
Forum of Mathematics, Sigma (2025), Vol. 13:e15 1–23
doi:10.1017/fms.2024.90

RESEARCH ARTICLE

A cone conjecture for log Calabi-Yau surfaces
Jennifer Li

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA;
E-mail: jenniferli@princeton.edu.

Received: 29 November 2023; Revised: 23 April 2024; Accepted: 21 May 2024

2020 Mathematics Subject Classification: Primary – 14J50; Secondary – 14J32

Abstract
We consider log Calabi-Yau surfaces (𝑌, 𝐷) with singular boundary. In each deformation type, there is a distin-
guished surface (𝑌𝑒, 𝐷𝑒) such that the mixed Hodge structure on 𝐻2 (𝑌 \ 𝐷) is split. We prove that (1) the action
of the automorphism group of (𝑌𝑒, 𝐷𝑒) on its nef effective cone admits a rational polyhedral fundamental domain;
and (2) the action of the monodromy group on the nef effective cone of a very general surface in the deformation
type admits a rational polyhedral fundamental domain. These statements can be viewed as versions of the Morrison
cone conjecture for log Calabi–Yau surfaces. In addition, if the number of components of D is no greater than six,
we show that the nef cone of 𝑌𝑒 is rational polyhedral and describe it explicitly. This provides infinite series of new
examples of Mori Dream Spaces.
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1. Introduction

Given a smooth projective variety Y over C, the closed cone of curves of Y is the closure of the set of
all nonnegative linear combinations of classes of irreducible curves in 𝐻2(𝑌,R). The cone of curves of
any Fano variety is rational polyhedral, meaning it has finitely many rational generators (see Theorem
1.24 on p.22 of [KM98]). But this is not true in general for Calabi-Yau varieties – if Y is Calabi-Yau, the
cone of curves of Y could be round, for example. The nef cone is the dual of the cone of curves.

The Morrison cone conjecture states that if Y is a Calabi-Yau variety, then there exists a rational
polyhedral cone which is a fundamental domain for the action of the automorphism group of Y on the
nef cone. This can be pictured in dimension two using hyperbolic geometry (see, for example, [T11]).

The conjecture is known to be true in dimension two, but for higher dimensions, it is an open question.
In [T10], Totaro has shown that a generalization of this conjecture is true in dimension two: if (𝑌,Δ) is
a klt Calabi-Yau pair, then the automorphism group of Y acts on the nef cone with a rational polyhedral
fundamental domain.
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We study a cone conjecture for log Calabi-Yau surfaces that is similar to, but different from, the
conjecture proved by Totaro (see Remark 1.3). Let Y be a smooth projective surface and D a reduced
normal crossing divisor on Y such that𝐾𝑌 +𝐷 = 0. We call (𝑌, 𝐷) a log Calabi-Yau surface. Additionally,
we require D to be singular, and write 𝐷 = 𝐷1 + · · · + 𝐷𝑛 for the irreducible components of D. By
the Gross-Hacking-Keel Torelli theorem for log Calabi-Yau surfaces ([GHK15b], Theorem 1.8), in each
deformation type of log Calabi-Yau surfaces, there exists a unique pair (𝑌, 𝐷) = (𝑌𝑒, 𝐷𝑒) such that the
mixed Hodge structure on 𝑌 \ 𝐷 is split. The main result of this paper is the proof of the following
statement (see Theorem 5.1 and Theorem 5.2):

Theorem 1.1. Consider a deformation type of log Calabi-Yau surfaces (𝑌, 𝐷) with singular boundary.

1. Let (𝑌𝑒, 𝐷𝑒) be the unique surface in this deformation type with split mixed Hodge structure. Let K
be the kernel of the action of the automorphism group of the pair on 𝐻2(𝑌,Z). Then Aut(𝑌𝑒, 𝐷𝑒)/𝐾
acts on the nef effective cone Nef 𝑒 (𝑌𝑒) with a rational polyhedral fundamental domain.

2. Let (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) be a very general surface in this deformation type. Then the monodromy group Adm
acts on the nef effective cone Nef 𝑒 (𝑌𝑔𝑒𝑛) with a rational polyhedral fundamental domain.

Remark 1.2. In (1) above, it is possible for Aut(𝑌𝑒, 𝐷𝑒) to be infinite. For instance, consider when the
negative definite or negative semidefinite boundary 𝐷𝑒 has 𝑛 = 7 components and suppose that D does
not contain any (−1)-curves. Then Aut(𝑌𝑒, 𝐷𝑒) is infinite (see Example 5.3 in [GHK15b]). For 𝑛 ≤ 6,
the group Aut(𝑌𝑒, 𝐷𝑒) is trivial (see Section 6).

The Morrison cone conjecture, stated in 1993, is originally inspired by mirror symmetry. The log
Calabi-Yau surface version of this conjecture is also related to mirror symmetry through the deformation
theory of cusp singularities of surfaces.

Given a log Calabi-Yau surface (𝑌, 𝐷) such that the intersection matrix (𝐷𝑖 ·𝐷 𝑗 ) is negative definite,
we may contract the boundary D to obtain a normal surface Y with a cusp singularity 𝑝 ∈ 𝑌 ′ (see Grauert
[G62] and Definition 3.13). Cusp singularities come in dual pairs such that the links are diffeomorphic
but have opposite orientations. If (𝑌 ′, 𝑝) is obtained by contracting the boundary of a log Calabi-Yau
surface (𝑌, 𝐷) to a cusp singularity 𝑝 ∈ 𝑌 ′, then, conjecturally, (𝑌, 𝐷) corresponds to an irreducible
component of the deformation space of the dual cusp ([GHK15a], [E15], [EF16]). This is expected as
a consequence of mirror symmetry: 𝑌\𝐷 is mirror to the Milnor fiber of the corresponding smoothing
of the dual cusp ([Ke15], [HKe21]). Again conjecturally, the component of the deformation space of
the dual cusp can be described in terms of the action of the monodromy group Adm on Nef (𝑌 ′), by
a construction of Looijenga ([L03], §4). However, to use this construction, the group Adm must act
with a rational polyhedral fundamental domain on the effective nef cone of 𝑌 ′, and this is the original
motivation for our conjecture, cf. [M93].

Remark 1.3 (A brief remark on some differences from Totaro’s work in [T10]). Totaro considers klt
log Calabi-Yau pairs (𝑌,Δ) of dimension two, meaning that Y is a normal projective surface and Δ ⊂ 𝑌
is an effective Q-divisor such that 𝐾𝑌 +Δ is numerically equivalent to zero. Totaro proved the following
theorem:

Theorem 1.4 (Totaro). Let (𝑌,Δ) be a klt log Calabi-Yau surface with 𝐾𝑌 +Δ numerically equivalent to
zero. Then the automorphism group of (𝑌,Δ) acts on Nef 𝑒 (𝑌 ) with a rational polyhedral fundamental
domain.

Suppose (𝑌,Δ) is a klt log Calabi-Yau pair and that Δ is contractible. Then there exists a birational
morphism 𝑌 → 𝑌 ′ where 𝑌 ′ is a normal surface and Supp(Δ) is the exceptional locus. This the case
where the intersection matrix of the components of Δ is negative definite, or equivalently, where the
Iitaka dimension of −𝐾𝑌 is zero. We note that the negative definite case is the essential case – the other
possibilities are when the Iitaka dimension is one or two, the former reducing to Mori’s cone theorem,
and the latter to the study of the Mordell-Weil group of an elliptic fibration. The resulting surface 𝑌 ′

has log terminal singularities, and 𝐾𝑌 ′ is numerically equivalent to zero. There exists some 𝑁 ∈ N such
that 𝑁𝐾𝑌 ′ is linearly equivalent to zero, and we choose the minimal such N. Then there exists a finite
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morphism 𝑍 → 𝑌 ′ (the canonical covering), which is a Z/𝑁Z covering where 𝐾𝑍 is linearly equivalent
to zero and Z has canonical singularities. The minimal resolution �̃� of Z has 𝐾�̃� linearly equivalent to
zero, and by classification of surfaces, we conclude that �̃� is either a 𝐾3 surface or an Abelian surface
(and thus, the rank of Pic(𝑌 ′) cannot exceed 20). Theorem 1.4 holds for 𝑌 ′ by the cone conjecture for
𝐾3 and Abelian surfaces, and Totaro gives an argument ([T10], p.257-259) showing that Theorem 1.4
holds for (𝑌,Δ).

In this paper, we consider a log Calabi-Yau surface (𝑌, 𝐷) such that D is contractible: there exists a
contraction 𝑌 → 𝑌 ′, where 𝑌 ′ is a normal surface containing a cusp singularity p and 𝐾𝑌 ′ is linearly
equivalent to zero. Let (𝑌𝑒, 𝐷𝑒) be the distinguished pair in the deformation type of (𝑌, 𝐷) with a split
mixed Hodge structure. Then 𝑌 ′

𝑒 is projective. Moreover, Pic(𝑌 ′
𝑒), which is identified via pullback with

the orthogonal complement of the irreducible components of 𝐷𝑒 in Pic(𝑌𝑒), has arbitrarily large rank.
Theorem 1.1 (1) may be deduced from the analogous statement for 𝑌 ′

𝑒. However, the case of 𝑌 ′
𝑒 is not

related to the case of 𝐾3 nor to the case of Abelian surfaces.
Finally, we make a remark on the contribution to new examples. Looijenga studied the following: let

L be a free Abelian group of finite rank and C an open convex cone in 𝑉 := 𝐿 ⊗Z R. Let Γ be a group
of automorphisms of L that preserve C, such that Γ acts with a rational polyhedral fundamental domain
on 𝐶+ := Conv(�̄� ∩ 𝐿). In this setting, Looijenga constructed a complex analytic compactification of
the tube (𝑉 + 𝑖𝐶)/Γ. Some examples of such compactification include the cases where

1. C is a homogeneous self-dual cone;
2. C is the Tits cone of a Coxeter group, which is not of finite nor of affine type; and
3. C is the nef or movable cone of a (log) Calabi-Yau variety for which the Morrison cone conjecture

holds.

Theorem 1.1 contributes many new examples. In particular, some examples from Theorem 1.1 (2) (that
is, when D has at most five components; see [L81]) are dual to Tits cones of Weyl groups, but this is
not the case in general. Many known cases of the Morrison cone conjecture (e.g., 𝐾3 surfaces [S85];
hyperkähler manifolds [M11], [M15], [AV17]) are closely related to the homogeneous self-dual case
via the description of the nef or movable cone in terms of a Coxeter group acting on a homogeneous
self-dual cone (see, for example, [BHPV04] and [M11]).

This paper is organized as follows. Section 2 contains the motivations of our project. Sections 3–5
contain the proof of the main theorem. In Section 6, we give explicit descriptions of certain cones of
curves, which provide infinite series of new examples of Mori Dream Spaces. Here, I emphasize that
this section considers cases 𝑛 ≤ 6, where n is the length of the negative definite or negative semidefinite
boundary D – these are specific cases of Theorem 5.4 described more precisely.

2. Motivations

Let (𝑞 ∈ 𝑋) be a cusp singularity. Cusp singularities come in dual pairs such that the links are
diffeomorphic but have opposite orientations (cf. [L81], §III.2.1). There is the following conjecture (cf.
[E15], Conjecture 6.2.5):

1. The smoothing components of the deformation space of (𝑞 ∈ 𝑋), up to isomorphism, are in bijective
correspondence with deformation types of log Calabi-Yau surfaces (𝑌, 𝐷) such that D does not
contain any (−1)-curves and contracts to the dual cusp p.

2. The smoothing component of (𝑞 ∈ 𝑋) associated to (𝑌, 𝐷) is the Looijenga space determined by
the action of Adm on the nef effective cone Nef 𝑒 (𝑌 ′

𝑔𝑒𝑛), which is contained in 〈𝐷1, . . . , 𝐷𝑛〉
⊥ ⊗Z R.

(Looijenga’s construction is described in [L03], Section 4).

Looijenga’s construction requires that Adm acts on Nef 𝑒 (𝑌 ′
𝑔𝑒𝑛) with a rational polyhedral funda-

mental domain (Theorem 5.1), and this is one motivation for the cone conjecture for log Calabi-Yau
surfaces. This is analogous to the original motivation for the Morrison cone conjecture for Calabi-Yau
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threefolds Y ([M93]): Morrison argues that the Looijenga space determined by the action of Aut(𝑌 ) on
Nef 𝑒 (𝑌 ) is identified with a neighborhood of a boundary point of the moduli of the mirror of Y.

The log Calabi-Yau cone conjecture can provide insight into the original Morrison cone conjecture
because it includes more accessible cases. For instance, in every dimension, there are many log Calabi-
Yau pairs (𝑌, 𝐷) such that the variety Y is rational. In addition, the cone conjecture is related to the
abundance conjecture ([T11]), which is a long-standing open question of the minimal model program.

Remark 2.1. The cone conjecture for log Calabi-Yau surfaces suggests that the Morrison cone conjecture
is false in general, because it is the monodromy group Adm that acts with a rational polyhedral
fundamental domain on Nef 𝑒 (𝑌𝑔𝑒𝑛), and not the automorphism group.

Remark 2.2. The explicit description of Nef (𝑌𝑒) can be used to verify the conjecture (1) stated above.
For 𝑛 ≤ 5, this follows from work of Looijenga [L81], and for 𝑛 = 6, we expect that it can be verified
using work of Brohme ([B95]). The deformation theory for 𝑛 > 6 is not known.

3. Background

Let Y be a smooth projective variety. We define 𝑁1 (𝑌 ) to be the space of divisors with real coefficients
modulo numerical equivalence, and the space 𝑁1 (𝑌 ) to be the space of 1-cycles with real coefficients
modulo numerical equivalence. Because Y is a rational surface in our setting,

𝑁1(𝑌 ) = 𝐻2(𝑌,R) = Pic(𝑌 ) ⊗ R, (3.1)

𝑁1 (𝑌 ) = 𝐻2(𝑌,R) = Cl(𝑌 ) ⊗ R, (3.2)

and 𝑁1(𝑌 ) = 𝑁1 (𝑌 ). We define the nef cone of Y to be

Nef (𝑌 ) = {𝐿 ∈ 𝑁1(𝑌 ) | 𝐿 · 𝐶 ≥ 0 for all irreducible curves 𝐶 ⊂ 𝑌 }.

The effective cone of Y is

Eff(𝑌 ) =

{∑
𝑎𝑖 [𝐷𝑖] ∈ 𝑁

1 (𝑌 ) | 𝑎𝑖 ∈ R≥0 and 𝐷𝑖 ⊂ 𝑌 are codimension one subvarieties
}
.

Following Kawamata in [K97], we define the nef effective cone of Y to be

Nef e(𝑌 ) = Nef (𝑌 )
⋂

Eff (𝑌 ).

We denote the convex hull of the set S by Conv(𝑆), where S is subset of a real vector space. If Y is a
surface, then

Nef e(𝑌 ) = Conv
(
{[𝐿] ∈ 𝑁1(𝑌 ) | 𝐿 ∈ Pic(𝑌 ) is nef and ℎ0 (𝐿) ≠ 0}

)
. (3.3)

Definition 3.4. The cone of curves of Y is defined as follows:

Curv(𝑌 ) =
{∑

𝑎𝑖 [𝐶𝑖] ∈ 𝑁1 (𝑌 ) | 𝑎𝑖 ∈ R≥0 and each 𝐶𝑖 ⊂ 𝑌 an irreducible curve
}
.

We write Curv(𝑌 ) to mean the closure of the cone of curves.

Definition 3.5. Let L be a finitely generated free Abelian group (i.e., 𝐿  Z𝜌 for some 𝜌 ≥ 0). A cone
𝐶 ⊂ 𝐿 ⊗Z R  R𝜌 is said to be rational polyhedral if

𝐶 = 〈𝑣1, . . . , 𝑣𝑟 〉R≥0 = {𝑎1𝑣1 + · · · + 𝑎𝑟 𝑣𝑟 | 𝑎𝑖 ∈ R≥0},

for some 𝑣1, . . . , 𝑣𝑟 ∈ 𝐿. That is, the cone C is generated by finitely many integral vectors 𝑣1, . . . , 𝑣𝑟 ∈ 𝐿.
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Definition 3.6. A log Calabi-Yau surface is a pair (𝑌, 𝐷) where Y is a smooth complex projective
surface and 𝐷 ⊂ 𝑌 is a reduced normal crossing divisor such that 𝐾𝑌 + 𝐷 = 0. We say that (𝑌, 𝐷) has
maximal boundary if D is singular. We write 𝐷 = 𝐷1 + · · · + 𝐷𝑛, where n is the number of irreducible
components or the length of D.

In this paper, we always assume that (𝑌, 𝐷) has maximal boundary. If (𝑌, 𝐷) is a log Calabi-Yau
surface with maximal boundary, then Y is a rational surface ([GHK15b], p.2).

Remark 3.7. The boundary D is either a rational curve of arithmetic genus one with a single node (i.e., a
copy of P1 with two points identified to form a node), or it is a cycle of smooth rational curves (i.e., a cycle
of n copies of P1). This follows from the adjunction formula. We fix a cyclic ordering 𝐷 = 𝐷1 + · · · +𝐷𝑛
of the components of D and a compatible orientation (an isomorphism 𝐻1 (𝐷,Z)  Z). This orientation
is uniquely determined by the cyclic ordering for 𝑛 > 2.

Definition 3.8. We say that a log Calabi-Yau surface (𝑌, 𝐷) is generic if there are no (−2)-curves C
contained in 𝑌 \ 𝐷. We sometimes write (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) to denote one such log Calabi-Yau surface in a
given deformation type.

Definition 3.9. Two log Calabi-Yau surfaces (𝑌1, 𝐷1) and (𝑌2, 𝐷2) are said to be deformation equivalent
if there exists a flat family (Y ,D) = (Y ,D1 + · · · + D𝑛) of log Calabi-Yau surfaces over a connected
base S such that there are points 𝑝, 𝑞 ∈ 𝑆 with fibers 𝑓 −1(𝑝) = (𝑌1, 𝐷1) and 𝑓 −1(𝑞) = (𝑌2, 𝐷2). In this
case, we say that (𝑌1, 𝐷1) and (𝑌2, 𝐷2) are of the same deformation type.

By the Torelli Theorem in [GHK15b], given a log Calabi-Yau surface (𝑌, 𝐷), the moduli space M
of log Calabi-Yau surfaces that are deformation equivalent to (𝑌, 𝐷) can be described explicitly, and
the locus of generic surfaces is the complement of a countable union of divisors in M (see [GHK15b],
Section 6). For any two generic surfaces of the same deformation type, the nef cones of the two surfaces
are the same. This cone for 𝑌𝑔𝑒𝑛 is described after the following definition:

Definition 3.10. For a log Calabi-Yau surface (𝑌, 𝐷), an interior (−1)-curve is a smooth rational curve
of self-intersection −1 that is not contained in the boundary D. By the adjunction formula, such a curve
must intersect the boundary transversely at a single point.

Proposition 3.11 ([GHK15b], Lemma 2.15).

Nef (𝑌𝑔𝑒𝑛) = {𝐿 ∈ Pic(𝑌 ) ⊗Z R | 𝐿2 ≥ 0 and 𝐿 · 𝐷𝑖 ≥ 0 for all 𝑖 and
𝐿 · 𝐶 ≥ 0 for any interior (-1)-curve 𝐶}.

Lemma 3.12. Let (𝑌, 𝐷) be a log Calabi-Yau surface. If 𝐿 ∈ Pic(𝑌 ) is nef, then L is effective.

Proof. Let 𝐿 ∈ Pic(𝑌 ) be nef. By Riemann-Roch, we have

𝜒(𝐿) = 𝜒(O𝑌 ) +
1
2
𝐿(𝐿 − 𝐾𝑌 )

= 1 +
1
2
(𝐿2 + 𝐿 · 𝐷)

≥ 1,

since L being nef and D being effective give 𝐿 · 𝐷 ≥ 0 and L nef gives 𝐿2 ≥ 0. However, we have

𝜒(𝐿) = ℎ0 (𝐿) − ℎ1 (𝐿) + ℎ2 (𝐿).

≤ ℎ0 (𝐿) + ℎ2 (𝐿)

Next, we show that ℎ2 (𝐿) = 0. By Serre Duality, we have ℎ2 (𝐿) = ℎ0 (𝐾𝑌 − 𝐿) = ℎ0 (−𝐷 − 𝐿). If H
is ample and L is nef and D is effective, then we have 𝐻 · 𝐷 > 0 and 𝐻 · 𝐿 ≥ 0. Then 𝐻 · (−𝐷 − 𝐿) < 0,
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so ℎ0 (−𝐷 − 𝐿) = 0. Thus, ℎ0 (𝐿) ≥ 𝜒(𝐿) ≥ 1, and therefore, L is linearly equivalent to an effective
divisor. �

Definition 3.13. A cusp singularity is a surface singularity whose minimal resolution is a cycle of
smooth rational curves that meet transversally. That is, the exceptional locus of the minimal resolution
of a cusp singularity is a union of copies of P1 with nodal singularities such that the dual graph is a cycle.

Given a log Calabi-Yau surface (𝑌, 𝐷) with D having a negative definite intersection matrix (𝐷𝑖 ·𝐷 𝑗 ),
it is possible to contract D to a cusp singularity p (by a theorem of Grauert on the contractibility of a
negative definite configuration of curves on a smooth complex surface in the analytic category, [G62]).
Let 𝑓 : 𝑌 → 𝑌 ′ be the morphism contracting D to a point. Then we have the induced isomorphism

𝑌 \ 𝐷 � 𝑌 ′ \ {𝑝},

and 𝑓 −1(𝑝) = 𝐷. In addition, the surface 𝑌 ′ is normal and compact (for the usual Euclidean topology).
We note that although Y is a projective variety, the new surface 𝑌 ′ is in general no longer a projective
variety, but a normal, analytic space. We make the following definitions.
Definition 3.14. We define the nef effective cone of 𝑌 ′ in the following way:

Nef e(𝑌 ′) := Nef e(𝑌 ) ∩ 〈𝐷1, . . . , 𝐷𝑛〉
⊥.

Remark 3.15. Equivalently, Nef 𝑒 (𝑌 ′) = Nef (𝑌 ′) ∩ Eff (𝑌 ′), where

Nef (𝑌 ′) := {𝐿 ∈ Cl(𝑌 ′) ⊗ R | 𝐿 · 𝐶 ≥ 0 for all curves 𝐶 ⊂ 𝑌 ′},

and we use Mumford’s intersection product on a normal surface 𝑌 ′ ([M61], p.17). Note that 𝑌 ′ is not
Q-factorial in general (i.e., there may exist divisors which are not Q-Cartier).
Definition 3.16. An isomorphism of log Calabi-Yau surfaces (𝑌1, 𝐷1) and (𝑌2, 𝐷2) is an isomorphism
𝜃 : 𝑌1 → 𝑌2, with the property that 𝜃 (𝐷1

𝑖 ) = 𝜃 (𝐷2
𝑖 ) for each boundary component 𝐷𝑘𝑖 of 𝐷𝑘 for

𝑘 = 1, 2, and 𝜃 respects the orientations of 𝐷1 and 𝐷2 (automatic for 𝑛 ≥ 3).
Definition 3.17. Given any log Calabi-Yau surface (𝑌, 𝐷), the admissible group of Y is defined as
follows:

Adm = {𝜃 ∈ Aut(Pic(𝑌 )) | 𝜃 ([𝐷𝑖]) = [𝐷𝑖] for all 𝑖 = 1, . . . , 𝑛 and
𝜃 (Nef (𝑌𝑔𝑒𝑛)) = Nef (𝑌𝑔𝑒𝑛)}.

Remark 3.18. Adm is identified with the monodromy group for (𝑌, 𝐷) ([GHK15b], Theorem 5.15).
Definition 3.19. Let Γ be a group and X a topological space. Suppose that Γ acts on X by homeomor-
phisms. We say that a closed subset 𝐷 ⊂ 𝑋 is a fundamental domain for the action of Γ on X if the
following are true:
1. for all 𝑥 ∈ 𝑋 , there exists 𝑑 ∈ 𝐷 and 𝛾 ∈ Γ such that 𝛾(𝑑) = 𝑥; and
2. for all 𝛾1, 𝛾2 ∈ Γ such that 𝛾1 ≠ 𝛾2, the intersection 𝛾1𝐷 ∩ 𝛾2𝐷 has empty interior.
Definition 3.20. Given a log Calabi-Yau surface (𝑌, 𝐷), the period point is defined to be the homomor-
phism 𝜙 : 〈𝐷1, . . . , 𝐷𝑛〉

⊥ → C∗, where a line bundle 𝐿 ∈ 〈𝐷1, . . . , 𝐷𝑛〉
⊥ is sent to 𝜃 ([𝐿 |𝐷]) ∈ C∗,

where 𝜃 : Pic0(𝐷)
∼
−→ C∗ is the isomorphism determined by the given orientation of D (as explained in

[GHK15b], Lemma 2.1). Here, Pic0 (𝐷) is the kernel of the map 𝑐1 : Pic(𝐷) → 𝐻2(𝐷,Z) = Z𝑛, given
by 𝐿 ↦→ (deg 𝐿 |𝐷𝑖 )

𝑛
𝑖=1.

By [F15], Proposition 3.12, the homomorphism 𝜙 is the extension class of the mixed Hodge structure
on 𝐻2 (𝑈,C), where we take𝑈 = 𝑌 \ 𝐷. There is an exact sequence ([L81], Chapter I, Section 5.1):

0 → Z→ 𝐻2(𝑈) → 〈𝐷1, . . . , 𝐷𝑛〉
⊥ → 0.
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There exists a unique log Calabi-Yau surface in each deformation type such that 𝜙(𝛼) = 1 for all
𝛼 ∈ 〈𝐷1, . . . , 𝐷𝑛〉

⊥ (i.e., the mixed Hodge structure on 𝐻2 (𝑈) is split). This follows from the Torelli
theorem ([GHK15b], §5; and [F15], Corollary 9.7). We denote this log Calabi-Yau surface by (𝑌𝑒, 𝐷𝑒).

Definition 3.21. Given a log Calabi-Yau surface (𝑌, 𝐷), the associated root system is the subset of
Pic(𝑌 ) defined by

Φ = {𝛼 ∈ 〈𝐷1, . . . , 𝐷𝑛〉
⊥ | 𝛼⊥ ∩ Int(Nef (𝑌𝑔𝑒𝑛)) ≠ ∅ and 𝛼2 = −2}.

Definition 3.22. We define the Weyl group of the root system Φ ⊂ Pic(𝑌 ) as follows:

𝑊 = 〈𝑠𝛼 | 𝛼 ∈ Φ〉 ⊂ Aut(Pic(𝑌 ), ·),

where the generators 𝑠𝛼 (𝛽) = 𝛽 + (𝛼 · 𝛽)𝛼 are the reflections in the hyperplanes 𝛼⊥ for 𝛼 ∈ Φ.

Definition 3.23. Given (𝑌𝑒, 𝐷𝑒), we define the simple roots as the set

Δ = {[𝐶] | 𝐶 ⊂ 𝑌𝑒 \ 𝐷𝑒 is a (−2)-curve}.

Proposition 3.24 ([GHK15b], Proposition 3.4). The set Δ is contained in Φ, and the Weyl group W is
generated by the reflections 𝑠𝛿 for 𝛿 ∈ Δ – that is,

𝑊 = 〈𝑠𝛿 | 𝛿 ⊂ Δ〉.

By [GHK15b], Lemma 2.15,

Nef (𝑌𝑒) = Nef (𝑌𝑔𝑒𝑛)
⋂

(𝛿 ≥ 0 for all 𝛿 ∈ Δ).

Remark 3.25. The Weyl group is a normal subgroup of Adm. (Proof: it follows from Definitions 3.17
and 3.21 that Adm preserves Φ. If 𝑔 ∈ Adm and 𝛼 ∈ Φ, then 𝑔𝑠𝛼𝑔−1 = 𝑠𝑔 (𝛼) , which implies that
𝑊 � Adm).

By [GHK15b], Theorem 3.2, the group W acts on Nef 𝑒 (𝑌𝑔𝑒𝑛) with fundamental domain Nef 𝑒 (𝑌𝑒).
This is called the fundamental chamber in Nef (𝑌𝑔𝑒𝑛). By [GHK15b], Theorem 5.1, there is an exact
sequence

1 → 𝐾 → Aut(𝑌𝑒, 𝐷𝑒) → Adm/𝑊 → 1,

where K is the kernel of the action of Aut(𝑌𝑒, 𝐷𝑒) on Pic(𝑌 ).

4. Tools

Here, we include some main results that we use in the proof of our results.

Theorem 4.1 ([GHK15b], Theorem 1.8, The global Torelli theorem for log Calabi-Yau surfaces). Sup-
pose that (𝑌1, 𝐷1) and (𝑌2, 𝐷2) are log Calabi-Yau surfaces. Consider the following three statements:

1. 𝜃 : Pic(𝑌1) → Pic(𝑌2) is an isometry such that 𝜃 ([𝐷1
𝑖 ]) = [𝐷2

𝑖 ] for 𝑖 = 1, . . . , 𝑛.
2. 𝜃 (𝐿) is ample for some ample L on 𝑌1.
3. 𝜙𝑌 2 ◦ 𝜃 = 𝜙𝑌 1 , where 𝜙𝑌 : 〈𝐷1, . . . , 𝐷𝑛〉

⊥ → C∗ is the period point of Y.

(1), (2) and (3) hold if and only if 𝜃 = 𝑓 ∗ for some isomorphism 𝑓 : (𝑌2, 𝐷2) → (𝑌1, 𝐷1).

Proposition 4.2 ([EF16], Proposition 1.5). Let (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) be a generic log Calabi-Yau surface,
where 𝐷𝑔𝑒𝑛 has at least three boundary components. If B is a divisor on 𝑌𝑔𝑒𝑛 with nonnegative integer
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coefficients, then B is linearly equivalent to a divisor of the form
∑
𝑎𝑖𝐷𝑖 +

∑
𝑏 𝑗𝐸 𝑗 ,

where the 𝐸 𝑗 ’s are disjoint interior (−1)-curves and 𝑎𝑖 , 𝑏 𝑗 are nonnegative integers.

Remark 4.3. Although the Engel-Friedman Proposition 4.2 is stated for B with nonnegative integer
coefficients, the statement also holds for B with nonnegative real coefficients. There is a sketch of the
proof in the paper ([EF16], p.55), which uses a continuity argument and the assertion that the collection
of subsets {∑

𝑎 𝑗𝐷 𝑗 +
∑
𝑏𝑖𝐸𝑖 | 𝑎 𝑗 , 𝑏𝑖 ∈ R≥0

}
,

where the 𝐸𝑖’s are disjoint interior (−1)-curves, is locally finite in Nef 𝑒 (𝑌𝑔𝑒𝑛) in a sense that is made
precise below. Since this is important for our results, we give a complete proof (Proposition 4.10).

Friedman showed in [F15] that Adm acts with finitely many orbits on the set of faces of Nef 𝑒 (𝑌𝑔𝑒𝑛)
corresponding to interior (−1)-curves. This is stated in Theorem 4.4.

Theorem 4.4 (Friedman [F15], Theorem 9.8). Let (𝑌, 𝐷) be a generic log Calabi-Yau surface. Let
E (𝑌, 𝐷) be the set of all interior (−1)-curves of Y. Then the admissible group Adm acts on E (𝑌, 𝐷),
and there are finitely many Adm-orbits for this action.

The following Corollary 4.5 by Friedman is similar to the statement above. Specifically, it is a
statement about the action of Adm on the set of collections of disjoint interior (−1)-curves.

Corollary 4.5 (Friedman [F15], Corollary 9.10). Given a generic log Calabi-Yau surface (𝑌, 𝐷), let
E𝑘 (𝑌, 𝐷) be the set of collections {𝐸1, . . . , 𝐸𝑘 }, for any 𝑘 ∈ N, where the curves 𝐸𝑖 are disjoint, interior
(−1)-curves. Then the admissible group Adm acts on E𝑘 (𝑌, 𝐷), and the number of Adm orbits for this
action is finite.

Theorem 4.6 (Looijenga [L14], Proposition-Definition 4.1; and Application 4.14; and Proposition 4.7).
Let Γ be a group and L be a lattice (i.e., a finitely generated free abelian group), and let 𝐶 ⊂ 𝐿 ⊗Z R be
an open nondegenerate convex cone. Define

𝐶+ := Conv(�̄� ∩ 𝐿).

Assume that Γ acts on L faithfully, preserving the cone C. If there exists a polyhedral cone Π ⊂ 𝐶+

such that Γ · Π = 𝐶+, then there exists a rational polyhedral fundamental domain for the action of Γ
on 𝐶+. Moreover, in this case, the group 𝑁Γ𝐹/𝑍Γ𝐹 acts on any face F of 𝐶+ with a rational polyhedral
fundamental domain.

Remark 4.7. In Theorem 4.6, following the notation of Looijenga, we use 𝑁Γ𝐹 to mean the normalizer
of F in Γ and 𝑍Γ𝐹 to mean the centralizer (i.e., elements of Γ that fix F pointwise). The last statement
is a special case of Proposition 4.7 in [L14].

Proposition 4.8. Let (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) be a generic log Calabi-Yau surface. For a collection {𝐸1, . . . , 𝐸𝑘 }
of disjoint (−1)-curves, define

𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) := 〈𝐷1, . . . , 𝐷𝑛, 𝐸1, . . . , 𝐸𝑘〉R≥0 ∩ Nef e(𝑌𝑔𝑒𝑛).

Then

1. 𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) is a rational polyhedral cone; and
2. If𝐷𝑔𝑒𝑛 consists of at least three components, then the set of cones𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) covers Nef 𝑒 (𝑌 ′

𝑔𝑒𝑛).
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Proof. Let C be the cone defined by

𝐶 = 𝐶 (𝐸1, . . . , 𝐸𝑘 ) := 〈𝐷1, . . . , 𝐷𝑛, 𝐸1, . . . , 𝐸𝑘〉R≥0 ,

so that 𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) can be expressed as 𝐶 ∩ Nef 𝑒 (𝑌𝑔𝑒𝑛). The cone 𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) is rational
polyhedral because C is rational polyhedral by definition, and the intersection with the nef cone is given
by finitely many inequalities 𝐿 · 𝐷𝑖 ≥ 0 and 𝐿 · 𝐸 𝑗 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛 and all 1 ≤ 𝑗 ≤ 𝑘 . This shows
that 𝐶 ′(𝐸1, . . . , 𝐸𝑘 ) is rational polyhedral. Now assume that 𝐷𝑔𝑒𝑛 has at least three components. Then,
by Proposition 4.10,

Nef e(𝑌𝑔𝑒𝑛) =
⋃

𝐶 ′(𝐸1, . . . , 𝐸𝑘 ),

where the union is over the set
⋃
𝑘

E𝑘 (𝑌, 𝐷) of collections {𝐸1, . . . , 𝐸𝑘 } of disjoint interior (−1)-

curves. �

Theorem 4.9 (The Siegel Property, as stated in [L14], Theorem 3.8). Let L be a lattice and 𝑉 = 𝐿 ⊗ R.
Let 𝐶 ⊂ 𝑉 be an open convex nondegenerate cone. We denote the convex hull Conv(�̄� ∩ 𝐿) by𝐶+. Let Γ
be a subgroup of 𝐺𝐿(𝑉) such that Γ leaves the cone C and the lattice L invariant. Then Γ has the Siegel
Property in 𝐶+; that is, if Π1 and Π2 are polyhedral cones in 𝐶+, then the collection {𝛾Π1

⋂
Π2}𝛾∈Γ is

finite.

Next, we give the precise statement of Engel-Friedman’s Proposition 4.2 for real coefficients, followed
by a careful proof, which uses the Siegel Property 4.9 and the result 4.5 of Friedman.

Proposition 4.10 (Proposition 4.2 for B with real coefficients). Let (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) be a generic log
Calabi-Yau surface, where 𝐷𝑔𝑒𝑛 has at least three boundary components. If B is a divisor on 𝑌𝑔𝑒𝑛 with
nonnegative real coefficients, then B is R-linearly equivalent to a divisor of the form

∑
𝑎𝑖𝐷𝑖 +

∑
𝑏 𝑗𝐸 𝑗 ,

where the 𝐸 𝑗 ’s are disjoint interior (−1)-curves and 𝑎𝑖 , 𝑏 𝑗 are nonnegative real numbers.

Proof. We use the same notation introduced in Proposition 4.8 above; that is, for a log Calabi-Yau
surface (𝑌𝑔𝑒𝑛, 𝐷𝑔𝑒𝑛) where 𝐷𝑔𝑒𝑛 is of length at least three, we let

𝐶 := 〈𝐷1, . . . , 𝐷𝑛, 𝐸1, . . . , 𝐸𝑘〉R≥0.

We want to show that

Curv(𝑌𝑔𝑒𝑛) =
⋃

𝐶 (𝐸1, . . . , 𝐸𝑘 ), (4.11)

where Curv(𝑌 ) := {
∑
𝑎𝑖 [𝐶 𝑗 ] | 𝑎𝑖 ∈ R≥0 and 𝐶𝑖 ⊂ 𝑌 are irreducible curves} (Note, because

dim(𝑌𝑔𝑒𝑛) = 2, the cones Eff(𝑌𝑔𝑒𝑛) and Curv(𝑌𝑔𝑒𝑛) coincide). Clearly,
⋃
𝐶 (𝐸1, . . . , 𝐸𝑘 ) ⊆ Curv(𝑌𝑔𝑒𝑛),

where the union is taken over all 𝐶 (𝐸1, . . . , 𝐸𝑘 ) where {𝐸1, . . . , 𝐸𝑘 } are collections of disjoint interior
(−1)-curves.

Let 𝑥 ∈ Curv(𝑌𝑔𝑒𝑛) be an arbitrary point. A convex cone is the disjoint union of the relative interiors
of its faces. This follows from the supporting hyperplane theorem ([S11], Proposition 8.5).

So 𝑥 ∈ relInt(𝐹), where F is some face of Curv(𝑌𝑔𝑒𝑛) (possibly 𝐹 = Curv(𝑌𝑔𝑒𝑛)). Since Curv(𝑌𝑔𝑒𝑛)
is generated by rational points, the same is true for any face of Curv(𝑌𝑔𝑒𝑛). In particular, the face F
is the convex hull of its rational points, so the rational points are dense in F. Thus, we may choose a
sequence of points 𝑥𝑛 ∈ 𝐹

⋂
(Pic(𝑌 ) ⊗ Q) that converge to x as n approaches infinity. The original
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Engel-Friedman statement (see Proposition 4.2) was stated for integer coefficients, but this implies that
the statement for rational coefficeints is also true. So for every n, the point 𝑥𝑛 belongs to some cone
𝐶 (𝐸1, . . . , 𝐸𝑘 ), as defined above.

Since 𝑥 ∈ relInt(𝐹) (i.e., the interior of F regarded as a subset of 〈𝐹〉R), there exists a rational
polyhedral cone Π ⊂ 𝐹 such that 𝑥 ∈ relInt(Π) and dim(Π) = dim(𝐹). Then relInt(Π) is an open
subset of F. Since the points {𝑥𝑛} converge to x in the face F, there exists some number 𝑁 ∈ N such that
𝑥𝑛 ∈ Π for all 𝑛 ≥ 𝑁 . Friedman’s results tells us that Adm acts on the cones𝐶 (𝐸1, . . . , 𝐸𝑘 ) with finitely
many orbits. Say we choose a representative𝐶𝑖 from each orbit, so we have finitely many representatives
𝐶1, . . . , 𝐶𝑟 (note that we drop the {𝐸1, . . . , 𝐸𝑘 } part here to keep the notation simpler). By the Siegel
property 4.9, there exists finitely many elements 𝑔 ∈ Adm such that 𝑔(𝐶𝑖)

⋂
Π ≠ ∅. Suppose these

elements are 𝑔𝑖,1, . . . , 𝑔𝑖,𝑚𝑖 for 𝑖 = 1, . . . , 𝑟 . Then the following cones intersect Π:

𝑔1,1𝐶1, . . . , 𝑔1,𝑚1𝐶1

𝑔2,1𝐶2, . . . , 𝑔2,𝑚2𝐶2

...

𝑔𝑟 ,1𝐶𝑟 , . . . , 𝑔𝑟 ,𝑚𝑟𝐶𝑟 .

As a result, we have a (finite) total of𝑚 = 𝑚1 + · · · +𝑚𝑟 cones 𝜎𝑙 of the form𝐶 (𝐸1, . . . , 𝐸𝑘 ) intersecting
the cone Π. Since each cone 𝐶 (𝐸1, . . . , 𝐸𝑘 ) is closed, the finite union

𝑚⋃
𝑙=1
𝜎𝑙

is also closed. Recall that each 𝑥𝑛 is contained in some cone in the union above, so their limit point x
must also lie in the union; that is,

𝑥 ∈
𝑚⋃
𝑙=1
𝜎𝑙 ⊂

⋃
𝐶 (𝐸1, . . . , 𝐸𝑘 ).

Now we have shown that Curv(𝑌𝑔𝑒𝑛) ⊆
⋃
𝐶 (𝐸1, . . . , 𝐸𝑘 ). Therefore,

Curv(𝑌𝑔𝑒𝑛) =
⋃
𝐶 (𝐸1, . . . , 𝐸𝑘 ) =

⋃
〈𝐷1, . . . , 𝐷𝑛, 𝐸1, . . . , 𝐸𝑘〉R≥0,

proving Proposition 4.10. �

Theorem 4.12. Let (𝑌𝑒, 𝐷𝑒) be a log Calabi-Yau surface with split mixed Hodge structure. If L is a nef
divisor on Y, then L is semiample.

Proof. Let L be nef on Y. Then 𝐿2 ≥ 0. If 𝐿2 > 0, then by Theorem 4.8 of [F15], the divisor L is
semiample. For the remainder of this proof, we suppose that 𝐿2 = 0 and 𝐿 ≠ 0. Using Riemann-Roch,
we obtain

𝜒(𝐿) = 𝜒(O) +
1
2
𝐿 · (𝐿 − 𝐾𝑌 )

= 1 +
1
2
𝐿2 +

1
2
(𝐿 · 𝐷) since 𝑌 is rational and 𝐾𝑌 + 𝐷 = 0

= 1 +
1
2
(𝐿 · 𝐷) using 𝐿2 = 0.

Here, we note that 𝜒(𝐿) ≥ 1, since L nef and D effective imply that 𝐿 · 𝐷 ≥ 0. However, the Euler
characteristic of L may also be expressed as
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𝜒(𝐿) = ℎ0 (𝐿) − ℎ1 (𝐿) + ℎ2 (𝐿).

By the last paragraph of the proof of Lemma 3.12, since L is nef, we have ℎ2 (𝐿) = 0. Now
𝜒(𝐿) = ℎ0 (𝐿) − ℎ1 (𝐿) = 1 +

1
2
(𝐿 · 𝐷). Next we split the inequality 𝐿 · 𝐷 ≥ 0 (which comes from L

being nef) into two subcases, and in each situation, we prove that ℎ0 (𝐿) ≥ 2.
Subcase (i). Suppose that 𝐿 · 𝐷 > 0, or 𝐿 · 𝐷 ≥ 1. Then,

1 +
1
2
(𝐿 · 𝐷) = 𝜒(𝐿) = ℎ0 (𝐿) − ℎ1 (𝐿) ≤ ℎ0 (𝐿).

Since 𝜒(𝐿) ∈ Z, we have ℎ0 (𝐿) ≥ 2.
Subcase (ii). Suppose that 𝐿 · 𝐷 = 0. We have 𝜒(𝐿) = ℎ0 (𝐿) − ℎ1 (𝐿) = 1. We show that ℎ1 (𝐿) ≥ 1,
so ℎ0 (𝐿) ≥ 2. Since 𝐿 · 𝐷 = 0 and L is nef, we have 𝐿 · 𝐷𝑖 = 0 for all i. Then because (𝑌, 𝐷) has split
mixed Hodge structure, it follows that O𝐷 (𝐿 |𝐷)  O𝐷 (Section 3). From the exact sequence

0 −→ O𝑌 (𝐿 − 𝐷) −→ O𝑌 (𝐿) −→ O𝐷 −→ 0,

we obtain

𝐻1(O𝑌 (𝐿))
𝛿

−→ 𝐻1 (O𝐷) −→ 𝐻2 (O𝑌 (𝐿 − 𝐷))



C.

By Serre Duality, we have

ℎ2 (O𝑌 (𝐿 − 𝐷)) = ℎ0(O𝑌 (𝐾𝑌 − (𝐿 − 𝐷)))

= ℎ0(O𝑌 (−𝐿)) since 𝐾𝑌 + 𝐷 = 0
= 0.

Then the map 𝛿 in the exact sequence above is surjective, so ℎ1 (𝐿) ≥ 1.
Therefore, ℎ0 (𝐿) ≥ 2. This means that in the linear system |𝐿 |, there is a moving part. Writing

𝐿 = 𝑀 + 𝐹, where M is the moving part and F is the fixed part, we have

𝐿2 = 𝐿 · (𝑀 + 𝐹)

= 𝐿 · 𝑀 + 𝐿 · 𝐹,

and L nef gives 𝐿 · 𝑀 ≥ 0 and 𝐿 · 𝐹 ≥ 0. Since 𝐿2 = 0 by assumption, we obtain 𝐿 · 𝑀 = 0 = 𝐿 · 𝐹.
Now we have

𝐿 · 𝑀 = (𝑀 + 𝐹) · 𝑀

= 𝑀2 + 𝑀 · 𝐹

= 0,

and M is nef (since it is moving) so𝑀2 ≥ 0 and𝑀 ·𝐹 ≥ 0, so𝑀2 = 𝑀 ·𝐹 = 0. Now 𝐿 ·𝐹 = |𝑀+𝐹 | ·𝐹 = 0,
and thus, 𝐹2 = 0. We make two conclusions from the computations above.

(a) The linear system |𝑀 | has no fixed part, so |𝑀 | is basepoint free: there exists 𝑀 ′ ∼ 𝑀 such
that M and 𝑀 ′ have no common components (since M is moving). Then 𝑀 · 𝑀 ′ = 𝑀2 = 0, so
Supp(𝑀) ∩ Supp(𝑀 ′) = ∅, and therefore, |𝑀 | is basepoint free. It follows that there exists a map
𝜙 |𝑀 | : 𝑌 → 𝐶, where 𝐶 ⊂ P𝑁 is a curve. By Stein factorization (see Hartshorne [H77], Chapter III
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(11.5)), replacing 𝐿 = 𝑀 + 𝐹 by 𝑘𝐿 = 𝑘𝑀 + 𝑘𝐹 for sufficiently large k, we may assume that C is a
smooth curve and 𝜙 has connected fibers.

(b) Secondly, we conclude that L is semiample, using the results that 𝐹2 = 0 and 𝐹 · 𝑀 = 0. Since
𝐹 · 𝑀 = 0, the divisor F is contained in a union of fibers of the map 𝜙 : 𝑌 → 𝐶. A fiber has
negative semidefinite intersection matrix with kernel generated over Q by the class of the fiber.
Therefore, 𝑘𝐹 is a sum of fibers for some 𝑘 > 0. Then 𝑘 ′𝐹 is basepoint free for some 𝑘 ′ > 0 such
that 𝑘 |𝑘 ′ by Riemann-Roch on the curve C. Now 𝑘 ′ · 𝐿 = 𝑘 ′ · 𝑀 + 𝑘 ′ · 𝐹 is basepoint free, so L is
semiample. �

5. Proof of the conjecture

Theorem 5.1. The cone conjecture for 𝑌𝑔𝑒𝑛 holds. That is, the group Adm acts on Nef 𝑒 (𝑌𝑔𝑒𝑛) with a
rational polyhedral fundamental domain.

Proof. First, assume 𝑛 ≥ 3. By Friedman’s result (Corollary 4.5), the group Adm acts on the set of finite
collections of disjoint interior (−1)-curves with finitely many orbits. Let 𝐶 ′

1, . . . , 𝐶
′
𝑟 be representatives

for the finitely many orbits of Adm on the set of cones𝐶 ′ of Proposition 4.8. Let Π = Conv(𝐶 ′
1, . . . , 𝐶

′
𝑟 ).

Then Π is rational polyhedral because the cones 𝐶 ′
𝑖 are, by Proposition 4.8 (1). Moreover, Adm ·Π =

Nef 𝑒 (𝑌𝑔𝑒𝑛) by Proposition 4.8 (2). Therefore, Adm acts on Nef 𝑒 (𝑌𝑔𝑒𝑛) with a rational polyhedral
fundamental domain by Theorem 4.6 of Looijenga: in our setting, the lattice L is Pic(𝑌𝑔𝑒𝑛) and C is the
ample cone of 𝑌𝑔𝑒𝑛 (which is the interior of Nef (𝑌𝑔𝑒𝑛)). Its closure �̄� is Nef (𝑌𝑔𝑒𝑛). The group Γ acting
on L is Adm. By (3.3), 𝐶+ = Nef 𝑒 (𝑌𝑔𝑒𝑛). This proves the cone conjecture for 𝑌𝑔𝑒𝑛 in the case when
𝐷𝑔𝑒𝑛 has at least three components.

If the number of components n of 𝐷𝑔𝑒𝑛 is one or two, then we show below in Section 6 that the
nef cone is rational polyhedral for 𝑌𝑒. Moreover, in these cases, the groups Adm and the Weyl group
W are equal ([L81], Proposition 4.7 or [F15], Theorem 9.13). Because the action of W on Nef 𝑒 (𝑌𝑔𝑒𝑛)
has fundamental domain Nef 𝑒 (𝑌𝑒) ([GHK15b], Theorem 3.2), we conclude that Adm = 𝑊 acts on
Nef 𝑒 (𝑌𝑔𝑒𝑛) with the rational polyhedral fundamental domain Nef (𝑌𝑒), proving the cone conjecture. �

Theorem 5.2. The cone conjecture for 𝑌 ′
𝑔𝑒𝑛 holds. That is, the group Adm acts on Nef 𝑒 (𝑌 ′

𝑔𝑒𝑛) with a
rational polyhedral fundamental domain.

Remark 5.3. We use the definition of Nef 𝑒 (𝑌 ′
𝑔𝑒𝑛) as given in 3.15.

Proof. By Theorem 5.1, we know that the cone conjecture holds for 𝑌𝑔𝑒𝑛. Since Nef 𝑒 (𝑌 ′
𝑔𝑒𝑛) is a face F

of Nef 𝑒 (𝑌𝑔𝑒𝑛), by Looijenga’s result (see the last statement of Theorem 4.6), the cone conjecture also
holds for 𝑌 ′

𝑔𝑒𝑛. In our setting, the normalizer 𝑁Γ𝐹 is Adm and the centralizer 𝑍Γ𝐹 is {𝑒}. �

Theorem 5.4. Let K be the kernel of the action of Aut(𝑌𝑒 .𝐷𝑒) on Pic(𝑌𝑒). Then Aut(𝑌𝑒, 𝐷𝑒)/𝐾 acts on
Nef 𝑒 (𝑌𝑒) with a rational polyhedral fundamental domain.

Remark 5.5. The proof of Theorem 5.4 is similar to the argument of Sterk for 𝐾3 surfaces (see [S85]).

Proof of Theorem 5.4. By Theorem 5.1, the group Adm acts on Nef 𝑒 (𝑌𝑔𝑒𝑛) with a rational polyhedral
fundamental domain. Choose a rational point 𝑦 ∈ Int(Nef 𝑒 (𝑌𝑔𝑒𝑛)) such that y has trivial stabilizer
in Adm. Then by [L81] Application 4.14, we obtain a rational polyhedral fundamental domain 𝜎(𝑦)
defined as follows:

𝜎(𝑦) = 𝜎 := {𝑥 ∈ Nef e(𝑌𝑔𝑒𝑛) | 𝛾𝑥 · 𝑦 ≥ 𝑥 · 𝑦 for all 𝛾 ∈ Adm}.

Let 𝛾 = 𝑠𝛼, the reflection associated to a simple root 𝛼 = [𝐶] where 𝐶 ⊂ 𝑌𝑒 \ 𝐷𝑒 is a (−2)-curve.
Because 𝑠𝛼 (𝑥) = 𝑥 + (𝑥 · 𝛼)𝛼, the condition

𝛾𝑥 · 𝑦 ≥ 𝑥 · 𝑦 (5.6)
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is equivalent to

𝑠𝛼 (𝑥) · 𝑦 ≥ 𝑥 · 𝑦 ⇐⇒ (𝑥 + (𝑥 · 𝛼)𝛼) · 𝑦 ≥ 𝑥 · 𝑦

⇐⇒ 𝑥 · 𝑦 + (𝑥 · 𝛼) (𝛼 · 𝑦) ≥ 𝑥 · 𝑦

⇐⇒ (𝑥 · 𝛼) (𝛼 · 𝑦) ≥ 0.

Because 𝛼 is effective and y is ample (since 𝑦 ∈ Int(Nef (𝑌𝑒)), which is the ample cone), the intersection
(𝛼 · 𝑦) is positive. Then (𝑥 ·𝛼) (𝛼 · 𝑦) ≥ 0 if and only if (𝑥 ·𝛼) ≥ 0. In particular, this shows the following:

𝜎 ⊂ Nef e(𝑌𝑔𝑒𝑛) ∩ (𝛼 ≥ 0 ∀ 𝛼 ∈ Δ) = Nef e (𝑌𝑒),

where Δ above denotes the simple roots (see Definition 3.23), and the equality follows from the
description of the nef cone in [GHK15b], Lemma 2.15.

The following statements are true:

1. 𝜎 is rational polyhedral ([L14], Application 4.14) and 𝜎 ⊂ Nef 𝑒 (𝑌𝑒), as shown above;
2. Adm = 𝑊 � Aut(𝑌𝑒, 𝐷𝑒)/𝐾 ([GHK15b], Theorem 5.1 or [F15], Theorem 9.6);
3. Nef 𝑒 (𝑌𝑒) is a fundamental domain for the action of W on Nef 𝑒 (𝑌𝑔𝑒𝑛) ([GHK15b], Theorem 3.2),

and by the Torelli theorem ([GHK15b], Theorem 1.8), Aut(𝑌𝑒, 𝐷𝑒)/𝐾 ≤ Adm is the normalizer of
Nef 𝑒 (𝑌𝑒).

Next, we show how the three statements above imply that 𝜎 is a rational polyhedral fundamental
domain for the action of Aut(𝑌𝑒, 𝐷𝑒)/𝐾 on Nef 𝑒 (𝑌𝑒). Let g be an element of Adm. By (2) above, there
exist unique 𝑤 ∈ 𝑊 and 𝜃 ∈ Aut(𝑌𝑒, 𝐷𝑒)/𝐾 such that 𝑔 = 𝑤𝜃. We claim that the following inclusion
holds:

(
𝑔𝜎

) ⋂
Nef e(𝑌𝑒) ⊂ 𝜃𝜎. (5.7)

To see why, let C be the cone

C = (𝛼 ≥ 0 for 𝛼 ∈ Δ),

which is the fundamental chamber for the action of W on Pic(𝑌 ) ⊗Z R, and we have 𝜎 ⊂ Nef 𝑒 (𝑌𝑒) ⊂ C.
From above, 𝑔 = 𝑤𝜃. Let 𝑥 ∈ (𝑔𝜎)

⋂
Nef 𝑒 (𝑌𝑒). The group Aut(𝑌𝑒, 𝐷𝑒)/𝐾 acts on Nef 𝑒 (𝑌𝑒). Then

𝑥 ∈ C and 𝑥 = 𝑔𝑢 = 𝑤𝜃𝑢, where 𝑢 ∈ 𝜎 ⊂ Nef 𝑒 (𝑌𝑒) and so 𝜃𝑢 ∈ Nef 𝑒 (𝑌𝑒) ⊂ C. Thus, 𝜃𝑢 and 𝑤𝜃𝑢
are in C. So 𝜃𝑢 ∈ 𝑤C ⋂ C ⊂ Fix(𝑤) by Sterk ([S85], Lemma 1.2), which means that 𝑤𝜃𝑢 = 𝜃𝑢, i.e.,
𝑥 = 𝜃𝑢. Then 𝑥 = 𝜃𝑢 ∈ 𝜃𝜎, proving the inclusion 5.7.

Finally, we want to show that 𝜎 is a rational polyhedral fundamental domain for the action of
Aut(𝑌𝑒, 𝐷𝑒)/𝐾 on Nef 𝑒 (𝑌𝑒). By (1), 𝜎 is rational polyhedral, so it remains to show that it is a
fundamental domain. Because 𝜎 is a fundamental domain for the action of Adm on Nef 𝑒 (𝑌𝑔𝑒𝑛),

Nef e(𝑌𝑔𝑒𝑛) =
⋃
𝑔∈Adm

𝑔𝜎.

We can write

Nef e(𝑌𝑔𝑒𝑛)
⋂

Nef e(𝑌𝑒) =
( ⋃
𝑔∈Adm

𝑔𝜎
)
∩ Nef e(𝑌𝑒)

=
⋃
𝑔∈Adm

(𝑔𝜎 ∩ Nef e(𝑌𝑒))

=
⋃

𝜃 ∈Aut(𝑌𝑒 ,𝐷𝑒)/𝐾

𝜃𝜎.
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Here is why the last equality holds: if 𝑔 = 𝑤𝜃, then we showed above that (𝑔𝜎)
⋂

Nef 𝑒 (𝑌𝑒) ⊂ 𝜃𝜎.
If 𝑤 = 1, then 𝑔 = 𝜃 ∈ Aut(𝑌𝑒, 𝐷𝑒)/𝐾 and

(𝑔𝜎)
⋂

Nef e (𝑌𝑒) = (𝜃𝜎)
⋂

Nef e (𝑌𝑒) = 𝜃𝜎,

because 𝜃 preserves Nef 𝑒 (𝑌𝑒) and 𝜎 ⊂ Nef 𝑒 (𝑌𝑒). Moreover, because

Int
(
𝑔1𝜎

⋂
𝑔2𝜎

)
= ∅ ∀ 𝑔1, 𝑔2 ∈ Adm,

it follows that the same statement holds for 𝑔1, 𝑔2 in the smaller group Aut(𝑌𝑒, 𝐷𝑒)/𝐾 . That is,

Int
(
𝑔1𝜎

⋂
𝑔2𝜎

)
= ∅ ∀ 𝑔1, 𝑔2 ∈ Aut(𝑌𝑒, 𝐷𝑒)/𝐾,

which is the second property in the definition of a fundamental domain. Therefore, we have shown,
using conditions (1), (2) and (3), that 𝜎 is a rational polyhedral fundamental domain for the action of
Aut(𝑌𝑒, 𝐷𝑒)/𝐾 on Nef 𝑒 (𝑌𝑒). �

6. New examples of Mori Dream Spaces

Theorem 6.1. A log Calabi-Yau surface (𝑌𝑒, 𝐷𝑒) with split mixed Hodge structure in which the boundary
𝐷𝑒 consists of no more than six components has a rational polyhedral cone of curves. Moreover, if
the intersection matrix of (𝐷𝑖 .𝐷 𝑗 ) is negative definite or negative semidefinite, then the automorphism
group Aut(𝑌𝑒, 𝐷𝑒) is trivial for 𝑛 = 6 (in fact, this holds for all 𝑛 ≤ 6). In addition, for each such
surface, we give an explicit description of the cone of curves.

Corollary 6.2. A log Calabi-Yau surface (𝑌𝑒, 𝐷𝑒) with split mixed Hodge structure which has boundary
𝐷𝑒 consisting of no more than six components is an example of a Mori Dream Space.

Proof. This follows from 3.1, Theorem 6.1, Theorem 4.12 and [HK00] Definition 1.10. �

We note that Looijenga has done similar studies for the cases where 𝑛 ≤ 5 in [L81]. To keep the
notation simple, we will use (𝑌, 𝐷) to mean (𝑌𝑒, 𝐷𝑒) from here on in this section, unless otherwise
specified.

Remark 6.3. When the cone of curves of Y has finitely many generators, it is automatically closed.
Because the cones we describe below are all rational polyhedral, we have Curv(𝑌 ) = Curv(𝑌 ).

In this next part, we only consider log Calabi-Yau surfaces with the split mixed Hodge structure. We
will show that each surface Y described for each 𝑛 ≤ 6 is the surface𝑌𝑒 in the given deformation type with
the split mixed Hodge structure (that is, the period point 𝜙 given by 𝜙(𝑥) = 1 for all 𝑥 ∈ 〈𝐷1, . . . , 𝐷𝑛〉

⊥
Z
).

Lemma 6.4. Let (𝑌, 𝐷) be a log Calabi-Yau surface and suppose that 〈𝐷1, . . . , 𝐷𝑛〉
⊥
Z

is generated by
classes of curves 𝐶 ⊂ 𝑌 \ 𝐷. Then 𝜙(𝑥) = 1 for all 𝑥 ∈ 〈𝐷1, . . . , 𝐷𝑛〉

⊥
Z

.

Proof. Using the notation 𝜃 : Pic0(𝐷)
∼
−→ C∗ from Definition 3.20, we recall that 𝜙([𝐶]) =

𝜃 (O𝑌 (𝐶) |𝐷). Because 𝐶
⋂
𝐷 = ∅, the restriction O𝑌 (𝐶) |𝐷 = O𝐷 is the trivial line bundle on D.

Then 𝜙([𝐶]) = 1. From our assumption, it follows that 𝜙(𝑥) = 1 for all 𝑥 ∈ 〈𝐷1, . . . , 𝐷𝑛〉
⊥
Z

. �

The lemma applies in our situation because for the surfaces we describe in cases 𝑛 ≤ 6, the lattice
〈𝐷1, . . . , 𝐷𝑛〉

⊥
Z

is generated by the classes of (−2)-curves C in 𝑌 \ 𝐷.

Remark 6.5. We cover every deformation type for each 𝑛 ≤ 6 of log Calabi-Yau surfaces such that the
intersection matrix (𝐷𝑖 · 𝐷 𝑗 ) is negative definite or negative semidefinite. This follows from results of
Looijenga for 𝑛 ≤ 5 ([L81]) and Simonetti for 𝑛 = 6 ([S21]).
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Remark 6.6. If the intersection matrix (𝐷𝑖 ·𝐷 𝑗 ) is not negative definite nor negative semidefinite, then
Nef (𝑌 ) is rational polyhedral by the Cone Theorem ([GHK15a], Lemma 6.9).

Here we prove the statement of Theorem 6.1 about Curv(𝑌𝑒) being rational polyhedral for 𝑛 ≤ 6.
To do this, we consider separately the six cases 𝑛 = 1, . . . , 6 and use Lemma 6.7 below. We note that
in each of the cases considered, the number of boundary components remains the same. Here, we refer
to Theorem 1.1 in [L81], which gives the description of 𝑌 and �̄� in each of the cases 𝑛 ≤ 5. The
general blowup picture can be described as follows: the boundary D is a cycle of components 𝐷𝑖 , where
𝑖 = 1, . . . , 𝑛, and each boundary component is linked to a ‘chain’ of a single (−1)-curve followed by
arbitrarily many (−2)-curves.

For all cases 𝑛 = 1, . . . , 6, we denote the exceptional curves by 𝐸𝑖, 𝑗 , where 𝐸𝑖,1 is the unique (−1)-
curve in the chain intersecting the boundary component 𝐷𝑖 at one point q, and j ranges from 1 to the
total number of blowups at q.

Lemma 6.7. Let Y be a smooth projective complex surface. Let B be a basis for 𝑁1 (𝑌 ) consisting of
irreducible curves. Suppose the dual basis may be expressed as effective combinations of a set C of
curves. Then Curv(𝑌 ) = 〈B ∪ C〉R≥0.

Proof. Let 𝐶 ⊂ 𝑌 be a curve and suppose that 𝐶 ∉ B. Then 𝐶 · 𝐵𝑖 ≥ 0 for all 𝐵𝑖 ∈ B. Since 𝐵∗𝑖 is an
effective linear combination of elements in C and 𝐶 · 𝐵𝑖 ≥ 0, it follows that 𝐶 =

∑
(𝐶 · 𝐵𝑖)𝐵

∗
𝑖 belongs

to 〈 C 〉R≥0 . �

Number of boundary components 𝑛 = 1.

Let 𝑌 = P2 with a rational nodal curve �̄�1 and a flex point q. In coordinates, we may take

�̄�1 : (𝑋0𝑋
2
2 = 𝑋2

1 (𝑋1 + 𝑋0)) ⊆ P
2
(𝑋0:𝑋1:𝑋2)

and 𝑞 = (0 : 0 : 1).

We denote the tangent line at point q by �̄�, and we blow up the point q some number 𝑝1 of times.
This results in chain of exceptional curves with self-intersections −1,−2, . . . ,−2,−2,−2. We label
these curves by 𝐸1,1, 𝐸1,2, . . . , 𝐸1, 𝑝1−2, 𝐸1, 𝑝1−1, 𝐸1, 𝑝1 . The curve 𝐸1, 𝑝1−2 intersects a (−2)-curve F at
one point. A basis for Pic(𝑌 ) is

B1 = {𝐸1, 𝑗 , 𝐹 | 1 ≤ 𝑗 ≤ 𝑝1},

and its dual basis B∗
1 consists of the following elements:

𝐸∗
1, 𝑝1

= 𝐷1

𝐸∗
1, 𝑝1−1 = 𝐷1 + 𝐸1, 𝑝1

𝐸∗
1, 𝑝1−2 = 𝐷1 + 2𝐸1, 𝑝1 + 𝐸1, 𝑝1−1

𝐸∗
1, 𝑝1−3 = 𝐷1 + 3𝐸1, 𝑝1 + 2𝐸1, 𝑝1−1 + 𝐸1, 𝑝1−2

...

𝐸∗
1, 𝑗 = 𝐷1 + (𝑝1 − 𝑗)𝐸1, 𝑝1 + (𝑝1 − 𝑗 − 1)𝐸1, 𝑝1−1 + · · · + 2𝐸1, 𝑗+2 + 𝐸1, 𝑗+1 for 3 ≤ 𝑗 ≤ 𝑝1;

and

𝐸∗
1,2 = 4𝐸1, 𝑝1 + 4𝐸1, 𝑝1−1 + · · · + 4𝐸1,4 + 4𝐸1,3 + 2𝐸1,2 + 𝐸1,1 + 2𝐹
𝐸∗

1,1 = 2𝐸1, 𝑝1 + 2𝐸1, 𝑝1−1 + · · · + 2𝐸1,4 + 2𝐸1,3 + 𝐸1,2 + 𝐹

𝐹∗ = 3𝐸1, 𝑝1 + 3𝐸1, 𝑝1−1 + · · · + 3𝐸1,4 + 3𝐸1,3 + 2𝐸1,2 + 𝐸1,1 + 𝐹.
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By Lemma 6.7, we can describe the cone of curves as follows:

Curv(𝑌 ) = 〈𝐷1, 𝐸1, 𝑗 , 𝐹 | 1 ≤ 𝑗 ≤ 𝑝1〉R≥0 .

Remark 6.8. The formulas above can be obtained in the following way. Here, we use the notation

𝑌𝑚 → 𝑌𝑚−1 → · · · → 𝑌2 → 𝑌1 → 𝑌0,

and we label the maps by 𝜋𝑖 : 𝑌𝑖 → 𝑌𝑖−1. We let 𝐷 = 𝐷𝑚 ⊂ 𝑌𝑚 = 𝑌 and �̄� = 𝐷0 ⊂ 𝑌 = 𝑌0, and 𝐷𝑖 ⊂ 𝑌𝑖
for 𝑖 = 1, . . . 𝑚 − 1. Let 𝑓 = 𝜋1 ◦ 𝜋2 ◦ · · · ◦ 𝜋𝑚 and let 𝑓𝑖 : 𝑌 → 𝑌𝑖 be the map 𝑓𝑖 := 𝜋𝑖 ◦ · · · ◦ 𝜋𝑚. Since
there is only one component of D in this case (𝑛 = 1 so 𝐷 = 𝐷1), instead of writing 𝐸1, 𝑗 , for simplicity
we will just keep track of the second subscript and write 𝐸 𝑗 . Then,

𝐸∗
𝑖 = 𝑓

∗
𝑖 (𝐷𝑖) = (𝜋𝑖 ◦ · · · ◦ 𝜋𝑚)

∗(𝐷𝑖),

so that 𝐸∗
𝑖 · 𝐸 𝑗 = 𝛿𝑖 𝑗 . In addition, if we let 𝐹∗ := 𝜋∗(𝐻), where H is a hyperplane class on P2 and 𝜋

is the composition of maps 𝜋𝑖 , then 𝐹∗ · 𝐸𝑖 = 0 and 𝐹∗ · 𝐹 = 1. This deriviation results in the same
expressions as listed above, and we omit similar arguments which give the expressions of dual basis
elements for the remaining n values.

Number of boundary components 𝑛 = 2.

Let 𝑌 be the Hirzebruch surface F2 with two smooth curves �̄�1 and �̄�2 in the linear system |𝐵 + 2𝐴|.
Here, B denotes the negative section of the P1 fibration F2 → P1, and A denotes the fiber. We may
assume that the curves �̄�1 and �̄�2 intersect transversely. We fix two points 𝑞𝑖 ∈ �̄�𝑖 where 𝑖 = 1, 2, such
that the points lie on a common fiber �̄�1, and let �̄�2 be the second (−2)-curve meeting �̄�1 at a single
point. Then blow up at the points 𝑞𝑖 some number of times (say we blow up a total of 𝑝𝑖 times at points
𝑞𝑖 for 𝑖 = 1, 2). The curves 𝐹𝑖 are the strict transforms of �̄�𝑖 for 𝑖 = 1, 2.

A basis B2 for Pic(𝑌 ) is given by

B2 = {𝐸𝑖, 𝑗 , 𝐹𝑖 | 𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑝𝑖}.

The dual basis B∗
2 consists of the following elements:

B∗
2 = {𝐸∗

𝑖, 𝑗 , 𝐹
∗
1 , 𝐹

∗
2 | 𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑝𝑖},

where for 𝑖 = 1, 2,

𝐸∗
𝑖, 𝑝𝑖

= 𝐷𝑖

𝐸∗
𝑖, 𝑝𝑖−1 = 𝐷𝑖 + 𝐸𝑖, 𝑝𝑖

𝐸∗
𝑖, 𝑝𝑖−2 = 𝐷𝑖 + 2𝐸𝑖, 𝑝𝑖 + 𝐸𝑖, 𝑝𝑖−1

...

𝐸∗
𝑖,1 = 𝐷𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 2)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,3 + 𝐸𝑖,2

and

𝐹∗
1 = 𝐷𝑖 + 𝑝𝑖𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,2 + 𝐸𝑖,1 for 𝑖 = 1 or 2,

and

𝐹∗
2 = 𝐷𝑖 + (𝑝𝑖 + 1)𝐸𝑖, 𝑝𝑖 + 𝑝𝑖𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,1 + 𝐹1 for 𝑖 = 1 or 2.
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By Lemma 6.7, we can describe the cone of curves as follows:

Curv(𝑌 ) = 〈𝐷𝑖 , 𝐸𝑖, 𝑗 , 𝐹 | 𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑝𝑖〉R≥0 .

Number of boundary components 𝑛 = 3.

Let 𝑌 = P2 with �̄� = �̄�1 + �̄�2 + �̄�3 its toric boundary, which is the union of three lines. Fix three
collinear points 𝑞𝑖 ∈ �̄�𝑖 where 𝑖 = 1, 2, 3 and blow them up some number of times. Let F be the strict
transform of the line �̄� passing through the three points of blowup, one on each component �̄�𝑖 .

A basis B3 for Pic(𝑌 ) is given by

B3 = {𝐸𝑖, 𝑗 , 𝐹 | 1 ≤ 𝑖 ≤ 3 and 1 ≤ 𝑗 ≤ 𝑝𝑖}.

The dual basis B∗
3 consists of the elements, for 𝑖 = 1, 2, 3:

𝐸∗
𝑖, 𝑝𝑖

= 𝐷𝑖

𝐸∗
𝑖, 𝑝𝑖−1 = 𝐷𝑖 + 𝐸𝑖, 𝑝𝑖

𝐸∗
𝑖, 𝑝𝑖−2 = 𝐷𝑖 + 2𝐸𝑖, 𝑝𝑖 + 𝐸𝑖, 𝑝𝑖−1

...

𝐸∗
𝑖,1 = 𝐷𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 2)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,3 + 𝐸𝑖,2

and

𝐹∗ = 𝐷𝑖 + 𝑝𝑖𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,2 + 𝐸𝑖,1.

By Lemma 6.7, we can describe the cone of curves as follows:

Curv(𝑌 ) = 〈𝐷𝑖 , 𝐸𝑖, 𝑗 , 𝐹 | 1 ≤ 𝑖 ≤ 3 and 1 ≤ 𝑗 ≤ 𝑝𝑖〉R≥0 .

Number of boundary components 𝑛 = 4.

Let 𝑌 = P1 × P1 with its toric boundary, which is the union of two fibers of each of the two projections
P1 ×P1 → P1. Fix four points 𝑞𝑖 ∈ �̄�𝑖 where 𝑖 = 1, . . . , 4 such that 𝑞1 and 𝑞3 lie on a fiber �̄�1 of the first
projection and 𝑞2 and 𝑞4 lie on a fiber �̄�2 of the second projection. Then blow them up some number of
times.

A basis for Pic(𝑌 ) is

B4 = {𝐸𝑖, 𝑗𝐹1, 𝐹2 | 1 ≤ 𝑖 ≤ 4 and 1 ≤ 𝑗 ≤ 𝑝𝑖}.

The dual basis B∗
4 consists of the following elements:

𝐸∗
𝑖, 𝑝𝑖

= 𝐷𝑖

𝐸∗
𝑖, 𝑝𝑖−1 = 𝐷𝑖 + 𝐸𝑖, 𝑝𝑖

𝐸∗
𝑖, 𝑝𝑖−2 = 𝐷𝑖 + 2𝐸𝑖, 𝑝𝑖 + 𝐸𝑖, 𝑝𝑖−1

...

𝐸∗
𝑖,1 = 𝐷𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 2)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,3 + 𝐸𝑖,2,
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Figure 6.1. Blowing up once at each point 𝑝1, . . . , 𝑝4 results in the diagram above.

Figure 6.2. The dual graph of the blowup shown in Figure 6.1 is drawn on the left, and it is equivalent
to the Petersen graph shown on the right.

and for each of 𝐹𝑗 where 𝑗 = 1, 2, there are two (linearly equivalent) possibilities:

𝐹∗
𝑗 = 𝐷𝑖 + 𝑝𝑖𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,2 + 𝐸𝑖,1

with 𝑖 = 2 or 4 for 𝑗 = 1 and 𝑖 = 1 or 3 for 𝑗 = 2. By Lemma 6.7, we can describe the cone of curves as
follows:

Curv(𝑌 ) = 〈𝐷𝑖 , 𝐸𝑖, 𝑗 , 𝐹1, 𝐹2 | 1 ≤ 𝑖 ≤ 4 and 1 ≤ 𝑗 ≤ 𝑝𝑖〉R≥0 .

Number of boundary components 𝑛 = 5.

Let 𝑌 be the blowup of four points in general position in P2 and let �̄� be a cycle of five (−1)-curves.
The surface 𝑌 contains ten (−1)-curves:

1. Four are exceptional curves 𝐸𝑖 from blowing up the points 𝑝𝑖 , for 𝑖 = 1, 2, 3, 4.
2. Six (obtained by 6 =

(4
2
)
) are strict transforms 𝑙 ′𝑖 𝑗 of lines 𝑙𝑖 𝑗 defined by points 𝑝𝑖 and 𝑝 𝑗 .

The process of blowing up points 𝑝𝑖 for 𝑖 = 1, . . . , 4 on P2 to obtain a surface with ten curves is shown
in Figure 6.1. Taking the dual of this figure (see Figure 6.2), we choose a pentagon inside and rearrange
vertices so that this pentagon encloses all other vertices. Then the interior vertices can be rearranged
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Figure 6.3. Blowing up once at each point 𝑞1, . . . , 𝑞5 results in the diagram above.

to form a star, resulting in the Petersen graph. The dual of the interior five-pointed star is a pentagon,
and the dual of the outside pentagonal boundary is again a pentagon. Together, these two parts form the
configuration of (−1)-curves on the surface 𝑌 . The �̄�𝑖’s are (−1)-curves not contained in the boundary
in 𝑌 ; the �̄�𝑖’s correspond to a pentagonal star. Each �̄�𝑖 intersects the boundary component �̄�𝑖 , and we
denote their strict transforms by 𝐹𝑖 .

The remaining (−1)-curves on 𝑌 intersect �̄� transversely in five points 𝑞𝑖 where 𝑖 = 1, . . . , 5. Blow
up these points some number of times to obtain Figure 6.3. A basis B5 for Pic(𝑌 ) is the collection

B5 = {𝐸𝑖, 𝑗 , 𝐹𝑖 | 1 ≤ 𝑖 ≤ 5 and 1 ≤ 𝑗 ≤ 𝑝𝑖}.
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The dual elements 𝐸∗
𝑖, 𝑗 and 𝐹𝑖 , where 1 ≤ 𝑖 ≤ 5 and 1 ≤ 𝑗 ≤ 𝑝𝑖 , are defined as follows:

𝐸∗
𝑖, 𝑝𝑖

= 𝐷𝑖

𝐸∗
𝑖, 𝑝𝑖−1 = 𝐷𝑖 + 𝐸𝑖, 𝑝𝑖

𝐸∗
𝑖, 𝑝𝑖−2 = 𝐷𝑖 + 2𝐸𝑖, 𝑝𝑖 + 𝐸𝑖, 𝑝𝑖−1

...

𝐸∗
𝑖,1 = 𝐷𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 2)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,3 + 𝐸𝑖,2
𝐹∗
𝑖 = 𝐷𝑖 + 𝑝𝑖𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 1)𝐸𝑖, 𝑝𝑖−1 + · · · + 2𝐸𝑖,2 + 𝐸𝑖,1.

By Lemma 6.7, we can describe the cone of curves as follows:

Curv(𝑌 ) = 〈𝐷𝑖 , 𝐸𝑖, 𝑗 , 𝐹𝑖 | 1 ≤ 𝑖 ≤ 5 and 1 ≤ 𝑗 ≤ 𝑝𝑖〉R≥0 .

Number of boundary components 𝑛 = 6.

In this case, by [S21], (𝑌, 𝐷) is obtained as a blowup of the toric surface 𝑌 with toric boundary
�̄� = �̄�1 + · · · + �̄�6, a hexagon of (−1)-curves (shown in Figure 6.4). Take 𝑞𝑖 where 𝑖 = 1 . . . , 6 to be
the points (−1) ∈ C∗ ⊂ P1 = �̄�𝑖 for some choice of toric coordinates on 𝑌 , and Y the blowup of 𝑌 some
number of times at each 𝑞𝑖 . Define an index set as follows:

𝐾 = {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}}. (6.9)

Let 𝐹𝑘 be the strict transform of �̄�𝑘 on Y. We consider the following five curves �̄�𝑘 on 𝑌 (𝑘 ∈ 𝐾), such
that �̄�𝑘 ∩ �̄� = {𝑞𝑖 | 𝑖 ∈ 𝑘}.

1. �̄�1,3,5 and �̄�2,4,6 are pullbacks of a line in P2 for two different birational morphisms 𝑌 → P2; and
2. �̄�1,4 and �̄�2,5 and �̄�3,6 are fibers of three different morphisms 𝑌 → P1.

The classes of the curves {�̄�𝑘 } span Pic(𝑌 ) with one relation:

�̄�1,4 + �̄�2,5 + �̄�3,6 = �̄�1,3,5 + �̄�2,4,6.

For 𝑖 = 1, . . . , 6 and 𝑗 = 0, . . . , 𝑝𝑖 , define a divisor

𝐴𝑖, 𝑗 = 𝐷𝑖 + (𝑝𝑖 − 𝑗)𝐸𝑖, 𝑝𝑖 + (𝑝𝑖 − 𝑗 − 1)𝐸𝑖, 𝑝𝑖−1 + . . . , +𝐸𝑖, 𝑗+1.

Then for 𝑗 > 0, we have

𝐴𝑖, 𝑗 · 𝐸𝑠,𝑡 =

{
1 if 𝑖 = 𝑠 and 𝑗 = 𝑡;
0 otherwise. (6.10)

The set 𝑆 = {𝐸𝑖, 𝑗 | 𝑖 = 1, . . . , 6} ∪ {𝐹𝑘 | 𝑘 ∈ 𝐾} spans Pic(𝑌 ) because the set {�̄�𝑘 | 𝑘 ∈ 𝐾} spans
Pic(𝑌 ).

Let 𝐶 ⊂ 𝑌 be an irreducible curve. Suppose that 𝐶 ≠ 𝐷𝑖 , 𝐸𝑖, 𝑗 for all 𝑖, 𝑗 . Then 𝐶 · 𝐴𝑖, 𝑗 ≥ 0 for all
𝑖, 𝑗 . We can write

𝐶 =
∑
𝑎𝑖, 𝑗𝐸𝑖, 𝑗 +

∑
𝑏𝑘𝐹𝑘 ∈ Pic(𝑌 ).
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Figure 6.4. This diagram shows the surface (𝑌, �̄�) blown up at points 𝑞𝑖 , each a total of 𝑝𝑖 times, for
when 𝑛 = 6.

Computing the intersection numbers 𝐴𝑖, 𝑗 · 𝐸𝑠,𝑡 and 𝐴𝑖, 𝑗 · 𝐹𝑘 results in the following inequalities:

𝑎𝑖, 𝑗 ≥ 0 for all 𝑖, 𝑗 ;
𝑏1,4 + 𝑏1,3,5 ≥ 0;
𝑏1,4 + 𝑏2,4,6 ≥ 0;
𝑏2,5 + 𝑏1,3,5 ≥ 0;
𝑏2,5 + 𝑏2,4,6 ≥ 0;
𝑏3,6 + 𝑏1,3,5 ≥ 0; and
𝑏3,6 + 𝑏2,4,6 ≥ 0;
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The last six inequalities define the cone

𝜎 := 〈[𝐹𝑘 ] | 𝑘 ∈ 𝐾〉R≥0 ⊂ 𝑉,

where 𝑉 := 〈[𝐹𝑘 ] | 𝑘 ∈ 𝐾〉R. Using the spanning set

{[𝐹𝑘 ]} where 𝑘 ∈ 𝐾 = {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}}

of V, we can identify 𝜎 with the cone

〈𝑒1, . . . , 𝑒5〉R≥0 ⊂ R5/〈(1, 1, 1,−1,−1)〉R.

Then, we may assume that 𝑏𝑘 ≥ 0 for all 𝑘 ∈ 𝐾 , so that C lies in the cone generated by the 𝐸𝑖, 𝑗 and
the 𝐹𝑘 . Therefore, Curv(𝑌 ) = 〈𝐷𝑖 , 𝐸𝑖, 𝑗 , 𝐹𝑘 | 𝑖 = 1, . . . , 6 and 𝑗 = 1, . . . , 𝑝𝑖 and 𝑘 ∈ 𝐾〉R≥0 .

To finish the proof of Theorem 6.1, we first explain why Aut(𝑌, 𝐷) is trivial for 𝑛 = 6. We note that the
cases where 𝑛 ≤ 5 is shown by Looijenga in [L81]. Consider the case where 𝑛 = 6. We denote by (𝑌, �̄�)
the toric pair (a log Calabi-Yau surface where𝑌 is a toric surface and �̄� its toric boundary) and (𝑌, 𝐷) is
the blowup of (𝑌, �̄�). Here, D is either negative definite or negative semidefinite, and D does not contain
any (−1)-curves. We note that Aut(𝑌, �̄�) � (C∗)2. Moreover, Aut(𝑌, 𝐷) ⊂ Aut(𝑌, �̄�): this is because
there exists a unique chain consisting of a single (−1)-curve (which intersects a boundary component),
and the (−1)-curve intersects a chain of (−2)-curves (which are disjoint from the boundary). In fact,
the list of (−2)-curves in 𝑌 \ 𝐷 and (−1)-curve in Y (not contained in D but intersecting D at a single
point) is complete. This follows from the description of Curv(𝑌 ) using Lemma 6.7. To be more precise,
if S is a surface and 𝐶 ⊂ 𝑆 a curve with 𝐶2 < 0, then C is an extremal ray of Curv(𝑌 ). Thus, any (−1)
or (−2)-curve is an extremal ray. Above, we have the list of generators of Curv(𝑌 ) for 𝑛 = 6, so any
(−1) or (−2)-curve must be one of those generators. Any automorphism of (𝑌, 𝐷) will permute this
unique chain of (−1) and (−2)-curves, and in particular, it must fix the unique (−1)-curve in this chain.
The image must fix the points which are blown up because it fixes the exceptional divisors which are
mapped to it. By a short affine coordinates computation, it follows that Aut(𝑌, 𝐷) is trivial.
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