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Abstract

The high Reynolds number flow past a circular cylinder with a trailing wake region is con-
sidered when the wake region is bounded and contains uniform vorticity. The formulation
allows only for a single vortex pair trapped behind the cylinder, but calculates solutions over
a range of values of vorticity. The separation point and length of the region are determined
as outputs. It was found that using this numerical method there is an upper bound on the
vorticity for which solutions can be calculated for a given arclength of the cavity. In some
cases with shorter cavities, the limiting solutions coincide with the formation of a stagnation
point in the outer flow at both separation from the cylinder and reattachment at the end of
the cavity.
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1. Introduction

The wake behind obstacles is a complicated structure that has been the subject of many
studies. Perhaps the simplest model is one in which the pressure in the wake region
is assumed to be constant. Many such solutions, computed either numerically, using
free streamline theory, or using thin/slender body approximations, are known, see for
example [3, 5, 10, 13, 14, 18]. Many of these solutions involve an unbounded wake
region, and for flow past a cylinder these are invalid for separation angles less than
approximately 55 degrees (because the streamline passes through the body) and for
angles greater than approximately 124 degrees (because the two separating streamlines
cross), see for example [10, 19]. However, if cusped cavities are assumed ([13, 19])
these restrictions no longer apply and physically real solutions can be obtained for
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angles outside of this range. These constant pressure wake solutions provide an
interesting starting point for consideration of such flows, but do not generally agree
well with experiments.

There have been several attempts to model this flow taking into account viscosity by
solving the Navier-Stokes equations numerically, but the numerical method becomes
unstable as the Reynolds number increases. For example, [8, 9] found this to occur at
around Re = 600 and then at Re = 800.

Batchelor [1, 2] proposed a model for these flows at high Reynolds number that
included a region of trapped vorticity surrounded by a flowing irrotational fluid. These
Prandtl-Batchelor flows, as they have become known, are probably not stable and are
unlikely to be observed in the laboratory, but have been a subject of much study.
Few solutions of exactly this type have been computed due to their highly nonlinear
character as the location of the dividing streamline is unknown, but some numerical
and approximate solutions do exist. Childress [4] performed calculations assuming a
slender eddy for flow over a wedge and down a step, while Sadovskii [16] (see also
Lamb [11]) showed that vortices can be self-sustaining in an inviscid free stream.
Smith [17] extended this by matching these solutions to the flow past a cylinder to
create a trailing vortex flow. Moore et al. [15] examined the suggestion of [8] that
the Sadovskii vortex is an approximation to the wake behind a circular cylinder and
found the comparison encouraging. Vanden-Broeck and Tuck [20] computed flows
with an eddy in contact with a concave boundary including corners of various angles.
Elcrat et al. [6] used transformations in complex variables and finite differences to
compute an exotic array of vortex flows including a circular cylinder. No conditions
were applied on the dividing streamline except that it was a streamline.

In this paper, the flow around a cylinder is computed numerically when a region
of uniform vorticity is trapped on the downstream side, see Figure 1. The solutions
are restricted to those in which there is a single vortex pair and separation from the
body and closure of the wake region are smooth. No extra conditions are applied to
determine these points. Boundary integral methods are used to compute both the inner
and outer flows, one satisfying Laplace’s equation and the other a Poisson equation
incorporating a uniform vorticity, w. These flows are then matched at their common
boundary according to the appropriate flow conditions.

It is found that for each arclength of the vortex region boundary there is a maximum
vorticity at which a solution can be computed using this method, and that as the
arclength decreases, the maximal vorticity increases. No solutions with “leading
edge” separation were obtained.

In Section 2 we formulate the numerical method for solving the flow problem using
an iterative technique. Results and conclusions follow.
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Outer flow

Uniform vorticity region

FIGURE 1. Sketch of the flow of a uniform stream past a cylinder with a trailing region of trapped vorticity.

2. Problem formulation

The steady motion of an inviscid, incompressible fluid past a circular cylinder
behind which there is a finite wake containing a region of uniform vorticity is to
be considered. The full problem will consist of solving simultaneously for the flow
over the cylinder and wake region and the flow within the wake, where the surface of
the wake region is determined as part of the solution. In order to do this we take a
two-stage approach in which we “guess” the shape of the wake surface, solve for the
flow past this “object” and the flow inside it, and then iterate until the surface shape
satisfies the appropriate conditions. In this section we consider the solution for these
two flow regions and then the conditions at the vortex sheet separating them.

2.1. Flow past the body and wake The number of parameters in the problem is
reduced if we non-dimensionalise with respect to the cylinder radius, R, as the length
scale, and the free stream (far field) velocity, U. In these coordinates, the cylinder
radius and free-stream velocity will both have unit value. Using non-dimensional
coordinates, let z = x + iy be the physical plane, with the origin in the middle of the
cylinder, as shown in Figure 2.

Ty

Separation point

Reattachment

FIGURE 2. Contours of integration, I"; for the outer flow, I'; for the inner, vortex flow.

Let y = £n(x), —1 < x < x;, where x; is the location of the reattachment of
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the trailing wake, be the equation of the upper and lower surfaces of the cylinder and
the attached dividing streamline. The location of the body surface is known, but the
shape of the dividing streamline must be determined as part of the solution. Assuming
irrotational flow of an incompressible, inviscid fluid, the velocity potential, ®o(x, y),
of the flow field outside of the wake region must satisfy Laplace’s equation, that is,

V2®o(x, y) = 0.

We solve this problem numerically using a variation on the standard boundary element
method (see for example [7, 12]), by noting that the derivative of the complex potential
f'(z) = u — iv must be an analytic function, where u and v are the velocities in the x
and y directions respectively. We define anew function, x (z), where f'(z) = 14+ x (2),
so that x(z) — O, as |z] = oo.

The function x (z) must be analytic in the region outside of the cylinder and trailing
wake, and we can use Cauchy’s integral formula to derive an integral equation that
when combined with the other conditions will provide a complete formulation of
the problem. Following [7], we apply Cauchy’s integral formula to the analytic
function y (z) around the contour consisting of a circle of radius % — oo and Ty (see
Figure 2). However, since x(z) — 0 as |z] — oo, we only need to integrate around
the contour I'y, giving the equation

it x (o) =/ X@) dz,
Iy

Z— 2

where z, lies on the boundary.
Let s be the arclength along the interface starting from the leading stagnation point,

so that
dx\? dn 2
— — 1} =1. .
(ds) +(ds) @1

Using ¢ as the variable of integration and applying the chain rule we obtain

gy 22)

" XEWgE / w x@)) g
o z2(t) —z(s)

mix(z(s)) = /
o 2(t) —z(s)
where the subscript / refers to the “image” surface at y = —n(x), and s, is the total
arclength of the cylinder and trailing wake from front to back.
On the surface of the body and wake region, # and v can be related to each other
by noting that the flow must be along the surface, that is,

dn/ds
dx/ds

v(s)=u(s)( ), 0<s <5y, 2.3)
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so that (2.2) represents an integral equation for u(s). Taking the imaginary part, and
utilising the symmetry of the situation about the line y = 0, that is, x(t;) = x(1),
y) = —y@), x'(t;) = x'(t), y'(t/) = —y'(t), u(t;) = u(?), and v(t;) = —v(?), and
noting y(s) = n(s), the integral equation becomes

m(u(s) — 1) = / ([u() — 1[K, + K] — v()[K3 + K,) dt,
0

where
Y () Ax —x'(t)Ay Y (@) Ax —x'(t)Ay,
Ki(x,y:s,0) = , Kyx,y:s,0)=
1x,y:s,0) AxIT Ay? 2(x,y 18, 0) AX2 ¥ Ayl
x')Ax +y'()A x'()Ax +y'(1)A
KiGr,y s, = ZOBXTYORy p 0y o= P b
Ax* + Ay Ax"+ Ay,

Ax = x(t) — x(s), Ay = y(t) — y(s) and Ay, = y(¢t) + y(s). The terms involving
K, and K3 must be treated as Cauchy-principal-value integrals as there is a simple
pole as t — s in the integrand. This integral equation, in spite of its rather complex
appearance, can be solved numerically to obtain the velocity everywhere on the
surface of the object and trailing wake. In order to do this, it is necessary to remove
the singularity as s — ¢ in the integrand, and so this integral is modified by adding
and subtracting a term, giving

1
ue) =BG+ [ () ~ w6y + 1) = 11K
0
— [v(®) = v(s)]Ks — v(£)K4) dt, (2.4)

where

SL

—14 1 _ Ayl 2 4 A2
E@) =1+ - ([u(s) 1] arctan [Ax] 2v(s) log [Ax + Ay ]0 ) .

0
The modified integrand now approaches u’(s) for the horizontal velocity term
(involving K,) and zero for the vertical velocity term (involving K3) as ¢t — s, and is
therefore well behaved.
This equation can be solved by taking a discrete representation that gives a linear
system of algebraic equations for u(s) if x(s), y(s) are known.

2.2. Flow within the wake The flow in the wake region is still incompressible, but
we now assume that there exists a uniform vorticity, w. Thus the flow can be obtained
by solving for the streamfunction, v, that satisfies a Poisson equation

V3 =w subjectto ¥ =0 on I,
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in the contained wake region. Since the flow will again be symmetric about the hori-
zontal axis, we only need to solve in the upper half-plane by using an integral equation
around the contour I',, as shown in Figure 2, including the dividing streamline, the
section of the cylinder past the separation point and the x-axis between the cylinder
and re-attachment. To do this we define a new function ¥ where

YY) = 2@+ + W),

so that V2W =0, and ¥ (x, y) = —w(x2+ y?)/4 along the contour I';, since ¢ =0
on I'; (because it is a streamline).

In a parallel method to that for the outer flow, we now solve for this modified
potential function using an integral equation approach. Again, once the boundary is
known, this is a linear problem. In this region, we choose to solve for ®(x, y), part
of the analytic function W(z) = ® 4 i¥. Using Cauchy’s integral formula around
I',, then taking the imaginary part and modifying the independent variable to be the
arclength gives

O(s) = —
) Ax2 4+ Ay? Ax? + Ay?

1[ |:\Il(t)(x’Ax+y’Ay) CD([)(y'Ax—x'Ay)]dt
7 Jr, ’

where Ax = x(t) — x(s) and Ay = y(¢) — y(s). Noting that ¥ is known everywhere
on the boundary, this gives an integral equation for ® on the boundary of the vortex
region. As above, the singular part of the integrand can be removed, leaving the
modified equation

/‘ [A‘Il(x Ax +y'Ay) AP Ax —x Ay)] dt = ed(s), 25)
r Ax? 4+ Ay? Ax? 4+ Ay?

where AV = W(t) — W(s) and AP = &(t) — P(s). In this equation, ¢ = 0, but
in this form the numerical solution exhibits some ill-posedness and so the equation
was regularised allowing € to be non-zero. Values of € ~ 107 were found to
be sufficient to negate this behaviour and provide smooth, accurate solutions. The
method was checked by computing the exact solution for the Poisson equation within
both a triangular region and a square region and comparing. Results were found to be
accurate to 7 decimal places. Once @ is obtained, the velocity, ®'(s), on the dividing
streamline can be obtained using centred finite differences.

2.3. Dynamic conditions On the boundary of the wake region we assume that there

is no pressure difference at each point across the dividing streamline. Applying the
Bernoulli equation on both sides of the dividing streamline provides the appropriate
condition.
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If the flow is horizontal and gravity is acting vertically downward then in non-
dimensional variables the dynamic conditions approaching the dividing streamline
from the two different regions are

1
PS) | F2n(s) + 2lao@)P = C,
Jol 2
p(s)

-2 1 2
— + F () + Slqi(9)I" = G
P 2

ony = 1(s), Sep < § < Sreanx = S, Where sep and s, are the separation and
reattachment points of the dividing streamline, F = /U?/gR is the Froude number,
C; and C; are the Bernoulli constants, p and p are the pressure and density respectively,
and the subscripts I and O refer to the inner and outer flow regions. Equating the
pressure across the dividing streamline results in the equation

Igo®)I> — @) =K,  $ep <5 <51, (2.6)

where K is a constant that depends on the conditions in the two regions. Noting that
the separation and re-attachment points occur at stagnation points of the inner flow, we
obtain that the value of K must be go(Ssep) = o {(Srean) = K. The value of K is not
known a priori and must be obtained as part of the solution. Interestingly the Froude
number and hence gravity play no role in the sotution. It follows that the orientation
of the flow makes no difference.

3. Numerical solution

The solution procedure is based on an iteration of the unknown points on the
dividing streamline. Since the integral equations for the outer and inner flows are both
linear once the shape of this streamline is known, we can begin by making a guess
for the shape, solve the inner and outer flow problems, and then improve on the guess
using Newton’s method. It was found that the best way to solve the problem was to fix
the total arclength of the dividing streamline after the separation point, S = 5, — Sgp-
The separation point on the cylinder was left as an output of the iteration scheme.

To solve for the outer flow, all variables are taken to be a function of the arclength
from the front of the body, and so we begin by setting

so=0, si=A4s, s$5=2As, ..., sy=NAs=ys,,

where As is the spatial step, As = s, /N. Next, we determine the values of x; = x(s;)
and y; = y(s,) ats,, j = 1,2, ..., I, on the body corresponding to the surface of
the cylinder, and for the values of y;, j = I; + 1, ..., N, the location of the dividing
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streamline. Using the known values of y'(s;), j = 1,2, ..., Ip, on the body and
using finite differences (centred) to obtain y'(s;), j = I, + 1, ..., N, and Equation
(2.1) to obtain x'(s;), j = 1,..., N, we can integrate from the separation point to
find x,, j = Iep,..., N. The shape and slope of the object and wake (given our
guess) are now known. Note that once a computation starts, /s, does not change,
S0 a reasonably accurate starting point is necessary to maintain a consistent interval
between the points on the surface of the cylinder and those in the wake. The grids
upstream and downstream of the separation point may differ slightly after several
iterations as this point moves over the surface of the cylinder.

This information can now be used to find the values of velocity in the x-direction,
u, =u(s;), j=1,..., N, by solving the integral equation (2.4) in discrete form

1 &
—E )i/k,jkatk—u,+E,~=0, j=1,2,...,N,
T
k=0
where

Sy = (e —u)Ki(sj, &) + (ue — DKo(s;, 1)
— (n — v))Ki(s), &) — v Ku(s;, 1)

T XN — Xj Xo — X,

(v = x)% + (yv — ¥))?
(xo —x,)2 4+ (Yo — y)?

and

where the weight function w, is chosen depending on the numerical integration scheme
being used (in this case the trapezoidal rule) and At is the interval size. Note also
that from (2.3), v; = u,x}/y;, j = 1,2,..., N, throughout. This is a set of N linear
equations in the N unknowns u,, j = 1,2,..., N, and is easily solved. Note that
ug = 0 is known since it is the leading stagnation point at the front of the cylinder.
The next step is to solve the inner problem by solving the integral equation (2.5)
using collocation in a manner identical to the outer flow. The discrete arclength
variable now adopts the points of the outer flow on the dividing streamline and an
identical discrete interval around the remainder of I';. This gives a linear set of

equations, this time for the values of the function ®; = ®(s;), j =0,1,2,..., M,
now around the inner contour, I',. The velocity of the inner fluid is then obtained
as D'(s;).

Using the computed velocities in the inner and outer regions along the dividing
streamline it is possible to find the error in the condition (2.6) on the dividing streamline
ateach points;, j = Iip, ..., N—1,noting that y(sy) = 0. Thus there are N —1 I,
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equations for the unknown values of y;, j = I, ..., N — 1. However, the separation
velocity VK is also an unknown, and so we omit the point yy_; and calculate it at
each iteration using interpolation, and replace it as an unknown by K.

The error calculated in this way forms the basis of a Newtonian iteration scheme to
update the location of the dividing streamline, including the separation point, for our
fixed value of vorticity w and cavity arclength, S. The Jacobian matrix was computed
numerically. The separation point y(I,) is actually computed as an angle around
the surface of the cylinder, thus allowing it to slide back and forth, even allowing
separation from the front half of the cylinder if necessary. At each step, this iteration
must include a re-calculation of both the initial grid in terms of arclength and the
velocity of the fluid over the updated wake shape and within the trapped flow region.

Solutions with steps of As = 0.03 throughout agreed very well with those of
As = 0.06, and so it appeared the solutions were fully converged at these values.

Despite its rather convoluted nature, this algorithm worked very well and usually
converged to a solution within a small number of iterations provided the initial guess
(including the location of the separation point) was sufficiently accurate. The zero
vorticity solution, with w = 0, was always sufficient as a starting point and in most
cases bootstrapping from previous solutions (at lower vorticity, w) was used.

4. Simulations and results

A series of simulations was performed for a range of different arclengths and
vorticities. For each simulation the value of the arclength was fixed and the vorticity
was increased from zero upward until the solutions no longer converged.

14 + -

1.2 + b

08 +
06
04

02

FIGURE 3. The shape of the eddy region for w = 0, 3, 4.42 (max) for § = 2.5.

Typical short wake solutions (arclength S = 2.5) for vorticity values of w =
0, 3,4.42 are given in Figure 3. The case w = 4.42 is the value above which
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Velocity squared
[ 8]

FIGURE 4. Square of separation speed for the outer flow, w = 0, 3, 4.42 (max), § = 2.5.

no further solutions could be found. Corresponding speeds over the surface of the
cylinder and wake are shown in Figure 4. At low values of vorticity, the speed along
the dividing vortex sheet is almost constant (as it must be) but varies considerably
as the vorticity is increased. The shape of the region varies little at small w, and
even as w increases it only fattens slightly. However, as the upper limit of solutions
obtained using this method is approached, the eddy region becomes rapidly fatter and
the separation point moves up the cylinder and the reattachment point moves toward
the back of the cylinder. The limiting case approaches a flow with stagnation points
in the outer flow at both separation and reattachment. It was not possible to exactly
compute these limiting flows in spite of numerous attempts.

Figure 5 shows the separation speed, ¢..,, and separation angle as w increases from
w = 0 up to the maximum value obtained for the arclength S = 2. Clearly none of
these values change significantly until the maximum is approached, when there is a
rapid drop in speed and a slight increase in separation angle. This is accompanied by
a rapid movement of the reattachment point back toward the rear of the cylinder.

At larger values of the arclength, greater than § = 2, the solutions no longer appear
to be limited by the formation of a stagnation point on the surface of the cylinder, but
rather break down with no sign of a rapid decrease in separation velocity, although
the eddy region does become more bulbous as the maximal value is approached.
It is possible that the flows are approaching a stagnation point flow, but that the
numerical scheme was unable to resolve it (although the same resolution was used
in all computations). Figure 6 shows the vorticity, separation angle and separation
speed of the flow at the maximum vorticity computed for each arclength. Clearly for
S < 2.0 stagnation flows appear to exist, but once above this number the separation
velocity rapidly rises to a value close to unity. However, Elcrat et al. [6], computed
stagnation point solutions for all trailing lengths, and so it is most likely a limitation of
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0 1 2 3 4 5

Vorticity

FIGURE 5. Separation angle and separation speed as w increases for § = 2.

Maximum Vorticity

Separation Angle

Arclength

FIGURE 6. Values of vorticity w, separation angle, «, and separation velocity, gp, for maximum vorticity
at which solutions were computed, plotted against cavity arclength, S.
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the numerical scheme that these were not obtained in this work. The separation angle
decreases as vorticity increases (moving upward on the rear face of the cylinder) and
then levelling off as arclength increases. The maximum vorticity, however, appears to
continue to decrease as arclength increases. No solutions were found with non-zero
vorticity in which the separation occurred on the front side of the cylinder.

5. Conclusions

In this paper we have used a matched integral equation approach to compute the
steady, high Reynolds number flow around a circular cylinder with a trailing region
of uniform vorticity, that is, Prandtl-Batchelor flows. The method is very accurate
and the results reproducible. It is shown that at small values of the length of the
eddy region a stagnation point appears to form at both separation and re-attachment,
and that this event corresponds to the maximum vorticity at which this method will
give solutions. At longer lengths, this numerical method was unable to compute such
stagnation solutions, but again a maximal vorticity was still found beyond which the
method failed to converge. Elcrat et al. [6], however, showed that such solutions do
exist, and so it is clear that this is a limitation of the numerical scheme. The limiting
vorticity at which solutions could be obtained decreased in magnitude as the length
of the trapped vorticity region increased. It is not clear whether the breakdown of
solutions is due to the numerical method or has some “physical” cause. It may be
that the upper vorticity limit is the point at which multiple vortices form in the wake
region or the flow becomes unsteady or it may be simply that the method used herein
is not able to calculate solutions for these parameter values. Work is continuing on
this problem.
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