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TREE SIGN PATTERN MATRICES
THAT REQUIRE ZERO EIGENVALUES

WEI-HSU CHEN AND MAO-TING CHIEN

We characterise tree sign pattern matrices that require at least k zero eigenvalues,
and exactly k zero eigenvalues.

1. INTRODUCTION

A sign pattern matrix A is an n-by-n matrix whose entries consist of the symbols
+, — and 0. Let Q(A) denote the set of all n-by-n real matrices which have the same
sign as A, that is,

Q(A) = {B<= Mn(R) : s g n ^ ) = a{j, i,j = 1,2,... , n } .

A sign pattern matrix A is said to require property P if every matrix in Q(A) has
property P , and allow property P if there exists a matrix in Q{A) which has prop-
erty P. There have been a number of papers [3, 4, 5, 6, 7] on sign pattern matrices.
In mathematical economics, Quirk and Ruppert [6] studied the stability of sign pat-
tern matrices and characterised sign pattern matrices that require negative real part
eigenvalues. Maybee and Quirk [5] introduced graph-theoretic methods to solve quali-
tative stability of linear systems. Eschenbach and Johnson [2] raised several questions
about sign pattern matrices that require or allow certain distributions of eigenvalues.
They characterised sign pattern matrices that require all real, all nonreal, and all pure
imaginary eigenvalues [3], and also characterised sign patterns that require at least ifc
zero eigenvalues [4]. In [7], Yeh discussed sign pattern matrices that allow a nilpotent
matrix.

In this paper, we first decompose the graph of a tree sign pattern matrix into
star tree components, and then we characterise tree sign pattern matrices that require
at least k zero eigenvalues and exactly k zero eigenvalues in terms of these star tree
components.
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2. STAR TREE COMPONENTS

We make use of the terminology and notation that appeared in [1] and [3]. Let
A be an n-by-n sign pattern matrix. By the graph of A, denoted by G(A), we
mean the graph with vertex set (n) = {1,2, ••• , n } , and edge set E(G(A)), where
an edge {i,j} £ E(G(A)) whenever a<j ^ 0 ^ a,i. A sequence of I — 1 edges {11,12},
{t2,»3}, ••• ,{*i-i)ij} in G(A) is called a path of length I - 1 between ii and ii if
ii,i2,--- ,ii are distinct, and is denoted by {i1,i2,--- , i / _ i , i | } ; a simple circuit of
length I — 1 between i\ and ij if i i , i2,--- , i / - i are distinct and ii = i j , and is de-
noted by {t'i,--- , i j _ i , i i } . A composite k-circuit r is a sequence of simple circuits
ri>r2> • • • ,fi whose index sets are mutually disjoint and the sum of whose length is
equal to fc, and is denoted by r = r1r2 •••ri. If r = ( i i , i 2 , • • • ,ij.,ii) is a simple circuit
of G(A), its associated circuit product 7 = a^^a^^ • • • a ;^ is called a simple cycle
of A with length |-y | = fc. A composite k-cycle is a product of simple cycles of a com-
posite fc-circuit. A simple cycle of A is said to be positive (respectively negative) if it
contains an even (respectively odd) number of negative elements in its cycle product. A
composite fc-cycle is positive (respectively negative) if it contains an even (respectively
odd) number of negative simple cycles.

An n-by-ra sign pattern matrix A = (a!;) is said to be a tree sign pattern (ab-
breviated as t.s.p.) matrix if (i) aij ^= 0 if and only if a,-; ^ 0; (ii) G(A) is strongly
connected , that is, there is a path between any two vertices; and (in) there is no simple
cycle in A of length 3 or more. The graph G(A) of A is called t.s.p. if A is an t.s.p. ma-
trix. A subgraph S of G(A) is called a star if S contains only simple 2-circuits which
share a common vertex. It is clear that G(A) can be expressed as the union of several
star subgraphs. For example, G(A) is the union of all one-edge subgraphs of G(A). We
are interested in the least number of star subgraphs that compose G(A). Assume that
G(A) is the union of star subgraphs Si, S2,..., Sk with E(S{) n E(Sj) = 0, for i ^ _;',
and where k is minimal. The k star subgraphs are called the star tree components of
G(A), and the minimal number fc is denoted by |(?(A)|. The set of all graphs which
have fc star tree components is denoted by Gj.. It is easy to verify that G\ consists of
all stars on n vertices, Gk is empty if and only if n < 2fc, and Gk consists of paths
on 1,2,... ,n when fc = [n/2]. Two star tree components of G(A) are adjacent if they
share at a common vertex. An edge and a star tree component of G(A) are adjacent if
they share at a common vertex. Observe that an n-by-n t.s.p. matrix has simple cycles
of length 1, or 2. In this paper, we assume that all t.s.p. matrices are nontrivial and
have no simple cycles of length 1, that is, the graph G(A) is loopless.

The following theorem asserts the existence of a star tree component which is
located at one end of star tree components decomposition.

THEOREM 2 . 1 . Let A be a. t.s.p. matrix. Then there exists a star tree compo-
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nent of G(A) which is adjacent to star tree components at only one vertex.

PROOF: If the theorem is false then there exists a circuit whose length is more
than 2, which contradicts G(A) being a t.s.p. graph. D

Let A be a t.s.p. matrix such that G(A) G Gjt • Any simple 2-circuit in a composite

2Jfe-circuit of G(A) is called a component circuit.

The following theorem shows the existence of an 2fc-circuit of G(A) £ Gk •

THEOREM 2 . 2 . Let A be a t.s.p. matrix such that G(A) G Gk • Then there

exists an 2k-circuit of G(A).

PROOF: We prove the theorem by induction on k. The theorem obviously holds
for k = 1. Assume that the theorem is true for k ^ m. If fc = m + 1, by Theorem 2.1,
there exists a star tree component S in G(A) which is adjacent to star tree components
at only one vertex v. Suppose there is an 2-circuit r of S which doesn't contain v.
By the induction assumption, we can find a composite 2m-circuit from the remaining
m star tree components, and the 2m-circuit and r form an 2(m + l)-circuit. Suppose
that each 2-circuit in S contains v. Let ri , r-i,..., r\ be the simple 2-circuits which are
adjacent to 5 . Let H be the union of star tree components of G(A) by removing 5
and the edges associated with T*I , r2 , . . . , n • We claim that there exists an 2m-circuit
in H. Suppose it is false. Since H consists of m star subgraphs, it follows that the
m star subgraphs are not star tree components for H. Otherwise by the induction
hypothesis, there would exist a 2m-circuit. Therefore H can be decomposed into the
union of p star tree components with p < m. But then the p star tree components
and the star subgraph 5 U {T\,TZ, • • • ,r/} constitute p + 1 star tree components for
G(A), a contradiction to G(A) € Gm+i. Hence there exists a 2m-circuit in 7i, and
the 2m-circuit and any 2-circuit of 5 form an 2(m + l)-circuit of G(A). U

The following theorem shows that component circuits in a star tree component can
be combined with a common (2k — 2)-circuit to form 2fc-circuits.

THEOREM 2 . 3 . Let A be an n-by-n t.s.p. matrix such that G(A) € Gk, k > 1.
Suppose S is a star tree component of G(A) and ri,r2, • • • ,rm are component circuits

m
of S. Then f| F(n) ^ 0, wiere r(r-j) is the collection of all (2k - 2)-circuits which

»=i
combine with ri to form 2k-circuits.

PROOF: Assume ri = {a,bi,d}, r-i = {a,b2,a},- •• ,Tm — {a,bm,a}. For each i —
1,2, • • • , m , let T(ri) be the union of star tree components Sit, 5j2, • • • , Si., which are
adjacent to ri at 6;, and the star tree components that are adjacent to 5j, , Sj2, • • • , 5,y .
The number of star tree components in T(ri) is denoted by |T(r,)|. Suppose that there

m
are / remaining star tree components of G(A) which are not in \J T(ri). Since r; is

i=i
a component circuit of 5 , by Theorem 2.2, we can find a 2|T(ri)|-circuit d in T(n)
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which is not adjacent to r<. Hence the composite circuit C1C2 • •• Cm and an 2/-circuit
in the remaining / star tree components form an (2k — 2)-circuit. This composite circuit
together with any component circuit r,-, i = 1,2,...,771, form an 2fc-circuit. U

Let A be a t.s.p. matrix. The decomposition of G(A) into the star tree components
is not unique. However, if two component circuits lie in a star tree component, they
will lie in the same star tree component of any other decomposition.

THEOREM 2 . 4 . Let A be a t.s.p. matrix such that G(A) G Gk. If n, r2 are

two component circuits in a star tree component of G(A), then r^ and r2 lie in the

same star tree component of any other star tree components decomposition of G(A).

PROOF: Clearly, the theorem holds for k = 1. Suppose k > 1. Suppose G(A) can
be decomposed into k star tree components such that T*I and r2 are contained in star
tree components 5i and 52 respectively. Let T(ri) be the collection of all (2k — 2)-
circuits such that each (2k — 2)-circuit and 71,- form an 2fc-circuit, i — 1,2. For every
composite circuit w £ T(ri), we know that there has to exist an 2-circuit r in 52 such
that w contains r. On the other hand, for any composite circuit z £ r(r2), z can't
contain r since r and r2 are adjacent. Hence F(ri) PI r(r2) = 0, a contradiction to
Theorem 2.3. D

3. ZERO EIGENVALUES OF TREE SIGN PATTERN MATRICES

Let B be an n-by-n real matrix. The sum of all j-hy-j principal minors of B is
denoted by Ej(B). It is well-known, see, for example [1, pp.291-292], that Ej(B) is
the sum of all possible terms of the form

where 71,72 > • • • > 7p a r e disjoint simple cycles of B, and the sum of whose length is
equal to j . The computation of the characteristic polynomial of B

is then expressed in terms of its cycle products.

Let A be an n-by-n sign pattern matrix and 7 be a simple fc-cycle of A. Es-
chenbach and Johnson [3] introduced two auxiliary matrices for testing the distribution
of eigenvalues of sign pattern matrices. One is the matrix -B7(0) = (67(0))i;- which is
defined by

{ 1, if dij = + and is in 7;

- 1 , if on = - and is in 7;

0, otherwise.
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Another matrix 5 7 ( e ) — (b^(e))^ £ Q{A), is defined by

if *ij i s in 7;

. e, if o.ij = + and is not in 7;
(2) (Me))« = < ., , . . .

—e, if a,ij = — and is not in 7;
0, otherwise,

where e is a small positive number. By the fact that the eigenvalues depend continously
upon the entries of a real matrix, the eigenvalues of the perturbed matrix J5-̂ (e) are
close to that of By(0). Furthermore, if 7 = 7^2 .. -7y is a composite cycle, we define
•B7(0) and By(e) in the same way as that of (1) and (2) respectively.

Let A be an n-by-n t.s.p. matrix. In this section, we characterise a t.s.p. matrix
that requires at least k zero eigenvalues, and exactly k zero eigenvalues.

THEOREM 3 . 1 . Let A be an n-by-n t.s.p. matrix, and B £ Q(A). Then B has
an even number of zero eigenvalues if and only if n is even.

PROOF: Observe that the characteristic polynomial of B is

Since A has no cycles of length 1, the length of each cycle of A is even, and thus
Ei(B) = 0 for odd indices. Hence

n/2

tn + J2 E2j(B)tn-2i, if n is even;

; ) /

tn+ E E2j{B)tn-2>, if n is odd.
;=i U

As a consequence of Theorem 3.1, we have the following result.

THEOREM 3 . 2 . Let A be an n-by-n t.s.p. matrix. If A requires exactly k zero
eigenvalues then k is even if and only if n is even.

In the following, we characterise an n-by-n t.s.p. matrix that requires at least ifc
zero eigenvalues. From Theorem 3.1, we consider only the case when both n and k are
even or odd.

THEOREM 3 . 3 . Let A be an n-by-n t.s.p. matrix. If n and k have the same
parity then A requires at least k zero eigenvalues if and only if the number of star tree
components of G(A) is at most (n — fc)/2.

PROOF: If n and k are even and the number of star tree components of G(A) is
not greater then (n — k)/2, then the largest length of composite circuits of G(A) is less
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than or equal to n-k. Hence, for all B G Q(A), En-k+2(B) = En-k+i(B) = ... =
En(B) = 0. By (3), B has at least k zero eigenvalues. Conversely, if the number of star
tree components of G(A) is greater than (n — k)/2 then G(A) has a composite circuit,
say 7, of length I > n- k. But then Ei(By(0)) = 1, or - 1 , and thus Ei(By(e)) ^ 0
for some e. By (3) again, -B7(e) G Q(A) has at most n — I < k zero eigenvalues, and
this proves (t). The odd case can be proved similarly. D

In the following, we characterise an t.s.p. matrix that requires exactly k zero
eigenvalues.

THEOREM 3 . 4 . Let A be an n-by-n t.s.p. matrix. Then A requires exactly k
zero eigenvalues if and only if

(i) n and k have the same parity;
(ii) G(A) consists of (n — fc)/2 star tree components;

(iii) AM component circuits in the same star tree component of G{A) have the
same sign.

PROOF: Suppose k is even.

Necessity. If A requires k zero eigenvalues then, by Theorem 3.1, n is even.
Suppose G(A) consists of I star tree components. If I > (n — k)/2 then k > n — 21.
Let 7 be a composite 2/-cycle. We compute that

(4) PBT(O)(O = tn + £ ^ i (
i=l

Since 252i(.B7(0)) = 1, or - 1 , it follows that E2l(B~,(e)) ^ 0 for some e. Hence
B^(e) £ Q(A) has at most n — 21 zero eigenvalues, and thus has less than k zero
eigenvalues, a contradiction. On the other hand, if I < (n — k)/2 then k < n — 21. By
(4), we have that, for any B G Q(A), B has at least n - 21 zero eigenvalues, and so at
least k zero eigenvalues, which leads to a contradiction, and thus (ii) follows.

Let S be a star tree component of G( A) , and T\, r2, • • • , rm be component circuits
of 5 . Since A requires k zero eigenvalues, we have En~k(B) ^ 0 for all B G Q(A).
If k = 2 then G(A) itself is a star tree component. In this case, all simple 2-circuits
are component circuits, and have the same sign. If k > 2, by Theorem 2.3, we set the

m m

nonempty C = ft T(ri). Then for B G Q{A), En-k{B) = £ y^Yi+X), where 7 i is
i=l i=l

the associated cycle of r{, and X is the sum of all composite (n — k — 2)-cycles, each
of which is associated with a composite (n — k — 2)-circuit from C, and the remaining
terms in the summands of En-k{B) are collected by 7;!^, i — 1,2, • • • ,m. If there
exists i y£ j such that fi(Yi + X) and fj(Yj + X) have opposite signs, we may adjust
the values of 7̂  and jj so that En-k(B) = 0. Therefore all of the terms ji(Yi + X), i =
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1,2, ••• , m have the same sign. Notice that Yi is the sum of all composite (n — k — 2)-
cycles, and each of its associated composite (n — k — 2)-circuits is adjacent to 5 . For
each such composite (n — k — 2)-cycle from Yi, we place a sufficiently small value on the
simple 2-cycle whose associated 2-circuit is adjacent to S. Then the value 7i(Yi + X)

is approximated by jiX, and thus r,, i — 1,2, • • • , m , have the same sign, and (Hi) is
proved.

Sufficiency. If n is even and G(A) consists of (n — k)/2 star tree components,
then for all B e Q(A), Ei(B) = 0 f o r a l l n - f c < Z ^ n . Furthermore, since all
component circuits in the same star tree component have the same sign, it follows that
En-k{B) 7̂  0 for all B 6 Q{A). Hence A requires exactly k zero eigenvalues.

A similar argument applies for odd k. D

EXAMPLES. Consider the sign pattern matrix

ro + +
+ 00
- 0 0

Then G(A) £ G\, and by (ii) of Theorem 3.3, A requires at least one zero eigenvalue.

On the other hand, consider the sign pattern matrix

A =
0 + -
+ 0 0
- 0 0

Then G(A) 6 G\, and the component circuits in the only one star tree component of

G(A) have the same positive sign. Hence, by Theorem 3.4, A requires exactly one zero

eigenvalue.
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