
I l l

On Differentiating a Matrix.

By Professor H. W. TTTRNBTTLL.

{Received \Uh September 1927. Read Uh June 1927.)

INTRODUCTION.

The theorem dxr/dx = rxr~1 is well known. So also is the
theorem that if A = j a,y \, A"1 = | Aji/A J concerning a determinant A
and its reciprocal expressed by means of cofactors Aij of a,y. Not
quite so well known is the Cayley Hamilton theorem that a matrix
X = [x,j] satisfies its own characteristic equation

<f>(\) = | A — Xij \ = 0 .

Unlike as these three results are, they nevertheless can be looked
upon as particular phases of a general theorem concerning a matrix

differential operator Q = 5— acting upon a function of a matrix X

or its transposed.

The chief properties are summed up in various theorems I-VII.
Speaking generally, any function f(X) of a single matrix is expres-
sible as Q. <f> where ^ is a determinant scalar function of the latent
roots of X. The simple result, Theorem III ,

D.sr=rXr-1,

where sr is the sum of the rlh powers of the latent roots of the matrix
X is here established, but it requires a rather intricate Lemma (§ 7)
concerning the principal minors of a determinant.

Although the finite matrix has been treated, the work is
adaptable to infinite matrices.

The enquiry suggested itself as a natural continuation of Cayley's
discovery that the determinant operator | Q, | has the property

I O j \X\'- = 1M\X\'-1

where /n is the numerical constant r (r + 1) (r + 2 ) . . . (r + n — 1).

https://doi.org/10.1017/S0013091500007434 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007434


112

§ 1. Let

X = [xij\ =
xn xl2

• ' ' i l l •' '912

'(1)

be an n rowed matrix whose n2 elements are treated as independent
variables. Further let capital letters A, B, C denote constant
matrices, and Y, Z dependent variable matrices, wherein the
elements t/»y, zy- are functions of the n2 variables Xy.

Then I propose to develop the theory of matrix differentiation
on the following basis. From X, let a matrix differential operator

Q =

3
dxu

d
dx12

a

a
dx,n

a

a

• ( 2 )

be formed by placing the n2 differential operators -— in matrix
OXji

array with the order of suffixes transposed from that of X.
In particular if n = 1 and there is only one variable x, this

operator Q becomes the ordinary — . So we may regard Q. itself as
(tec

a generalization of differentiation of a scalar number: and indeed it
will be seen in what follows that many of the features of the
differential calculus appear in this matrix calculus often in a very
unexpected setting.

First we must give the law of transposition full play by defining
the transposed matrices and operator, as indicated by an accent,

.(3)

In these the rows and columns of the corresponding unaccented
matrices have been interchanged, as indicated by the reversal of
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suffix order. Also, for such accented symbols we have the funda-
mental laws as shown by

(A + B)'= A'+ B', (AB)'= B'A', (4)

the latter illustrating what may be called the reversal law which also
holds for the reciprocal operation, namely

{AB)-i= B-iA-1 (5)

Next we define the effect of the operators Q, Q.' by the ordinary
multiplication law of matrices. So

where the typical element is given by

and similarly

dx2i Sxi ' •(7)

(8)

An important special case occurs when D, operates on a scalar
expression f(xij), involving any of the n2 variables Xij. Using the
ordinary multiplication law once again we obtain

" d
dxn

/ =

9/
dxu,

9/

9/
dx21,

9/

9/
dxnl

9/

.(9)

which is the matrix of the n* first partial differential coefficients of
the function / .

There is no difficulty in proving immediately that

Q.(Y + Z)=Q Y + QZ, Q'(Y + Z) = Q.'Y + Q'Z, . . . . (10)

so that at present the operator behaves as ordinary differentiation.
Rather a different state of things holds for operation on a product
YZ, which does not reproduce the ordinary formula

d _dy dz
dx dx dx

.(11)

But let a suffix c be provisionally at tached to a matrix to indicate
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that for the purpose of this operation, its elements are to be regarded
as constants. Then the product formula for Q differentiation is

Q (YZ) = a (YZC) + Q. (Yc Z) (12)

In this first term Zc is constant and Y undergoes operation in. the
second, Y is constant. And although we can write

= QYZc, (13)

we cannot assume Q, Yc Z = YCQZ because the algebra is non-
commutative.

Formula (12) is proved by straightforward application of to each
element of the matrix product Q. YZ. There is no need to detail
the steps. The next (13) is true because of the associative law of
multiplication for matrices.

§2. We now have the basis of a matrix calculus, so that it is
possible to build up some elementary results. Thus if A is constant
we have, by § 1 (6) and (8),

•(1)

Next, by using the same formulae, we infer

QI=n, Q'X
•(2>= 1, Q.'X'=n,

where the scalar numbers on the right, each s tand for a scalar
matr ix . For example if n = 3,

dxu dx21 dx31

dx32

d

xu

x22

x32

^ 2 3

- 3 3

=

3

0

0

0

3

0

0

0

3

Q I = JL 1 'L = 3. . . ( 3 )

Let a-y denote the sum of the leading diagonal terms of A = [a^
a constant matrix. Then in the same way we find

Q.{AX')=A',

Q,(X'A)=A,

Q.'{AX')=alt

Q.'(X'A)=nA.

• (*)
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The second column of these eight results is of course deducible
from the first, but is given for completeness. We note the interesting
fact that the relation

Q.(AX') = A'

shews that the fundamental process of transposing a matrix A can be
effected by a differential operator.

OPERATION ON INTEGRAL POWERS OP X AND X'.

§ 3. In the present calculus we next seek the analogue of
dzr/dx = rxr~1. This leads first to the following result:

THEOREM I

&X'r = X''-1 + XX'>-2+ .. +XiX''-i-1+ .. +X*-1 (1)

PROOF. We have by § 1 (11)

fli'8 = a (X'X') = n x'X'c + a x'cx
r.

But nX'A=A, and Q.AX'=A'. Substituting A=X'C, we have

The formula is now true by induction; for if Y — X'r, then

Q.YX' = {QY)X'+QYCX'=(Q.X''-)X'+ Y'

by § 2 (4). But Y'=Xr, since Y = X'r. Hence if (1) is assumed to
be true we immediately have

Q, X'r+1= Q. TX'= r<- + + + ,
which reproduces the same law as (1). This proves the theorem.

COROLLARY

Q' Xr= X'-1 + X'Xr~2 + . . . + X'r-1 (2)

Further if n = 1, we have X = X'= x, Y = xr and both formulae (1)
and (2) revert to the familiar dxrjdx = rxr~1.

§4. Curiously enough the corresponding formula for Q.Xr, when
the operand is not X' but X, leads to an entirely different type of
result involving the sums of powers of the latent roots of the
characteristic equation, which we must therefore first consider.
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For the square matrix of order n

X = [xij] =
Z2n

•(1)

the characteristic equation is given determinantally by

\XI-X\ =

A — ''In

— &21 A—
= 0. • ( 2 )

We write the expanded form of this determinant as

<£ (A) = A" + pt A—1 + p2X"-2 + . . . . .(3)

so that the coefficients p are polynomials in the n2 arguments xy.
Then the well-known Cayley-Hamilton theorem, that the matrix X
itself satisfies the characteristic equation can be expressed as

<£ (X) = X" + Pl X" - 1 + p2 X" - 2 + . . . . + pn = 0 (4)

identically.
With the usual notation sr for the sum of the rth powers of the

n roots A1; A2, . . . An of (f> (A) = 0, and hr for the sum of the
homogeneous products, r at a time, of these roots, we have the
following relations

.(5)

+ SlPl +

Sr + Sr-1p1 + Sr-
if 0 < r < n + 1, and

if r > n.

Also

+ • • • + -1 + rpr

=

=
o,
o,

= 0,
= 0,

= 0,

= 0,

+ l) and
hr+hr-1p1+ ...

= 0 ,

= 0

.(6)

if r > n. The relations between s and p are due to Newton, and
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those between h and p to Wronski, being proved by equating
coefficients of powers of t on both sides of the identity

1 = (1 +Plt + p2t*+ . . .+pnt") (1 + M + h2t*+ . . . + hrV + .. .)

since this last is

(1 - A^) (1 - X2t)... (1 - Xnt) {(1 - \xt)... (1 - A,*)}"1.

Sylvester gave a theorem whereby the latent roots of related
matrices could be derived, namely if f(X) is a rational function of
the matrix X, then the latent roots of the matrix f(x) are
/(A,-), * = 1, 2, ....n.

Such a function is

•^ ' bX<? +bX?~1 + + 6 " D ( Z ) l '

where the coefficients ae-, 6j are scalar, so that the order of division,
forwards or afterwards, is immaterial since

N(X). {D(X)}-i = {D(X)} - W(X) (8)

In particular the latent roots of the function Xr are

A/, A / , . . . A,*-,

from which it follows by forming the result corresponding to the first
of set (5), that if Xr is written as a matrix, the sum of its leading
diagonal elements is

2A,? (9)

§ 5. We can now establish the following theorem:

THEOREM II. / / r is an integer, positive or negative

.r

i=\ - ^ — &i

where the fraction is interpreted as an abbreviation for the series

Xr-1 + AiX
r-*+.... + ?>i>-1.

Such a formula can also be written

n Xr = nXr~x + s^-2 + . . + 8j-iXr-i + . . + «r-i (2)

since s/-t = S A'-1.
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PROOF. We have already proved this if r = 1, since D.X = n.
If r = 2, we have

= nX + sx

by §2 (4). So we prove the case for r + 1 by induction from that
of r. In fact,

= n {X'X) = ( O i r ) i

And since Q {AX) = 11 an, therefore Cl (Xc
rX) = 2 Ai

r = sr by
Sylvester's Theorem. Accordingly

&X'+l = £ ^ L ~ ^ r . Z + S A,-'
« -^ — »̂

-X - A,-

treating, as we may, the right hand side by the rules of ordinary
algebra. This proves the theorem if r is a positive integer.

The negative case proceeds similarly, starting with

0 = Q P = O ( I - XX) = (QI- i ) X + Q (Xc -*Z);
whence

Z - A '

giving the case when r = — 1. Then if s is any positive integer we
can prove the formula for X~s assuming it for X~s + 1. Thus

Substituting for Q I " J + 1 this leads to the desired result.
Corollary I. / / / (Z) is a scalar polynomial function of the matrix X,

n . . T . ^/(Z)-/(Ag)

Corollary II. If f{X) is a rational function of X the same is true.
For we prove the results term by term after developing the

function f(X) in ascending or descending powers of Z, starting with
the formula (1). How (3) also holds for an analytic function /(Z)
will be briefly considered in § 12.
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OPERATION ON A SCALAR FUNCTION.

§ 6. We return to the formula (9) of the first paragraph,

and seek its principal applications. A simple instance is given when
we take

f=\1 + \2 + ... + Xn=-p1 = T,xii (2)
which gives the unit matrix as result:

.(3)

1
0

0

0
1

0

0
0

0 .. 1

This leads to the question, what happens if the other elementary
functions, pi, of the latent roots are operated upon ? The answer is
given by the following equations

THEOREM

THEOREM

THEOREM

III.

IV.

V.

ils1 =--

l+Qp

x»-i +
1-Qh
X + h1

1,
2X
3X

1 =

Pi

1 =

— i

X

i

2

i

o,

x»-
o,

lh2

+ h2

* + ... + P«-I

}
I

5 L
- Q h3 = 0, 1

Here we have sets of results which appear to be fundamental in the
general theory of functions of a single variable matrix X. The first
set, which is of surprising simplicity, is obviously true if n = 1, for it
reverts to the formula

Q.sr = ^-xr = rxr-1.
dx
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§ 7. The proof of Theorem II I depends on that of IV which
in turn needs a lemma concerning the principal minors of a general
determinant, which must now be considered. A proof of V follows
directly from IV and need not be given.

Let the determinant \X\—\Xij\ be also written (12 . .. n)12... n

with two rows of n integers, the upper row referring to the columns
and the lower to the rows of | -X" [, both in their correct order. Also
let ji denote the element x,j, and (ab)pq the minor aPbq — agbP from
the ath, 6th columns and the pth and qth rows: and so on. Then the
principal minors are typified by

, • • ( 1 )

with the same letters in both sets. Throughout, each letter denotes

an integer 1, 2, . . . n.

j principal minors with r rows and

columns, and take
Pr =(-Y 2 (ij ... m)ij... m (2)

where there are r letters i, j , . . . m. This leads to n functions

px = — S ii,

which by a well known theorem in determinants are the various
coefficients in the characteristic equation

| A - xij | s A» + p1X"-1 + p2M -*+...+pn = 0 (4)

The lemma in question can now be enunciated.

LEMMA. If i =t= j then

UJCj i VJOj 2

and if i =j,

d
r • • • T •Cm -^

ddxin
 r dxu

where r = 1, 2, . . . n. If r = n + 1, the right members of these identities
are replaced by zero.

PROOF. There is no difficulty in proving these if n < 3 or r < 3. We
therefore take n ;> r > 2.
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Consider r~1, j =t= k. Since p,— i is a sum of minors, and Xjk i
dx

is

an element of the original determinant, only those minors containing
both indices j and k lead to a non zero term; also the result of
differentiating each such minor gives a minor of order r — 2. Thus

( - Y-1 ^ = ^~(jkab . . c)jkab..c (5)
OXjk OXjk

Summed for r — 3 integers a, b, . . . c chosen in ( j ways from
\7* — o/

the integers 1, 2, . . . n, excluding J and k. But

(jkab .. c)jkab..c = — 5— (&ja& • • c)jiab..c = — (jab .. c)iai.,c (6)
OXjk

(
OXjk j

dropping the first entry in each index row, since Xjk is the element of
row j and column k. Hence

( - )'" ^ - x = 2 (jab .. c)kab..c; (7>
OXjk

and as it is useful to exclude i as well as j and k from the values of
a, b, . . . c, we write this last as

S (jab .. c)kab..c + 2 (jib . . c)m,.c (7')

Furthermore since — (jcZa ..c)Jda.,c = (da .. c)da,.c, then
o a j -

( - ) ' ' - ^ T = ~ Z (dab . .c)da/,..c - Z, (iab .. c)ia/,. ,c (8)

where d is any index unequal to i or j but included in the
summation.

Multiplying each result (7) and (8) by its xik and summing for
k = 1, 2, . . . n we obtain the following relation,

( - y 2 a;,* ^ i = S »,- (j

- Z j i ( i a b . . c ) i a b . . c + 2 d,- ( _ / a 6 . . c ) d a b , . C + Y>di ( j i b .. c ) d i b , , c . . ( 9 }

the five sums on the right occurring by putting k = i , j , d in turn and
dropping obviously zero terms with repeated lower indices. These
are summed for a, b, . . . c, d excluding i and j . But

S d,- (ji6 . . c ) ^ . . , = — 2 a,- (ji6 . . c)iab.. f.
Also for a fixed group of lower indices, the r — 2 terms

ii (jab .. c)iab..c — ji (iab .. c)iab,.£ — 2 a,- (ji6 . . c); a i . . c
vanish, for they equal the zero determinant

(ijab. .c)iiat_c.
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This disposes of three groups on the right of (9). For the other
two we have

— ?>ji (dab .. c)dab..c + S di (jab .. c)dai..c — — 2 (jdab . . c)idab..c (10)

with ( „ j terms on the right, due to combinations of r — 2 letters

d, a, b, ... c. Bu t this last is £ -— (ijdab .. c)1?da>, c, which is ( — V - ^
oxji J J •" dxji

Hence (9) can be written

proving the first part of the lemma.

The second case, when i—j, leads likewise through a formula
such as (9) to

( - yZxjt ^l^-1 = -H(jdab..c)jdab..c (11)

But {-Yd^=^^{jUab..c)jkdab..c (12)
tiXjj dXjj

= 2 (Icdab .. c)kdab..c

where j alone is excluded from the indices. Furthermore

S {jdab ..c)Jdab,.c + S (kdab .. c)kdai..c = { - Y'^pr-i (13)

Combining these last three results,

which completes the proof of the lemma it r < n + 1. If r = ?i + 1
the term on the right of (10) is zero, and the desired result follows.

PROOF OF THEOREM IV.

§ 8. By taking all values of i and j we can write the formulae of
the lemma as a single matrix equation

for Q. pr-! is the matrix J~X ' i a n ( i o n multiplying this forwards by
L VXji J

X and subtracting the scalar matrix pr-\, we obtain the matrix
whose n2 elements are precisely those of Q pr, &n the lemma shews.
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Taking r = 1, 2, 3 . . n, in succession we immediately deduce the
formulae of Theorem I I I from (1), ending with the Caley-Hamilton
result, which answers to taking r = n+l, and p/l + 1 = 0. Thus we
can write

Xr+PlX
r-1 + ...+p,+ npr+1 = 0 (2)

r —- 0, 1, 2, , where pn+i = 0, i > 0.

PROOF OF THEOREM III .

§ 9. We may prove this by induction, assuming the formula for
fis,_, to be true,

Since sx = xu + x22 + .., + xnn it follows directly that the formula
is true for sv We assume it true for sr^1 and proceed to deduce it
for sr. Also to effect this we operate with Q. upon a scalar function,
and incidentally use these readily verified results:

Qc = 0, Q0<£ = (£Q0 + 0Q<£ = 0'<£ + 0^', (1)

where c is constant, 6, <f> are scalar, and the accent denotes the effect
of the operator.

In fact by operating with Q. on the identity

Sr+ p1Sr-1+ p,iSr-2+ +pr-181 + rpr— 0 (2)
we get
Qs,- + p,(r- 1)X>— + p2(r- 2 ) X - 3 + . . . + pr-x

+ p1'sr-1+ps'sr-2+ • • • +pr-1's1 + rp/ = 0 (3)

Substituting the values of p^, p2', . . . pr' from § 8 (2) and arranging
the result in descending powers of X, we obtain — r for the coefficient
of Xr~r, due to the term rp/. The coefficient of Xr~2 is zero, since

Pi (r - 1) - «i - rPi = 0.

and in general, if i = 1, 2, . . . r, the coefficient of Xr~i is zero, since

pi-1{r — i+ 1) -s1pi-.i- s2pi-3.. -si-1-rpi-1 = 0.

All that is left is
Qsr-rX'-1 = 0

which proves the theorem if r < n + 1.
Next to prove it if r > n, we operate on

Sr + PiSr-i + • • • +Pn Sr-n = 0 (4)
so that

Clsr+pl(r- l)Xr-2+ ...+pn(r-n)X'--n~1

+ Pi S>-1 + • • • +Pn' Sr-n = 0 (5)
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But p1X>-* + p2X'-3 + +pnX
r~"-1 = — X'-1

by the Cayley-Hamilton theorem. Hence, after rearranging terms,

Qsr — rX'-1 — p1X
r~2 — 2p2X'-3... - npnXr-"-1

+ Pl*r-i + • • •+Pn'Sr-» = 0 (6)

The theorem is therefore true provided

PtX1— + 2p2X
r-3.. . + npnX

r-»-1 = p1'8r-1+ ...+ Pn'Sr-n • • (7)

where r > n. But this last can be proved by induction if

(1) it is true when r = n + 1,

(2) X{p1's,-1 + ...+pn'Sr-n) = pt' Sr+ p2' Sr- j + . . . +PnSr-n + 1,

since the left hand member of (7) is only altered by the presence of a
new factor X when r — 1 is replaced by r.

Now these two conditions are readily verified. For (1) if
r = n + 1> the formula becomes

Pl X"-1 + 2p2 X"-2 + ... + npn=- St-iX + p,) « „ _ ! . . .

after using Theorem IV. Taking all terms to one side the coefficient
of Xn~i is

which vanishes identically for all requisite values of i. And again
for condition (2), we substitute for each pi' and obtain

X {S,-i + (X + Pl) 8r- 2 + • • • • + (X"'1 + . . . + Pn-i) 8r-n}

or, multiplying out by X and using §8(2) on the last term on the left

Xs,-1 + (X2 + Xp1)s,-2 + • • • + (X"'1 + • • • + Pa-iX) sr^n+1 — pns,-n

= 8r-\- (X + PJ) 5;--X + . . . -f- (X"^1 + • • • + Pn~i)sr-n + i-

Equating coefficients of X1, i = 0, 1, 2, . . . n — 1, the results are
identically equal, owing to (4)

This proves Theorem III, that for positive integral values of r.
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§ 10. We may notice still another form of the result. For after
using the Cayley-Hamilton theorem we can reverse the relations of
Theorem III, writing

Xpn' = pn

But pn— ( — )n\ X | and pn'= ( — )" -~—- where the element of the
I VVCj i J

m a t r i x is t h e r e f o r e c o f a c t o r of Xji i n \X\. T h e n if Xpn'= p n i s w r i t t e n

we come back to the well known result that the elements of the
reciprocal matrix are given by those of the adjugate determinant
divided by \X\. The other formulae generalize on this.

GENERALIZATION OF THEOREM III.

§11. Further the formula Q.sr = rXr-1 holds for zero and
negative integral values of mr. For a similar argument applies to the
reverse formulae

2V?-i+2>»-i = O

pns-i +pn-1s-l+ 2pn.2 = 0, etc (1)

where s_j = 2 A"J. We can proceed by induction from 5_^tos_r_x

provided the formula is true if r = 1.
But pns-i + pn-i = 0> whence after operating with Q

Pn'S-l + PnS-i + pn- i = 0.

Substituting from (1), we have

Xpns _ j + X2 pns _ / + Xpn.! + pn = 0

so that 5_j' = — X~2, which is what we want to prove.

More generally, if f{X) is an analytic function of X, with
scalar coefficients, capable of development in a power series ascending
or descending, or even both, as,

Z(arX'+brX--)
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then we may apply the formula Q,sr = rX1'*1 and obtain the general
result

a s / f t ) = £ nf{>i)=f'{X), (2)
z=l i=\

where / ' (A) is the ordinary scalar derived function ^ .
dX

Replacing/ ' (X) by f(X) and/(A) by /(A)dA we deduce the alterna-

tive forms of the same theorem

f / ) (3)
/([**]) = [J- S \f(h )dX;] (4)

But again, writing A short for Xi and ifi (A) =1 /(A) dX, or /(A) = xfi' (A),
we can evaluate Q. I/J (A) as follows.
We have

d , / , n \ _ # 3A 8A

Hence

This gives by (3)

f(X) =/(A1)A1 +/(A8) A2 + . .. + f(Xn) An (5)

where Ar is the matrix —r \ = Q Xr. Hence we have the general
L dxji -1

result:—

THEOREM VI. A function f(X) of a matrix X can be expressed
as a linear function of the n matrices Ar obtained by operating with Q. on
the n latent roots Xr of X.

By taking n linearly independent particular functions, say
f{X) = 1, X, X2, . . . . X"- 1 we obtain a system of n equations (5)
which can be solved for the A's, provided the latent roots are all
distinct. This expresses each Ar as a polynomial in X with
coefficients rational in the A's. Thereby any other function f(X) can
be evaluated. We obtain, in fact

(X-Xi) » = i , 2, ...n .
A

n ( A r - A , - ) ' r = l , 2 , . . . »
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Further it may be noted that the convergency of a matrix power
series,

P(X)~ao + alX + a2X
i + ...+ arX

r + ...

with scalar coefficients, is guaranteed if all n latent roots lie within
the circle of convergence of the series P (z), z being a complex scalar
number. This is manifest by (5).

It should be remarked that such a function as y/X, which cannot
be expanded in a power series near A = 0, admits of this treatment.
For if | n | < 1 we have

(1 + p)h = 1 + I,* - i ^ + =g (p), say;

whence by the Theorem, if fi.r is a latent root of [yij],

0([yy])=2flr(/ir) K— /*r.
r °yji

But let [xij\ = 1 + [yij\, so that Xr= 1 + pr. Then

JL= JL-
dyji dxji

whence

So Xl = S V ;

and indeed the argument is perfectly general. It covers for instance
the case of the Corollary § 5 (3) for an analytic function:

This particular result is a kind of limit property, closely akin to
Fermat's Formula

df(x) = H m f(x + h)-f(x) ^
dx h

For although the fraction {/(Z) - / (A) }/{X - A) may formally
be calculated as a scalar quantity, assuming that X — A 4= 0, and
obtaining say F (X) as result, we are in fact dealing with a ratio of
singular matrices, since | X — A | = 0 and, by Sylvester's Theorem,
\f(X) — /(A) | = 0 also. Conversely it is interesting to note that if n
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scalar numbers A are fixed and X is an arbitrary variable matrix,
these n fractions only yield a singular denominator when X assumes
a value giving the A's for its latent roots.

[Note added January 1928. A direct proof of Theorem III can
be given by differentiating the formula

with regard to Xji. This formula follows from Sylvester's Theorem,
§ 4. The summation has r suffixes a, /3, . . . A each running from
1 to n, and the result is cyclically symmetrical in a /3 . . . A. Thus
differentiation leads to the ijth term in the matrix rXr~x, which yields
the desired theorem.

Theorem IV now follows by reversing the steps throughout §§8, 9.
A further result can be given as follows:

TheoremVII Q ( Q I - Z Q ) / ( I ) = / ' ( I ) .

For by theorem II, it can be shewn that (O X — X O.) Xr= sr.
Hence Q(£IX - X Q) Xr = Q.sr = rX*--1. Provided f (z) can be
dealt with term by term, as above, the result follows. Hence

For a scalar function of a single matrix X, the operator Q. (D.X — X Q.)
behaves like an ordinary differential operator.]
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