .£ such that

(2.3) m-mL'W.

For any m e.// the linearity of # entails m — m e .J?, and so (2.1) and (2.3)
imply

\\m-m\\2 = \\m-m\\2+\\m-m\\2 > \\m-m\\2-

Thus, mis a closest point to m in # , and also in this case it is called the pro-
jection since it is necessarily unique. The condition (2.3) can be spelled out as

(2.4) E{(m-m)m) = 0, V m e . / ,

the so-called normal equations (with respect to # ) .
The normal equations are indispensable constructive means in many situa-

tions with .// of infinite dimension. Some important cases are studied by D E
VYLDER (1976). The following section treats in some detail estimation by
finite-dimensional linear functions, the generalization of which is the topic of
this paper.

3. FINITE-DIMENSIONAL LINEAR ESTIMATORS

A. The general form of the finite-dimensional linear estimator

The results obtained in this section are all well-known. The purpose is to
motivate the approach and facilitate interpretation of the results in the
remainder of the paper.
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For a given set of random observables x,, . . . , xn in # , consider the space
. £ of estimators of the form

(3.1) m = a0 + £ ajXj,
7=1

with a 0 , « ! , . . . , on non-random. Clearly # is the linear space spanned by
{1, x{, ..., xn}, and it is an easy exercise to show that it is closed. Therefore, the
^-projection,

n

(3.2) m = a0 + £ a,*,-,
7 = 1

say, exists and is uniquely determined by the normal equations (2.4), which
now become

(3.3) m-<x0 = 0,

(3.4) Eilm-a0- £ a,-*,-\ x\ = 0,

Upon multiplying by Exj in (3.3) and subtracting the result from (3.4), one
obtains the equivalent

«
(3.5) Em = <x0 + 2_j XiEXj,

1=1

(3.6) Cov (w, Xj) = Y, a< C o v (*< > xy)' 7 = 1 , . . . , « •
i = i

Solving (3.5) and (3.6) and putting a = (a , , . . . , aM)' and x = (xt, ..., xn)', the
optimal linear estimator in (3.2) is found to be

(3.7) m = Em + £ oifa-Ex) = Em + a.'(x-Ex),
7 = 1

with

(3.8) a ' = Cov(m, x ' ) ( V a r x ) " ' .

(It is assumed that the x, are linearly independent so that Var x is non-
singular).

Any 1-1 linear transformation of (1, x') forms a basis of the space // and
yields the same solution. Thus, from a theoretical point of view the choice of
basis is immaterial. From a practical point of view it is not, however, since a
judicious choice of basis may uncover possible structures of the moments
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involved in (3.8) that can be utilized in the computations. To concretize,
suppose Xj represents the total amount of claims paid up to time 7,7 = 1, . . . , n,
for some risk insured at time 0 (x0 = 0). The amounts Ax} = Xj—Xj_x paid in
the periods (j~l,j],j = 1,. . . ,«, are typically easier to work with, e.g. if they
are assumed to be independent, possibly conditional on some latent risk
factors. In terms of these observations (3.1) may be equivalently expressed as

(3.9) m = g0 + £ gjAxj = go + g'Ax,
7 = 1

with Ax = (Axi, ..., Axn)', g = (gx, ..., gn)', and the optimal solution is
n

(3.10) m = Em + £ y^Axj-EAxj) = Em + y'(Ax-EAx)

obtained upon replacing a0, a, x by y0, y, Ax in (3.3)-(3.8).

B. The credibility formula in the regression case

A suitbable reference for the present paragraph is NORBERG (1986), Section 3.
The random coefficient regression model specifies that
(3.11) Axj = yjb + ej, j= 1 , . . . , « ,

where the j 7 are ̂ -vectors of non-random regressors, b is a (^-vector of random
regression coefficients, and the e, are random disturbances. It is assumed that
b, e,, . . . , en are uncorrelated. Put

(3.12) fi = Eb, A = Varb,

The ^-projection of c' b (c a constant ^-vector) is c' b, where

(3.13) b = (I-Z) [A
\

with

(3.14) Z = AM(AM+iyi = (AM +1)'1 AM = I-(AM+iyl,
n

(3.15) M= X <pf'y,y}.
7 = 1

If M is non-singular, one easily verifies by use of (3.14) and (3.15) that (3.13)
may be cast as

(3.16) b = Zb+(I-Z)P,

with
n

(3.17) b= M" 1 ^ <Pflyj*Xj-
7 = 1
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Formula (3.16) is a credibility weighted mean of the sample estimator of b in
(3.17) and the expected value of b, which is the estimate of b based solely on
"prior" information.

The quantities in (3.15) and (3.17) are usually expressed in matrix form, but
the expressions given here are preferred since they relate more transparently to
the continuous analogues to be given in Section 5. The regression model was
introduced in credibility theory by HACHEMEISTER (1975), who worked with
Wj)>j in the place of y7 in (3.11) and with <pj in (3.12) of the form cpwj. Thus, the
Wj, which represent the amounts of risk exposed in the different periods, are
absorbed in the regressors yj in the present set-up.

4. CONTINUOUS LINEAR ESTIMATORS

A. General model assumptions

Working now in continuous time, let x(t) be the total amount paid in respect
of claims generated by a certain risk in the time interval [0, t],t>0.
Alternatively, x(t) may represent the number of claims in [0, t]. The function
{x(0}r>o> is modelled as a stochastic process satisfying

[i] x{t)eSf2 for each t,

[ii] x(0) = 0 a.s.,

[iii] x is a.s. right-continuous and of bounded variation in every finite interval.

The bounded variation assumption ensures that certain operations like integra-
tion with respect to the process can be performed path by path. It covers all
point processes and, thereby, all models commonly used to describe the
development of insurance portfolios in continuous time, in life insurance,
non-life insurance, and traditional risk theory. Processes of unbounded varia-
tion, e.g. nonstandard Brownian motion, might serve as approximate descrip-
tions of large portfolios, but a treatment of those would require elaborate
stochastic calculus and shall not be untertaken here.

B. Linear estimators

Suppose some unknown quantity m e CJ:'2 is to be estimated by the information
accrued in the time interval [0, T], T representing the present moment. Now,
what is to be meant by a linear estimator based on the values x(t), 0 < t < TI
A straightforward answer is

(4.1) m = a0 + I x{t)da(t),
J ( O , T ]

where the scalar a0 and the function a are non-random and, to make the
expression in (4.1) a well defined random variable in 'J 2,

[iv] a is right-continuous and has bounded variation on [0, / ] .
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LINEAR ESTIMATION AND CREDIBILITY IN CONTINUOUS TIME 155

By the general rule of integration by parts,

f x(t)da(t) = x(z)a(T)-x(0)a(0) - f a(t-)dx(t)
J(O,r] J(0,r]

{a(t)-a(t-)}dx(t),
(0,r]

(recall [ii]), and so (4.1) can be cast as

(4.2) m = go+ f g(t)dx(t),
J(O,T]

where the scalar g0 and the function g are non-random, and

[iv'] g is left-continuous and has bounded variation on (0, t].

The coefficients in (4.1) and (4.2) are related by

(4.3) g0 = a0,
(4.4) g(t) = a(z)-a(t-),te(0,T].

The equivalent forms (4.1) and (4.2) are the continuous time analogues of (3.1)
and (3.9), respectively.

C. The normal equations
Consider now the class // of estimators of the form (4.1), with a satisfying [iv].
Clearly, .// is a linear subspace of i/2 . Let

(4.5) m = a0 + x(t)da(t)
' (0,1J(O,r l

be the candidate for solving the normal equations (2.4), which now become

f x(s)da(s)\la0 + f x(t) da(t)X\ = 0,
J (0,r] J I J (0,T] JJ

for all real a0 and all functions a satisfying [iv]. Now proceed essentially as in
Paragraph 3A. First put a0 = 1 and a = 0, then put a0 = 0 and a a unit mass
at t, and use Fubini to switch the order of the expectation and the integral, to
obtain

(4.6) Em = a0 + Ex(s)dtx(s),
J(O,J ( O , T ]

(4.7) C o v ( m , x ( 0 ) = f Cov (x(s),x(t)) doc (s), te(0,r],
J(0,i]

which are the continuous time analogues of (3.5) and (3.6).
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On subtracting (4.6) from (4.5), the optimal estimator can be written as

(4.8) m = Em+ \ {x(t)-Ex(t)} dtx(t),
J(O,r]

with a determined by (4.7), which thus is the important part of the normal
equations.

D. An alternative form of the normal equations

Alternatively, one can work with the form (4.2) and put

(4.9) m = yo+ f y(t)dx(t),
J ( O , T ]

where y0 and y are related to oeo and a by (4.3) and (4.4). Glossing over some
technicalities for the time being, argue informally that the optimal estimator in
(4.9) must be orthogonal to 1 and to all increments dx(t), t e (0, r], and
proceed as in the previous paragraph to obtain

(4.10) Em = y0 + y(s)Edx(s),
' (0 ,J(0,T]

(4.11) Cow (m,dx(t))= f y(s)Cov(dx(S),dx(t)),te(0,r),
J se(0,T]

which are the continuous time analogue of the normal equations underlying
(3.10). The optimal estimator is

(4.12) in = Em + [ y(t) d{x(t)-Ex{t)},
J(O,r]

with y determined by (4.11).
As will be demonstrated by examples in Sections 5 and 6, (4.12) is usually the

more convenient form of the optimal estimator, and the corresponding
form (4.11) of the normal equations is the more direct route to the solution. It
is therefore, appropriate to add some rigour to the informal reasoning
above.

Under the conditions [i]-[iii] the function Cov (x(s), x(t)) is right-continuous
and of bounded variation. (This is a consequence of the dominated con-
vergence theorem. It suffices to look at a non-negative, non-decreasing
process x satisfying [i]-[iii], and to observe that for r,s,te(0,z],
limr^sx(r) = x(s) and limr^sx(r) x(t) = x(s) x(t), and that x{r) and
x{r) x(t) are bounded by x(r) and X 2 (T) , respectively, which both have finite
expected value.) Then integration by parts is allowed on the right of (4.7),
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which turns the expression into (note that Cov (x(0), x(t)) = 0 due to [ii])

Cov (JC(T), x(t)) a(T) - f «(s-) ds Cov (x(s), x(t))f «
J S6(0,l]

{a(z)-a(s-)}dsCov(x(s),x(t)).

This together with (4.4) shows that (4.7) is equivalent to

(4.13) Cov(m, J C ( O ) = f y (s)ds Cov (x(s),x(t)).

By the same argument as before, the function Cov (m, x(t)) is right-continuous
and of bounded variation. Thus, (4.13) can be cast as

(4.14) dtCov{m,x{t)) = d, L, y (s)ds Cov

Provided that differentiation with respect to t on the right of (4.14) can be
performed under the integral sign, this gives precise contents to (4.11).

This is about as far as general arguments can bring us to the solution of the
normal equations. From here on the course must be adapted to the special
features of the model at hand.

£. The mean squared error of the optimal estimator

The performance criterion defined by (2.2) is equivalent to the mean squared
estimation error, \\m — m\\2 = E(m-m)2. For the optimal estimator (4.8) it is

\\m-m\\2 = m-Em - {x(t)-Ex(t)}d(x(t)

= \\m —Em\\ —2 -Ex(t)} da{t)

J (0,T

J(0,i]

f {x(t)-Ex(t)}d<x(t)
J (0,T]

= Var m - 2 \ Cov (m, x (?)) dtx(t) +
J (0, T]

+ f j" Cov(x(s),x(t))d<x(s)da(t),
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hence, by use of (4.7),

(4.15) \\m~m\\2 = Varw - 1 Cov (m, x(t)) d<x(t).
J ( O , T ]

In a similar way one gets from (4.10) and (4.11) the equivalent form

(4.16) \\m~m\\2 = Varw - I y (t) Cov (m, dx (*)),
' (0,iJ (0,T]

with qualifications as at the end of the previous section.

5. A CONTINUOUS TIME REGRESSION MODEL

A. A Poisson regression model

Assume for the time being that x is a generalized Poisson process with claim
intensity y'(t)a(9) at time t and claim size distribution G(-\9). Here 9
represents some unknown risk characteristics, and y(t) is a q-vector of
observable risk characteristics at time t. Thus, the intensity of claims at time t is
regressed on the observable risk characteristics, and the regression coefficient
vector a (9) depends on hidden risk factors. For fixed value of 6, the first and
second order moments of the process are

(5.1) E(x(t)\G)= [' y'(9)d9b(9),
Jo

/«S A t

(5.2) Co\ (x(s), x(t)\6) = v(3,0)d3,
Jo

with

(5.3) b{0) = a{9) [ ydG(y\6),

(5.4) v(t,6) = y'{t)a{6) j" y2dG(y\8).

B. A general random coefficient regression model

The special structure of v(t,9), given by (5.4), is disguised in (5.2), and so
(5.1)-(5.2) serve as the moment structure for a wider class of models than the
Poisson case.

Assume now that also 9 is stochastic, whereby (5.1) and (5.2) are moments in
the conditional model for given 9. Put

(5.5) P = Eb(9), A = Varb(8), <p{t) = Ev(t, 9).
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The unconditional moments of the risk process are easily obtained as

(5.6) Ex{t) = [ y'(9)d9fi,
Jo

(5.7) Co\(x(s),x(t)) = [ y'(9)d9A f y(9)dd + f <p(9)d9.
Jo J J

f y(9)dd + f
Jo Jo

C. Credibility estimation of the regression coefficients

Suppose

(5.8) m = c'b

(c constant) is to be estimated. Then the expression on the left of (4.7) is

Co\(m,x(t)) = c'A f y(9)d9.
Jo

Inserting this and (5.7) into (4.14), gives

(5.9) c'Ay(t)= f y(s)y'{s)dsAy{t) + f{t)y{t).
Jo

At this step continuity of y(t) was required for t e (0, T), at least piecewise.
Multiply by cp~x {t)y'(t) from the right on both sides in (5.9), then integrate
over t from 0 to r, and solve

Jo
(5.10) yl(t)y(t)dt = c'Z,

Jo
where Z is defined by (3.14), now with

(5.11) M= I q>-l(t)y(t)y'(t)dt.
Jo

Substituting (5.10) into (5.9) and then dividing by <p(t), gives

(5.12) y(t) = c'(I-Z)A<p-l(t)y(t).

Now insert y(t) from (5.12), dEx(t) = y'(t)dtfi from (5.6), and Em = c'y?
into (4.12) and rearrange by use of (3.14) to obtain the following continuous
time analogue of the discrete solution given by (3.12)-(3.17): the optimal linear
estimator of c'b is c'b, where

(5.13) b = (I-Z){A\ <p~\t)y{t)dx{t)+p\,
' (0, T]
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with Z defined by (3.14) and (5.11). If M is nonsingular, then

(5.14) b = Zh+(I-Z)fi,

with

(5.15) 'b= M~l f q>-l(t)y{t)dx{t).
J(0,T]

If y(t) = w(t), a positive function representing the amount of risk exposed
per time unit at time t, b(0) is scalar-valued, and v(t,8) = w{t)v(9), then
(5.14), (5.15), and (3.14) specialize to

b = # + ( 1 - 0 / ? ,

b =x(z)\[ w(t)dt,

C =

f
J o

fT / f \
I w(t)dt X I w(0rff + H
Jo / J o /

where /? = Eb{6), X = Var &(#), ^ = Ev{6). This is the continuous version of
the BUHLMANN and STRAUB (1970) credibility formula.

The Poisson process in Paragraph A increases by jumps, and there is a.s. a
finite number of them in the time interval (0, T]. The same is the case for any
bounded variation process with (conditional on 0) independent increments and
X(T) < oo a.s. Let tx, t2, • • • denote the jump epochs of the process recorded in
chronological order. Then bin (5.15) can be written as

D. The mean squared estimation error

Entering (5.12) and

Var m = c' Ac,

Cov (m, dx(t)) = y'{t) Acdt = c'Ay(t) dt

into (4.16) and making use of (3.14), yields

(5.16) \\m-m\\2 = c'Ac - f c'(I-Z)Aq>~l(t)y(t)y'(t) Acdt
Jo

= c'(A-(I-Z)AMA)c

= c'Ac,

where

(5.17) A = (I-Z)A.
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The formulas (5.16) and (5.17) are the same as in the discrete case (NOR-
BERG, 1986) and, accordingly, A can be termed the risk matrix.

6. A GENERALIZED POISSON PROCESS WITH STOCHASTIC INTENSITY

A. Basic model assumptions

Let {x(t)},>0 be a risk process of generalized Poisson type with claim intensity
at time / of the form w(t)6{t), where w(t) is the size of the risk at time t and
6{t) is a basic claim intensity per unit amount of risk exposure at time /.
Taking this as the conditional model for fixed intensity process, assume now
that {#(/)},>o is a stationary stochastic process, representing fluctuating basic
risk conditions. Put

(6.1) P=E8{t), p(\t-s\) = COM (6(s),O{t)).

Assume furthermore that the single claim amounts are i.i.d. replicates of a
square integrable random variable y, and that they are independent of the
number of claims and of the process 9.

B. Estimation

Consider the problem of predicting m = x(oo) — x(r), the total future claim
amount in respect of claims for which the insurer has assumed liability by
time T. It is assumed that j * w(S) dS < oo. The problem is to estimate m by a
linear function of the continuously recorded observations of the process x up
to the present moment x.

The following conditional moments need no explanation:

E(m\0) = j"

E(x(t)\0) = [
Jo

Cov (x(s), x(t)\6) = Var (x(s A t)\9)

= f w(9)B(3)d9Ey2,
Jo

Cov(m,x{t)\d) = 0.
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The unconditional moments needed in the linear estimator are

rEm = w(9)d9 0Ey,

Ex{t) = f w($)d&pEy,

COY (x(s),xit)) = f f w(fl) ie(^)/>(|a- ^|) dyr d9 E2y +

Jo Jo

Jo

-ri'1
J T JO

y/|) (/(// d& E y.

It is easy to check that the normal equation (4.14) now becomes

(6.2) f w(s)p(s-t)ds= f vo{s)p{\s-t\)y(s)>
| .00 »Z

I w(s) p{s—t) ds = I
J x Jo

te (0, T). This is an integral equation of the Fredholm type. It can be solved
numerically, and this is actually the only way unless p and w are particularly
nice functions. Modelling p by a simple parametric function would usually not
evoke any misgivings, but the size of the portfolio is not likely to be governed
by some simple law that could justify a parametric specification of w.

C. The case with exponential covariance function for the intensity process

Assume now that

(6.3) p(9) = Xe~K\ 5 > 0 ,

where X, K > 0. This covariance function arises from many models. One
possibility is to let 6{t) be a stationary, continuous time Markov chain with
two states and constant transition intensities.

Upon inserting (6.3) in (6.2) and then multiplying by e~Kl, one obtains

f w(s)e-KSds = [
J T JO

(6.4) wis)e~KSds= wis) eKS y\s) ds e~lKt

with

(6.5)
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Differentiation with respect to t in (6.4) and rearranging a bit, gives

I w(s) eKSy{s) ds e~lKt = (t,/2ic) - (e~Kl y (t)).
o dt

Substituting this in the first term on the right of (6.4) and introducing

(6.6) v ( t ) = e~Kl y { t ) ,

one arrives at

(6.7) f w(s)e"KSds = (tjl2K)v'(t) + f w(s) v(s) ds + «v(t).

At this point the appearance of the function w becomes decisive. Just as an
example, suppose w{t) = w (constant) for te[0,x]. Then differentiation of
(6.7) yields

0 = (?]/2K) v"(t) + tjv'(t) — wv(t),

a homogeneous second order differential equation with constant coefficients.
Its general solution is of the form

(6.8) v(t) = kx eri' + k2e'2',

where k{ and k2 are some constants, and

(6.9) r\ = —K + ^K2 + 2wK/rj, r2

are the (necessarily distinct if K > 0) roots of the quadratic equation

0 = (tj/2K)r2

Combining (6.6) and (6.8), one obtains

(6.10)

Finally, the constants kx and k2 are determined upon substituting (6.10) into
(6.4) with w(s) -• w and inserting two distinct values of t, e.g. the boundary
points 0 and x, yielding two simple linear equations.

In the form (4.12) the optimal estimator becomes

(6.11) m = f w{t)dtpEy+ f y(t) {dx(t)-wfi Ey dt}
J
f w{t)dtpEy+ f
J T JO

f w(t)dt-wi y{t)dt\pEy
Jr Jo /

where the tj are the jump epochs of the process x and yj = x{tj)-x{tj-) is the
amount of the y'-th claim.

It might be expected that, since only the process counting the number of
claims contains information about the 6 and this process can be constructed
from the continuously observed process x, the claim amounts should not
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appear in an optimal estimator. They never the less do, and this is due to the
very choice of the form of the linear estimator. In the present model it would
be better to put the claim number process in the role of {x(/)}0<,<T, whereby
yj = Ey = Ey2 = 1 is to be inserted in (6.5) and (6.11).

D. Comparison with a discrete time model

The covariance structure (6.3) is the continuous time analogue of the one
introduced by SUNDT (1981) in an attempt to modify the classical Buhlmann-
Straub model so as to account for fluctuating basic risk conditions. Sundt did
not obtain an explicit formula for the discrete time estimator, but he deviced a
handy procedure for recursive calculation.

7. CONCLUDING REMARKS

A. Computational feasibility of continuous and discrete estimators

In Sections 5 and 6 some traditional discrete time models for the risk process
were reformulated to fit into a continuous time framework, and explicit
formulas were obtained for the optimal linear estimators. It turned out that, in
the situations investigated here, the problem of solving the normal equations in
the continuous case presents no greater difficulties than solving those of the
discrete case. In fact, the continuous variant may be the simpler, as is
illustrated in Paragraph 6D. In the discrete case one has to solve the normal
equation (3.6), which amounts to inverting the matrix Var x. In the regression
model studied in Paragraph 3B this is no problem: the special covariance
structure implies that only matrices of order q x q (q is the dimension of the
regression coefficient vector) have to be inverted. In the discrete time case one
is in general compelled to look for model assumptions that effectively bound
the dimensionality of the normal equations or that allow for recursive
calculations. Of course, in the continuous time case the " dimension" of the
normal equations is infinite unless the moments involved have a finite
parametrization as in the examples studied above. However, the integral
equation (4.11) can in general be solved numerically, no matter how ugly the
moments are, if they only are smooth functions. This points to an advantage of
the continuous approach over the traditional discrete one.

B. Continuous versus discrete models

Another important aspect of the continuous approach concerns modelling.
Actually, the risk process is really developing continuously, and so it is the
discrete model that represents an idealization. It is interesting to note that the
discrete regression model in Paragraph 3B complies with the continuous one in
Section 5, but already in the slightly more complex situation considered in
Section 6 the discrete time model does not arise from a discretization of the
observations in the continuous time model.
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Finally, observe that discretized estimators of the form (3.1) are obtained in
the continuous set-up by taking a in (4.1) to have a jump of size a; at each
tj,j = \, ..., n and to be constant elsewhere, or, equivalently, let g in (4.2) be
constant and equal to gy in each interval (?,_!, tj\. For a fixed partitioning
0 = t0 < ti < ... < tn = x the class of such estimators is a linear subspace of
the space of continuous linear estimators defined in Section 4. Therefore, in a
continuous time model the optimal solution found in Section 4 is at least as
good as the discretized one found in Section 3. In this trivial sense continuous
estimators are superior to discrete, but the argument is void if a discrete time
model is chosen, of course.
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