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1. In troduct ion 

The rotation of the sun affects the wave propagation in the solar cavity. 
The measurement of the effect can be used to infer the internal rotation of 
the sun, and indeed much of what we know today about the dynamics of 
the solar interior has been derived from observation and interpretation of 
the rotationally induced splitting of solar p-mode frequencies. Inversion has 
proven to be a very powerful tool in such investigations, and will remain 
at the centre of our effort in studying solar rotation from helioseimic da ta . 
Study of the flow inside the sun is not only important in its own right but 
is vital for improving our understanding of solar activity and its cycle. Now 
tha t both GONG and SOHO are operational and are accumulating data , 
there is no doubt tha t we are about to learn a great deal more about the 
dynamical structure of our own star. 

In this review various inversion techniques, specifically in the context 
of the rotation inversion, are discussed. Then, what we have learned so 
far is summarized, and results from the latest observations are discussed, 
particularly those from the GONG experiment (Harvey et al 1996). 

2. Rota t iona l spl i t t ing 

Normal modes of the sun, a three-dimensional body, are identified by three 
indices: radial order n, spherical harmonic degree / and azimuthal order 
m. In the absence of any symmetry-breaking agent, the eigenfrequency 
has (21 + l)-fold degeneracy in m. The solar rotation breaks the spherical 
symmetry and lifts this degeneracy, causing the frequency to split into 
21 + 1 different values. Let us describe rotation by the two-dimensional 
distribution of angular velocity Ω(γ, μ) , where r is the radial coordinate and 
μ is the cosine of the colatitude Θ. By treating rotation as a perturbation to 
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a spherically symmetric sun, and by applying linear perturbation theory, 
we obtain 

= wnim - ωηι = m(Q)nlm , (1) 

where u ; n / m is the frequency in the presence of the rotation, ωη\ is the 
unperturbed degenerate frequency and ( f i ) n / m denotes a weighted integral 
of angular velocity Ω ( γ , μ) : 

(FYNLM =
 Δ Ω η / ™ = / dr ί άμΚΗΐΠΙ(Γ,μ)Ω(Γ,μ) , 

m Jo J-i 
(2) 

where Knim(r^) is the splitting kernel for the mode under consideration, 
representing the extent to which Ω ( γ , μ) influences this particular mode. 
Observationally, ( f i ) n / m / o ; n / ~ 0.5μΗζ/3πιΗζ ~ 1 0 " 4 , and this justifies 
the application of linear perturbation theory. Our aim is, given a set of 
observations of rotational splitting, { A u ; n / m } , to solve the corresponding 
set of linear integral equations (2) for the angular velocity Ω ( γ , μ). 

There is more than one way to write down l f n / m ( r , μ) explicitly (e.g., 
Hansen, Cox and van Horn 1971), but the following is convenient in pre-
senting the mathematical structure: 

Κη1πι(τ,μ) = Kni(r)Wimfa) + Lni(r)X\mfa) , 

where 

Kin(r) 
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Ι - μ 2 d 

2 άμ 
W/m (μ) + μ^ι^μ) 

= J[er+l{l + l)eh]pr2dr, 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

ρ is density, Ρ™ is a normalized associated Legendre function and £ r and 
£h determine the radial and horizontal components of the radial part of the 
displacement vector £ n / m according to 

i f ( c o e 0 ) e i m * - w » h » t , (9) 

with respect to spherical polar coordinates (r, θ, φ). Some examples of the 
splitting kernels are shown in Figure 1. 
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Figure 1. Some examples of the splitting kernels, represented as surface 
plots against r, the radial coordinate, and μ, the cosine of the colatitude. 
(/, n, m) = (10, 20,7) [top] and (30,10,20) [bottom]. 
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From the above expression one notes tha t the kernel Knim(r,ß) l s de-
generate. Moreover, for high-order ρ modes, except near the inner turning 
point, ξΓ dominates over and hence 

KNLM{r^) ~ ΚΗΐ{Γ)\ν1πι(μ) . (10) 

This property is noticeable in Figure 1. 
Also, the angular parts of the kernel, Wimfa) and Χιπι(μ), are even 

functions of μ, regardless of the value of m. This means tha t the kernel 
always samples the northern and the southern hemisphere equally. As a 
result, within the linear regime, we can never measure the north-south 
asymmetry of the angular velocity. 

Finally, the integral of Χιπι(μ) vanishes. Therefore, for a one-dimensional 
case, where Ω(γ,μ) = Ω(γ), we have 

Αωηι= Γ Knl{r)Sl{r)dr , (11) 
Jo 

where Δωηι = Αωηα/1. 

3 . Invers ion of solar p - m o d e rotat ional-spl i t t ing data 

Since most of the fundamental aspects of inversion do not depend on the 
dimension of the space in which the problem is posed, for simplicity the 
one-dimensional inversion of constraints (11), for a given set of {Αωηι}, 
is considered in this section. There are two important classes of meth-
ods of obtaining estimates of Ω(γ): optimally localized averaging (Backus 
and Gilbert 1968, 1970) and regularized least-squares fitting (Phillips 1962, 
Twomey 1963, Tikhonov 1963). Both methods give linear estimates of the 
angular velocity; the estimate of Ω at a certain radius ro, Ω(γο) , is a linear 
combination of the observations {Αωηι}. Thus we may write 

Ω(γ 0 ) = ΣοΗ1{Γ0)Αωη1 = I*D{r;r0)Q{r)dr , (12) 
NL J° 

where 

D(nr0) = ^2cm(ro)Knl(r) (13) 
NL 

is the averaging kernel The coefficients c n/(ro) are called inversion coeffi-
cients at the target radius ro. To discuss the error in the estimate, in general 
we should consider the the error covariance matrix of Δ ω η / (e.g., Gough 
1996). Once again for simplicity, however, let us assume tha t the errors are 
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independent and the matrix is diagonal. Then the standard deviation in 
the estimate Ω(γο) is given by 

5Û(rQ) = (j2cnl(rQfa
2

n^ ' , (14) 

where σηι is the standard deviation of Δωηι. 

3.1. OPTIMALLY LOCALIZED AVERAGING (OLA) 

The basic idea of optimally localized averaging (OLA) is readily explained 
by equations (12) - (14). Since we would like Ω(γπ) to be as close as possible 
to Ω(γ) , we would like the averaging kernel D(r ; rn) to be well localized. 
However, the more one localizes D( r ; rn ) , usually the greater is the ampli-
tude of the coefficients c n / ( ro) , and hence the greater error in the estimate: 
a trade-off between resolution and error must be sought. 

In OLA one seeks a balance by minimizing, e.g., 

S = / D i n r o n r - r o f d r + a^cltâ , (15) 
J NL 

subject to the unimodular condition 

Γ D(r;r0)dr = l , (16) 
Jo 

where α is a regularization parameter which controls the trade-off. 
An important variant of the standard OLA described above is the sub-

tractive optimally localized averaging (SOLA) in the form considered by 
Pijpers and Thompson (1992). In SOLA one a t tempts to fit D( r ; ro ) to a 
prescribed function such as a Gaussian centred at a target radius with an 
appropriate width. 

3.2. REGULARIZED LEAST-SQUARES FITTING (RLS) 

In regularized least-squares fitting (RLS), one seeks to fit the da ta by min-
imizing 

S = Σ 4 - ί Δ ^ - Γ Km(r)n(r)dr] + a [R[jCQ(r)]2dr , (17) 

NL ΣΗΙ [ J O J JO 

where a is again a regularization parameter and C is, say, a differential 
operator tha t measures the 'smoothness' of Ω(γ), or some other property 
tha t one might wish to optimize. Minimization of S leads to another integral 
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Figure 2. Examples of averaging kernel for ro = 0.5, obtained by an OLA inversion (top) 
and an RLS inversion (bottom). The mode set is identical to the GONG Hare-and-Hound 
exercise (Gough and Toomre 1993). 

equation tha t involves the adjoint of £ , which one might solve by expanding 
Ω ( γ ) in a series of functions. Usually, however, the expansion is carried out 
before the minimization. Either way, it can be shown tha t we can still write 
the estimate of Ω ( γ ) at a certain radius ro as a linear combination of the 
da ta in the manner of equation ( 12 ) . 

Had the regularization term not been included, in the case of solar ρ 
modes the minimization of S would require the inversion of a nearly singular 
matrix producing an 'ill-posed problem', and the solution would typically 
contain spurious highly oscillatory components which are generated by nu-
merical and da ta errors. This is due to the fact tha t all the splitting kernels 
have large amplitude near the surface with a large amount of redundancy 
in the information tha t the datasets carry. 

3.3. COMPARISON BETWEEN OLA AND RLS 

Helioseismologists have been using both OLA and RLS for their inver-
sions. Between the two methods, OLA gives better localization, because the 
method is designed tha t way. Figure 2 compares typical averaging kernels 
produced from an OLA inversion and from a RLS inversion. The OLA av-
eraging kernel has almost no sidelobes and no surface contamination, both 
of which are undesirable. Depending on the mode set, even OLA kernels 
can have these features, but to a much less extent than the RLS kernels. As 
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was pointed out by Christensen-Dalsgaard, Schou and Thompson (1990), 
however, the negative sidelobes can contribute to improve the estimate. For 
example, if Ω ( γ ) is convex (or concave) in the region where the averaging 
is taking place, the localized average by a positive definite kernel would 
underestimate (or overestimate) Ω ( γ ) , but negative sidelobes push up (or 
down) the estimate, provided tha t the averaging kernel stays unimodular. 
This is what the regularization term does: interpolation and extrapolation. 
Par t of the side lobes therefore maybe accounted for as a designed prop-
erty of RLS methods. Still, OLA gives better averaging kernels overall, and 
estimates tha t are more robust and more easily interprétable. 

On the other hand, RLS is more responsive to internal inconsistency 
of the data , if it exists. Since an OLA method is concerned only about 
localization, it is left to helioseismologists to check the consistency of the 
data , but a RLS method directly looks at the misfit, and therefore such 
inconsistency, including ones arising from underestimating random errors, 
will show up immediately. 

RLS is computationally cheaper, too. An OLA inversion involves invert-
ing a matr ix of size Μ, where M is the number of modes, per target point. 
If one needs to estimate Ω ( γ ) on Νχ target points, this takes ~ Μ3Νχ 
flops. RLS involves inverting a matrix of size TV, where Ν is the number of 
functions in the expansion, or, in many cases, the number of grid points. 
So this takes ~ N3 flops. If M = 1000, Ν = 500 and NT = 100, then the 
ratio of the operation count is ~ 800. For a two-dimensional case, this ratio 
increases. For Μ = ΙΟ 5 , Ν = 5000 and NT = 1000, the ratio is ~ 8 χ 10 6 . 

In spite of these differences, in the real cases in helioseismology, OLA 
and RLS are usually in general agreement (see Figure 4, next section). 
However, this does not mean tha t the difference between the two is merely 
an operational one. To make this point, let us consider a linear equation 

where Λ is an m χ η matrix, and χ and 6 are vectors of size η and m, 
respectively. From this one obtains i , an estimate of x , as 

The resolution matrix R depends on the method one chooses to obtain 
the estimate. The estimate χ is related to the real solution χ through the 
following formula (hence the name 'resolution' matrix) 

Ax = b , (18) 

x = Rb . (19) 

x = Rb = RAx , (20) 

while the vector of misfit is given by 

6 - Ax = ( 7 m - AR)b , (21) 
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where Im is the identity matrix of size ra. In the absence of da ta errors, 
OLA seeks to choose R in such a way tha t RA is as close as possible to J n , 
the identity matrix of size n: 

RA^rIn. (22) 

On the other hand, RLS seeks to reduce the misfit and therefore aim to 
achieve 

AR -> Im . (23) 

We may write, therefore, 

ROLA * A i 1 , R R L S ~ A ^ 1 , (24) 

where ROLA and RRLS are the resolution matrices obtained from an OLA 
and an RLS inversion, respectively, and A^1 and Α χ1 denote the left and 
the right inverses. This suggests the fundamental difference and the com-
plementary nature of OLA methods and RLS methods. It also means tha t 
these two classes of methods are not simply the ones we happen to know, 
but tha t they are the two fundamental bases. 

We know from linear algebra tha t if one of either the right or the left 
inverse exists, then the other inverse exists, too, and they are identical. In 
this sense, the general agreement between the two inverses in helioseismic 
inversions is another indication tha t what we have been doing is not too 
far off the mark. 

4. Invers ions in t w o d imens ions 

Before GONG, measurement of individual splittings unim were not avail-
able. Instead, it was customary to expand the splittings in the form 

= Y,ak(n,l)Vk(m;l) , 
k 

where Vk(m; I) is some polynomial and ak is an expansion coefficient. Ritz-
woller and Lavely (1991) pointed out tha t it is advantageous to choose 
polynomials Vk(m;l) tha t are orthogonal in the discrete space of ra. In 
any case, inversions of expansion coefficients normally reduce to inverting 
each set of expansion coefficients (at fixed k), which are one-dimensional 
inversions, and then combining them together. 

Mathematically, inference of two-dimensional rotation, Ω ( γ , 0), from in-
dividual splitting frequencies Aunim, is no different from inference in one 
dimension. Computationally, however, it is much harder. With the num-
ber of modes of the order of 10 5 , a straightforward application of OLA is 

https://doi.org/10.1017/S0074180900061143 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900061143


INTERNAL SOLAR ROTATION 197 

250 

Figure 3. Surface plot of an averaging kernel obtained by a ID®ID OLA inversion, 
centred at r — 0.7i?©, μ — l/y/2. 

prohibitively expensive. This was the reason the first two-dimensional inver-
sions were RLS inversions (e.g. Sekii 1990, 1991; Schou 1991, also Corbard 
et al. 1995) 

A fully two-dimensional OLA was presented by Christensen-Dalsgaard 
et al (1995). To invert a huge matrix they carried out singular-value de-
composition and then truncated the spectral expansion to reduce the size 
of the problem. However, singular-value decomposition itself is a compu-
tationally intensive procedure, and therefore a fully two-dimensional OLA 
remains an extremely expensive method. 

Sekii (1993a) pointed out tha t a property of the splitting kernels of 
the solar p-modes (equation 10) can be exploited to decompose the two-
dimensional problem into successive one-dimensional inversions ( ID®ID 
inversions). The sun's spherical geometry introduces a complexity, as was 
discussed by Sekii (1993b), but this decomposition still reduces the compu-
tational labour substantially, and it is possible to formulate OLA methods 
on this basis (Sekii 1993b, 1995; Pijpers & Thompson 1996). An example 
of an averaging kernel obtained by this method is shown in Figure 3. 

5. W h a t w e have learned 

What we know today about the internal rotation of the sun, from obser-
vations of the past and the present, and from various analysis of them, are 
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Figure 4- Rotation rate in the sun inferred from GONG data, by a ID®ID OLA 
inversion (left) and by a 2D RLS inversion (right). From Thompson et al. (1996). 

summarized as follows: 

— the latitudinal variation of the angular velocity observed at the surface 
more-or-less persists throughout the convection zone, 

— there appears to be weak differential rotation in the radiative interior, 
— the maximum of the angular velocity occurs at r/R® ~ 0.95 (unless 

we have a rapidly spinning core!), 
— there is suspected a shear layer immediately beneath the surface, 
— there is a shear layer beneath the base of the convection zone. 

Such features are seen in the inversions shown in Figure 4 (Thompson 
et al. 1996), obtained from 4 months of GONG data, and are in agreement 
with the LOWL result (Tomczyk, Schou and Thompson 1995), the latest 
GONG result (Korzennik et al. 1996) and the MDI result (Kosovichev et 
al. 1996). 

A I D ® I D OLA inversion of the latest GONG da ta (Korzennik et al. 
1996) is shown in Figures 5 and 6. The result is consistent with those shown 
in Figure 4. To investigate the structure below the base of the convection 
zone specifically, Douglas Gough and I have carried out a nonlinear least-
squares fitting. (Figure 7). An analytical model of the rotation rate, com-
prising a rigidly rotating interior and a differentially rotating outer layer 
(latitudinal dependence is independent of radius), with a transition zone 
between them, is fitted in the least-squares sense to the GONG data . One 
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Figure 5. Contour diagram of a ID®ID OLA inversion of the latest GONG data 
(Korzennik et al 1996). 

might note tha t the positions of the upper and the lower boundaries of 
the transition zone are nonlinearly related to the measurements, and tha t 
the fitting is accomplished by iteration. Please compare the result with 
tha t shown in Figure 6. The result indicates tha t the zone is centred at 
r = O .696Ä0, and the thickness of the zone is 0.064^0. Such a transition 
zone, known as a tachocline, was suggested to be a site of turbulent mixing 
by Spiegel and Zahn (1992) (cf. Gough and Sekii 1996). 

Finally, an inversion in deeper layers was at tempted (Figure 8). The 
averaging kernel is well localized, and the result suggests a rate slower than 
the surface value. This agrees with BiSON (Chaplin et al 1996) and LOWL 
but not IRIS (Lazrek et al 1996). 

6. Future prob lems 

In spite of our long efforts, the kinematics in the core remains largely un-
certain. 
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Figure 6. Rotation rate shown in Figure 5 are plotted as function of r at the latitudes 
of 0° (top), 30° (middle) and 60° (bottom). The dashed curves indicate error levels. 
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Figure 7. Result of a nonlinear least-squares fitting to the latest GONG data (Korzennik 
et ai 1996). Rotation rates at the latitudes of 0° (top), 30° (middle) and 60° (bottom) 
are obtained from fitting an analytic expression to the data. The transition zone is found 
to be centred at r = 0.696RQ with a thickness Ar = O.O64i?0. The vertical dashed lines 
indicate the position of the upper and the lower boundaries. 
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fractional radius (equator) 

Figure 8. An averaging kernel obtained from a ID®ID OLA inversion of 
the latest GONG data (Korzennik et al. 1996. The estimated rotation rate is 
Ω/2π = 375.2 ±6.1(nHz). 

The low-degree splitting measurement is a key to the issue, but obser-
vations are still not in mutual agreement, as was discussed by Pallé (1996). 
The disagreement may be coming from the difference in da ta analysis pro-
cedures, which shows how difficult such tasks indeed are (cf. Chang, Gough 
and Sekii 1996). G-modes, if found, would play an extremely important role 
in our investigation of the core. The helioseismic instruments on SOHO, as 
they accumulate more data , might solve both problems. 

A new method of investigating the dynamics of solar interior is now 
developing. Local-helioseismological approaches do not rely on frequency 
splitting as such, but on measuring the travel times of acoustic waves in 
the sun between various parts of the solar surface. Inferences concerning the 
internal flow in three dimensions have been made (Kosovichev and Duvall 
1996, Duvall et al 1996). It is still unclear how deep down into the solar 
interior such an approach is effective, but this is certainly an exciting new 
tool in helioseismology tha t enables us to investigate the dynamics of the 
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outer layer in great detail. 
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