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It is shown that, if a non-linear locally finite simple group is a union of finite simple groups, then the
centralizer of every element of odd order has a series of finite length with factors which are either locally
solvable or non-abelian simple. Moreover, at least one of the factors is non-linear simple. This is also
extended to abelian subgroup of odd orders.

1991 Mathematics subject classification: 2OF50, 20E32.

Introduction

This article is concerned with the following two problems.

(1) Is it the case that in a non-linear locally finite simple group (LFS-group) the
centralizer of every finite subgroup is infinite?

(2) Does the centralizer of every finite subgroup in a non-linear LFS-group involve
an infinite non-linear simple group?

Theorem 1. Let G be a non-linear LFS-group such that every finite set of elements
of G lies in a finite simple subgroup, and x be an element of odd order t in G. Then CG(x)
has a series of finite length such that each factor is either locally solvable or non-abelian
simple. Furthermore, at least one of the factors is a non-linear simple group.

As is discussed in more detail in [5], the centralizer of an element in a locally finite
simple group is not necessarily of the above form because in Meierfrankenfeld groups
of VDA type the centralizer of every element is residually finite and involves an infinite
simple group. If the centralizer of an element is residually finite and has the structure
as in the above theorem, then it cannot involve an infinite simple group. See [11,
Lemma 4.1].

Throughout this work, the only linear algebraic groups of classical type that we shall
consider will be over fields of odd characteristic. We make this assumption because
we use the results of [12, Chapter IV] on centralizers of unipotent elements in classical
groups and these are valid only in good characteristic case. One of the major
simplifications of this assumption arises because of the following theorem:
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If G is a semisimple simply connected group with char K good for G, then there is a
bijective homeomorphism f between the set U of unipotent elements in G and the set V of
the nilpotent elements of the Lie algebra of G. Moreover, f commutes with the action of
GonU and V [13].

This theorem reduces the study of the centralizer of a unipotent element in G to
the study of the centralizer of a nilpotent element in the Lie algebra of G.

The case charfe = 2 might need a special treatment which we have not attempted.
We extend some of our results in [8] and [10] to more general groups. For this, we

give some definitions. For the notation and definitions, see [8] and [10].

Definition 1. A finite abelian subgroup F in a finite simple group G of classical type
or in an alternating group is called a nice group if whenever G is of type Bt or Dt, then
O2(F) is cyclic. If G is an alternating group or of type At or Ct, then every abelian
subgroup is a nice group. In particular, every abelian group of odd order is a nice
group.

Definition 2. A finite abelian subgroup F contained in a finite simple group G of
classical type over a field of characteristic p or in an alternating group is said to be of
a.-type:

(i) If G is of classical type and F is written as a direct product of a semisimple
group F5 and a unipotent group Fu, then Fs is a nice abelian group in G and the
unipotent part Fu is cyclic.

(ii) If G is an alternating group, then every abelian subgroup is of a-type.

In particular every abelian group of odd order in a classical group with cyclic
unipotent part is an a-type group.

Let G be a countable simple LFS-group and K be a Kegel sequence of G. A finite
abelian group F in G is called a K-nice group if F is a nice group in almost all Kegel
components of the Kegel sequence K of G.

Both questions in the introduction are answered affirmatively in [10] for the
centralizer of a finite K-nice K semisimple abelian subgroup in a non-linear LFS-
group. Here we extend the results of [10] to centralizers of a-type subgroups.

Definition 3. A finite abelian group F in a countably infinite LFS-group is said to
be of K - cc-type if F is an a-type abelian subgroup in every Kegel component of a
Kegel sequence K = (G,, M,) of G. Moreover, for each i, (|M,|, \F\) = 1 and M, are
solvable.

Theorem 2. If F is a K - a-type abelian subgroup of odd order in a non-linear
countably infinite LFS-group G, then CG(F) has a series of finite length in which the
factors are either non-abelian simple or locally solvable. Moreover, one of the factors is
non-linear simple.
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So we answer both of the questions affirmatively for K - a-type abelian groups of
odd order.

A reductive linear algebraic group G is said to be of classical type if the simple
components of the semisimple part of G are all classical groups.

Theorem 3. Let G be a connected reductive linear algebraic group of classical type
over afield of characteristic p / 2. Let a be a Frobenius automorphism of G and let x be
a unipotent element of order pm fixed by a. Then (CG(x))" 6 Tvp*, where v is the number
of simple components of the semisimple part of G.

Recall that [10, 8], Tn consists of all locally finite groups having a series of finite
length in which there are at most n non-abelian simple factors and the rest are locally
solvable.

Corollary 1. Let X be a finite simple group of classical type over a field of
characteristic p ^ 2 and x be a unipotent element of order pm in X. Then Cx(x) has a
series in which there are at most pm non-abelian simple factors. Hence Cx(x) e T^. In
particular the number of non-abelian simple factors in a series ofCx(x) is bounded by the
order of the unipotent element x.

Theorem 4. Let X be a finite simple group of classical type over afield of characteris-
tic p / 2 and F be an abelian subgroup of a.-type of order npm where (n,p)— 1. Then
CX(F) G T^f(n) where f is a function from natural numbers to natural numbers independent
ofX.

Proof of the results

Lemma 1 [8]. (i) The classes Tn are closed under taking normal subgroups and
quotients.

(ii) IfM<\G,MeTm and G/M e Tn, then G e Tm+n.

Lemma 2. Let G be a linear algebraic group and x be an element of G fixed
by the Frobenius automorphism a of G and assume that G/G° is solvable. Then
(CG(x)y e Tn, i}f (Cc(x))' e Tn.

Proof. For (Cco(x))" = (CG(x))" n G°, and so (CG(x)y/(Ccfi(x)y is isomorphic to a
subgroup of the solvable group G/G°. Hence Lemma 1 gives the result.

Lemma 3. Let G be a linear algebraic group and a be a Frobenius automorphism of
G, and N be a a-invariant locally finite subgroup of G contained in the centre. Let x be
any a-invariant element ofG. Then

{CG{x))°eTn iff {Cc/K(x)y e Tm
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i.e. the number of non-abelian simple factors in a series of (CG(x))° and (CG/N(x))a do
not change.

Proof. Let

(CG/N(x)Y = C/N = {gN e G/N | g-'g° e N and \g, x) e N).

By using the fact that N is in the centre, it is easy to see that (CG(x))ff <] C. Now we
claim that C/(CG(x))ff is abelian. Indeed for any h, g e C

g-lg° = z, r ' / i ' ^ w , [0,x] = u, [h, x] = v

where z, w, u, v e N. Hence

[g, h]° = [g°, h'] = [gg-lg°, hh~lh°] = [gz, hw] = \g, h].

Now using Witt's identity and the fact that N < Z{G) we get [[g, h], x] — e.
This implies, by Lemma 1, that the number of non-abelian simple factors in a series

of C and in a series of CG(x)' are equal as C/N e Tn iff C e 7 .̂

Proof of Theorem 3. It is well known that G — ZG' where G' is the commutator
subgroup of G and Z is a central torus. G is a connected semisimple linear
algebraic group and Z is a //-group. Hence the unipotent element x e G is contained
in the semisimple part G'. Then we get CG(x) = ZC(y(x). The group Z is a connected
tr-invariant central subgroup of G and Cff(x) is a tx-invariant subgroup of G'. Then
(Cc(x))* = (ZCff(x))'.

(Cc,(x))ff = (CG(x))" n G'. Then (Cc(x))7(CG,(x)y is isomorphic to a subgroup of the
abelian group G/G'. Since we are interested in the number of non-abelian simple
factors of the series of (CG(x))ff, by Lemma 1 it is enough to find the number of non-
abelian simple factors of (CG,(x))°.

The group G' is a connected semisimple linear algebraic group. Hence G' can be
written as a central product of say v simple linear algebraic groups. By assumption all
simple components of G' are of classical type. Let G' = G,.. . Gv

where each G, is a simple linear algebraic group of classical type. Let Z = Z{G) =
Z{GX)... Z(GV). Then

G'/Z = G~ = ~Gi...~G, and G; = GJZ,.

By the Krull Schmidt theorem ff(GjZ) = GjZ, then by taking the derived group we see
that

= <7((G,Z)') = (GjZ)' = Gr
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Therefore a permutes the G,'s. Let 0,, i = 1, 2 , . . . , r be the orbits of a on {G,,..., Gv]
and let Kt = YlDeOjD. Hence G' is the central product of KtK2... Kr. Let K be any one
of the orbits of a on G; say for simplicity the one containing G,

and <x'(l)(G,) = G,. Then K is the direct product of the group a'{Gx) and

r = {Coa(Cl)... ff*"-'^,,.,) I ff(coff(Cl)... ^""-'(c,,,,.,)) = c0(7(Cl)... ^"-'(c,,).,)},

where c, e G,. This implies that c, = c0 for all i = 1, . . . , f(l) — 1. Hence

I f = {cff(c)... am~\c) | c e G,, <T'(1)C = c} s Q, (ff'(l))

Therefore

(G'/Z)" a CC,((T'(1)) x • • • x Cc,(o*>) where i < ».

The unipotent element x of order pm with which we have started off determines the
element

xZ e (G'/Zy - Q,(ff'(1)) x • • • x Cc,(a^).

Let (x,Z,, x2Z2, . . . , x,Z,) be the unipotent element under the above isomorphism such
that (XJZJ)^ = XJZJ. Hence

x C(GI

observe that i < v. Now by Lemma 3, if we find C(G/Z)«(x) 6 7^,, then we say
(CG(x))a € 7^,. Since the number of factors is < v we find in each factor and multiply it
with j < v. Since a'm is also a Frobenius automorphism replace ff'(0 with a. Then the
question reduces to:

Let G be a classical type simple group over a field of characteristic p ^ 2 and x be
a unipotent element of order pm in G. Then Co,(x) = (Cc(x))° e Tr .

So we answer this question for each classical type. If we show (CCLii(x))ff € 7^,, then
by similar arguments as before (Cstn(x))" e Tr. Now by Lemma 3 we have

and we are done.

So we show that {CGLn(x))° e Tr.

Let G = GLn. By [12, "l .7 and 1.8] we get

R\J GLr\=( y

R\J GLr\={RC)
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and C is a reductive group and the product is a semidirect product. R and C are
defined over the field k hence they are a invariant. If xy e (RC)a, x e R, y e C, then
{xy)° = x°y° = xy which implies that x~V = y(y~lY e R(~\C = {e} as both R and C are
invariant x" — x, y" = y. So (RCf — R°C since R is the unipotent radical it is enough
to find the number of non-abelian simple factors of C. But

C = (GLri x GLn x ... GLJ

since by [12, 1.7, 1.8], the number of r,'s is less than or equal to pm. Observe that the
only ones r, > 2 might give a non-abelian simple factor. Hence we are done for this
case.

Now let G be an orthogonal, unitary or a symplectic group. Then by [12, Theorem
2.23, page 260] Cc(x) = RC where R is the unipotent radical of Cc(x) and C is a
connected reductive linear algebraic group and the product is the semidirect product of
C and R. Then by [12, Theorem 2.25] C(/c) is isomorphic to

P"

(i) Y\ U(ht, k) in the unitary case

f pm

(ii) Y\ Spr,(k) x Y\ O(hit k) in the orthogonal case
i=l,icvcn i=l,i odd

Pm Pm

(iii) rTSpr.(/c) x T~f O(/»,-, k) in the symplectic case.
i=l i=l

Now as in the case of GLn we have (CG(x))0 = (RC)" = R"C and it is enough to find
the number of non-abelian composition factors of a series of (C)ff. Since the number
of direct factors is less than or equal to pm and each direct factor gives at most one
non-abelian simple factor to (C)ff (in case r, > 2) we get C e T^. Observe that the
simple factors might be the twisted types of the given groups.

Proof of Theorem 4. Let F = FSFU where Fs be the semisimple subgroup of order n
and Fu be the cyclic unipotent of order pm. Every finite simple group X of Lie type can
be obtained as X = 0" (C) where G is a simple linear algebraic group of adjoint type
over an algebraically closed field of characteristic p, and IT is a Frobenius
automorphism of G. Then F can be considered as a subgroup of G. Since F is an a-type
abelian group by [12, Theorem 5.8(c)] there exists a a invariant maximal torus of G
containing F, = < au ..., ar >. Then by [12, Theorem 4.1].

CG(F5) = < T, Xt, nw \P(ad = 1, p e 4>, a," = a,, i = 1, 2 , . . . r >

and

Cc(Ff = < T, Xt, \p(a,) = l,ped>, i = 1, 2 , . . . r >.
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ls a connected reductive group and it is of classical type. (One can extract
this from [8, Construction 4.1].) Since for any semisimple element a, e F by [12,
Corollary 4.4] Cc(a,)/Cc(a,)° is abelian we get that CG(Fs)/CG(Fsf is abelian.

We need to find CG(F)°. But CG(F)a = (CG(FS) n CG(FU))° = (CC6(Ji)(x))' where
Fu = <x>. In order to find the number of non-abelian simple factors in a series of
(CCc(fi)(x))17, by Lemma 2 it is enough to find the number of non-abelian simple factors
in a series of (CCc(fj)o (*))". Since CG(FS)° is a connected reductive linear algebraic group
and x is a unipotent element of CG(FS)° we have by Theorem 3 (CCc(F])o(x))ff e Tpm/(n)

where / is a function from natural numbers to natural numbers independent of the
group X (see [10, Theorem 3]). One can see that the number of simple components of
the semisimple part of CC(FS)° is/(n) from [10, Theorem 3]. Hence

(CG(F))° = (CC6m)(x))' e Tw

Now

CX(F) = C0,(G,,(F) = Co.(F) n 0>'(G').

Since 0" (C) is normal in G", we have C^(G.,(x)<] CG,{x). Hence by Lemma 1

Remark. Let G be a simple linear algebraic group of classical type over a field of
odd characteristic p and F be an abelian subgroup of G with cyclic unipotent part Fu

and semisimple part Fs. Let Fu = <x> and \FU\ — pm. Assume that G has rank /. Let r
be a given integer. To see that when / is sufficiently large (CC(F))" involves simple
classical groups of rank greater than or equal to r, we need to spell out some of the
facts from [12, Chapter IV]. In fact by [10, Theorem 3] if \F\ = npm where \F,\ = n
(n,p) — 1, then we have CG(F,) e 7}(n). So it is enough to say that at least one of the
numbers r, in the Theorem 3 is greater than or equal to r. The numbers r,'s arise in the
following way. (See [12, Chapter IV\.)

For simplicity we describe it when G = GL. Let V be a vector space over a field k
of dimension n and x be a nilpotent linear transformation on V such that xd — 0. Let
A(X) be the /c-algebra of linear transformations of V generated by x. Then
A(X) = k[T]/Jk[T] where / is the minimal polynomial of x. V considered as an A(X)
module is denoted by V(X) and by [12] V(X) ^ ©J=,M(</,) where M{d) is the /4-module
xd~d'A. By [12, Chapter IV\ there exists e, (1 < i < s) in V and integers dt such that
xd'et = 0 and that x ^ (0 <j < dt, 1 < i < s) is a k basis of V. In Corollary 1.8 r, is the
number of d, equal to j . There is a k isomorphism <p : C ->• f] GLn. So in case G = GL
if / > r(pm(f(n))) where/ is as in [10, Theorem 3] we have at least one of the r, > r.

For the other classical groups one can extract from 2.19 and 2.25 that if
/ > r(3pm/(n)), then (CG(F))a involves a classical simple group of rank greater than or
equal to r.
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Proof of Theorem 1. Let n be the set of prime divisors of t. By using the classifi-
cation of the finite simple groups we may assume that every finite subgroup of G is
contained either in an alternating group or in one of the families A, B,... ,2 G2. Since
the number of families is finite one can show that there exists a fixed family such that
every finite subset of G is contained in a simple group of fixed type.

The alternating case, for an arbitrary element is done in [8, Lemma 2.5]. If every
finite subgroup is contained in a linear group with bounded rank parameter, then by
[7], [2] and [15] the group should be linear. But we assumed that G is non-linear, hence
every finite subgroup of G should be contained in a classical group of fixed type with
unbounded rank parameter.

If there exists a prime p such that every finite subset of G is contained in a finite
classical group of fixed type over a field of characteristic p, then we have either p /1 or
P i t .

If p / 1 , then x becomes a semisimple element in every group containing x. Thus as
in [8, Theorem B] every finite set of elements of CG(x) lies in a subgroup of the form
CH(x) where H is a finite simple group of fixed classical type and x is a semisimple
element of H. Hence by [8, Lemma 2.3] we are done.

If p | t, then by Theorem 4 we have Cc(x) is locally 7^»/(n) where t — pmn, (n, p) = 1.
Again by [8, Lemma 2.3] we are done. Note that as x is an element of odd order we do
not need the centralizers of 2 elements in classical groups over fields of charac-
teristic 2.

If no such prime p exists, then for each prime q in n there is a finite subset of G that
is not contained in the above type group over a field of characteristic q and hence there
is a finite subset F and G containing x such that x is a semisimple element in every
group containing F. Hence every finite set of elements of Cc(x) lies in a subgroup of
the form CH(x) where H is as in the above form and x is a semisimple element in H.
Again by [8, Lemma 2.3] we are done.

Proof of Theorem 2. Let F be a K - a-type abelian subgroup of odd order
and K = (G,, M,) be the given Kegel sequence of G. If necessary by passing to a
subsequence we may assume that Gj/M, are all alternating or all belong to a fixed
type classical family. If they are all alternating, then by [10, Theorem 1] we are
done. Assume that GJMf all belong to a fixed classical family over a field of
characteristic p. Then by Theorem 4 we have CG(/M((F) e 7^y(n). Since by assumption
(|M,|, \F\) = 1 we have CGi/M£F) = Cc.(F)Mi/M-. Since M, are all solvable and
C6|(F)Mi/M,.^Cc,(F)/(Cc,(F)nMi) we'get CCl(F) e 7>/(n) for all i. Now by [10,
Lemma 3(ii)] we get CG(F) e T^m.

By the remark after the proof of Theorem 4 CGi(F) involves alternating groups of
unbounded orders and Ca[F) has a series of finite length in which each factor is either
non-abelian simple or locally solvable, one of the factors of the series of CG(F) must
be non-linear.
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