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Continuity and Realization of multiplica-
tive maps between RKHS and their cyclic-
ity preserving properties
Mohana Rahul Nandan and Sukumar Daniel

Abstract. Motivated by the study of multiplicative linear functionals in reproducing kernel Hilbert
space (RKHS) with normalized complete Nevanlinna-Pick kernel, we define and study the multi-
plicative linear map between two RKHS. We identify the conditions under which such maps are
continuous. Additionally, we prove that any unital cyclicity-preserving linear map is multiplicative.
Conversely,we also characterizewhen amultiplicative linearmap is unital cyclicity preserving. These
results serve as a generalization of theGleason–Kahane–Żelazko theorem to the setting ofmultiplica-
tive maps between two RKHS. We present the composition operator as a natural class of examples of
multiplicative linear maps on an RKHS. We also prove that every continuous multiplicative linear
operator can be realized as a composition operator on various analytic Hilbert spaces over the unit
discD.

1 Introduction

The study of multiplicative functionals and multiplicative linear maps, also referred as
algebra homomorphisms, has been extensively studied in the context of Banach algebra.
An important result in this area is the Gleason–Kahane–Żelazko (GKZ) theorem, which
characterizes the conditions under which a linear functional is multiplicative.

Theorem 1.1 [10, 13, 25] Let 𝐴 be a complex unital Banach algebra, and Λ : 𝐴 → C be a
linear functional such that Λ . 0. Then the following statements are equivalent:

(1) Λ(1) = 1 and Λ(𝑎) ≠ 0 for all invertible elements 𝑎 ∈ 𝐴.
(2) Λ is multiplicative i.e., Λ(𝑎𝑏) = Λ(𝑎)Λ(𝑏) for all 𝑎, 𝑏 ∈ 𝐴.

Also, such multiplicative functionals are automatically continuous. The above
theoremhas been generalized for algebra homomorphisms ormultiplicative linearmaps
between two commutative Banach algebras, under the assumption that the co-domain
is semi-simple.

Theorem 1.2 [21] Let 𝐴 be a commutative unital Banach algebra, 𝐵 be a semi-simple com-
mutative unital Banach algebra, and Φ : 𝐴 → 𝐵 be an unital invertibility-preserving linear
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2 M.R. Nandan and Sukumar. D

map. ThenΦ is multiplicative, i.e.,

Φ(𝑎𝑏) = Φ(𝑎)Φ(𝑏) for all 𝑎, 𝑏 ∈ 𝐴.

Moreover, multiplicative maps between Banach algebras are continuous only when
the co-domain is semisimple [19].

In [2], it is proved that in reproducing kernel Hilbert spaces (RKHS) with normal-
ized complete Pick (NCP) kernel, every function can be expressed as the quotient of a
multiplier and a cyclic multiplier. And in [12], they proved a factorization result for cer-
tain sequences of functions in RKHSwithNCP kernel using non-commutative function
theory. Building on these two results, in [5], the authors studied the multiplicativity of
linear functionals on RKHS and proved their continuity. In particular, they generalized
theGleason–Kahane–Żelazko theorem to a special class ofHilbert spaces, namelyRKHS
with NCP kernel.

Theorem 1.3 [5] Let H be a reproducing kernel Hilbert space with normalized complete
Nevanlinna-Pick kernel, and let Λ : H → C be a linear functional such that Λ . 0. Then
the following are equivalent

(1) Λ(1) = 1 and Λ( 𝑓 ) ≠ 0 for all cyclic elements 𝑓 ∈ H .

(2) Λ( 𝑓 · 𝑔) = Λ( 𝑓 )Λ(𝑔) for all 𝑓 , 𝑔 ∈ H such that 𝑓 𝑔 ∈ H .

A functional satisfying (2) of the above theorem is called a multiplicative functional
in RKHS. See Definition 1.5 for multiplicative functional in RKHS. Note that, in the
RKHS setting, cyclic elements play the role analogous to that of invertible elements in
the Banach algebra setting. There is another version of the GKZ theorem for the Dirich-
let space [15]. Also, Kowalski-Słodkowski theorem, which studies when a functional is
multiplicative and linear, has also been generalized to the RKHS setting [18].

It is well known that every multiplicative linear functional on a unital commutative
Banach algebra is automatically continuous. In a recent study [5], the authors proved
that multiplicative linear functionals defined on reproducing kernel Hilbert spaces with
normalized complete Nevanlinna–Pick (NCP) kernels are also continuous.

In this article, we take one step further to define and study the multiplicative maps
betweenRKHS. In particular, Section 2 is dedicated to the studyof the continuity ofmul-
tiplicative linear maps between two RKHS. LetH1 andH2 be RKHS with NCP kernel.
In Theorem 2.5, we prove a weaker form of continuity for multiplicative maps between
H1 and H2. Furthermore, Theorem 2.8 shows that if 𝑇 : H1 → H2 is surjective and
the norm ofH2 has an algebra structure, then𝑇 is automatically continuous. In Section
3, we establish the forward implication of Gleason–Kahane–Żelazko (GKZ) for RKHS.
Specifically, Theorem 3.3 proves that every unital cyclicity-preserving linear map 𝑇 is
necessarily multiplicative. Section 4 addresses the converse. In Theorem 4.1, we prove
that if the range of a multiplicative map 𝑇 contains a non-vanishing function, then it
is unital and maps cyclic functions to non-vanishing functions. Furthermore, Theorem
4.2 proves such maps are also cyclicity preserving when the maps are surjective and the
norm ofH2 has an algebra structure. Together, these results provide a generalization of
theGleason–Kahane–Żelazko theorem to the setting of linearmaps between twoRKHS.
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Continuity and Realization of multiplicative maps and their cyclicity preserving properties 3

Note that cyclicity preserving operators are interesting in their own way, as they nat-
urally appear while identifying functions in 𝐻2 (D2) that are outer but not cyclic, see
[24]. Composition operators are always an example of multiplicative maps. In Section
5, we prove that every continuous multiplicative linear operator from various analytic
Hilbert spaces over the unit disc D to itself can be realised as a composition opera-
tor. These spaces includes the Hardy space 𝐻2 (D), Dirichlet space D , and weighted
Bergman spaces 𝐴2

𝛼 (D), among others. Before presenting the main results, we begin
with some preliminary concepts.

1.1 Preliminaries

Definition 1.1 (Reproducing Kernel Hilbert Space (RKHS)) [20] Let 𝑋 be a non-empty
set, K be a field, and F (𝑋,K) be the collection of all functions from 𝑋 to K. We call
H ⊆ F (𝑋,K) a RKHS on 𝑋 if

(1) H is a Hilbert space.
(2) For every 𝑥 ∈ 𝑋 , the evaluation functional 𝐸𝑥 : H → K defined by 𝐸𝑥 ( 𝑓 ) = 𝑓 (𝑥)

is continuous.

Definition 1.2 (Kernel function) A function 𝐾 : 𝑋 × 𝑋 → K is said to be kernel
function if

(1) 𝐾 is Hermitian, that is 𝐾 (𝑥, 𝑦) = 𝐾 (𝑦, 𝑥)
(2) 𝐾 is a positive semi-definite function.

According to the theory of RKHS by Aronszajn in [3], every RKHS is associated with
a unique kernel function 𝐾 : 𝑋 × 𝑋 → K, such that the set {𝐾 (·, 𝑦), 𝑦 ∈ 𝑋} is dense in
space. Also satisfying, for every 𝑓 ∈ H and 𝑦 ∈ 𝑋 , the reproducing property holds (i.e)

𝑓 (𝑦) = ⟨ 𝑓 , 𝐾 (·, 𝑦)⟩,

We call 𝐾 as the reproducing kernel for RKHS. Conversely, given any kernel function 𝐾
with an appropriate norm, there exists a unique RKHS with 𝐾 as its reproducing kernel
with the reproducing property.

Definition 1.3 (Normalized Kernel) A kernel function 𝐾 : 𝑋 × 𝑋 → K, is said to be
normalized, if there exists 𝑥0 ∈ 𝑋 such that,

𝐾 (𝑥, 𝑥0) = 1, for all 𝑥 ∈ 𝑋.

IfH is an RKHS with normalized kernel 𝐾 , then the function 𝐾 (·, 𝑥0) = 𝑘𝑥0 ∈ H , and
serves as the constant function 1 inH .

Definition 1.4 (Complete Nevanlinna-Pick kernels) [1] A reproducing kernel 𝐾 of an
RKHS on 𝑋 is said to be a Complete Nevanlinna-Pick kernel if

(1) 𝐾 (𝑥, 𝑦) ≠ 0, for all 𝑥, 𝑦 ∈ 𝑋
(2) There exists 𝑥0 ∈ 𝑋 such that 𝐹 (𝑥, 𝑦) = 1− 𝐾 (𝑥,𝑥0 )𝐾 (𝑥0 ,𝑦)

𝐾 (𝑥,𝑦)𝐾 (𝑥0 ,𝑥0 ) is a positive semi-definite
function on 𝑋 × 𝑋
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Unlike Banach algebras, Hilbert spaces do not have a multiplicative structure. How-
ever, in the case of reproducing kernel Hilbert space (RKHS), each element is a function
from the underlying set 𝑋 to the field K. Therefore, pointwise multiplication "·" of
functions is a well-defined operation. However, RKHS is not generally closed under
pointwise multiplication, so it does not form an algebra under this operation. Con-
sequently, the multiplicativity condition for linear functionals over RKHS H is only
considered for those pairs 𝑓 , 𝑔 ∈ H for which the product 𝑓 · 𝑔 ∈ H . And if the kernel
is normalized at 𝑥0 ∈ 𝑋 , the function 𝑘𝑥0 will serve as the multiplicative identity under
pointwise multiplication, whenever defined.

Definition 1.5 (Multiplicative functional in RKHS) LetH be an RKHS, a linear func-
tional Λ : H → C is said to be a multiplicative functional on H if, for all 𝑓 , 𝑔 ∈ H
such that 𝑓 · 𝑔 ∈ H , the multiplicativity condition holds (i.e.) Λ( 𝑓 · 𝑔) = Λ( 𝑓 )Λ(𝑔)

Motivated by the notion of algebra homomorphisms between Banach algebras, we
define and study multiplicative maps between RKHS.

Definition 1.6 (Multiplicativemaps betweenRKHS) LetH1 andH2 be twoRKHS. The
linear map Φ : H1 → H2 is said to be a multiplicative map if, for all 𝑓 , 𝑔 ∈ H1 such
that 𝑓 · 𝑔 ∈ H1,

Φ( 𝑓 · 𝑔) = Φ( 𝑓 ) · Φ(𝑔).

It is important to note that, in the case of a multiplicative functional Λ, the prod-
uct Λ( 𝑓 )Λ(𝑔) ∈ K, since K is an algebra. However, in the case of multiplicative maps
between RKHS, the co-domain need not be an algebra. Therefore, a mapΦ : H1 → H2
is said to be multiplicative, if ∀ 𝑓 , 𝑔 ∈ H1 such that 𝑓 · 𝑔 ∈ H1, the pointwise product
Φ( 𝑓 ) · Φ(𝑔) ∈ H2, and the above equality holds.

Definition 1.7 (Multiplier algebra) LetH be an RKHS over a non-empty set 𝑋 . A func-
tion 𝑔 : 𝑋 → C is said to be amultiplier element if for all 𝑓 ∈ H , the pointwise product
𝑔 · 𝑓 ∈ H . The collection of all multiplier elements onH is denoted by the multiplier
algebraM.

For each 𝑔 ∈ M , the associated multiplication operator 𝑀𝑔 : H → H , defined
by 𝑀𝑔 ( 𝑓 ) = 𝑔 · 𝑓 , is bounded. The space M with norm | |𝑔 | |M = | |𝑀𝑔 | |𝑜𝑝 forms a
commutative Banach algebra under pointwise multiplication.

LetH be an RKHS with multiplier algebraM. For any element 𝑓 ∈ H , the closed
M invariant subspace generated by 𝑓 is defined as [ 𝑓 ] = M 𝑓 , whereM 𝑓 = {𝑔 · 𝑓 :
𝑔 ∈ M}, and the closure is taken over Hilbert space topology.

Definition 1.8 (Cyclic function) Let H be an RKHS with multiplier algebra M. An
element 𝑓 ∈ H is said to be cyclic, if [ 𝑓 ] = H . That is, for every 𝑔 ∈ H , there exists
a sequence (ℎ𝑛) ⊆ M , satisfying ℎ𝑛 · 𝑓 → 𝑔. Note that every cyclic function is non-
vanishing.
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Continuity and Realization of multiplicative maps and their cyclicity preserving properties 5

Let us see some examples of multiplicative operators between RKHS to itself.

Example 1.4 In the Hardy Hilbert space 𝐻2 (D), define the operator

𝑇 : 𝐻2 (D) → 𝐻2 (D)

𝑇

( ∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛
)
=

∞∑︁
𝑛=0

𝑎𝑛𝑧
2𝑛.

Let 𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 and 𝑔(𝑧) =

∞∑︁
𝑛=0

𝑏𝑛𝑧
𝑛.

Then ( 𝑓 · 𝑔) (𝑧) =
∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

𝑎𝑘𝑏𝑛−𝑘𝑧
𝑛, and 𝑇 ( 𝑓 · 𝑔) (𝑧) =

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

𝑎𝑘𝑏𝑛−𝑘𝑧
2𝑛.

(𝑇 ( 𝑓 ) · 𝑇 (𝑔)) (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
2𝑛 ·

∞∑︁
𝑛=0

𝑏𝑛𝑧
2𝑛 =

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

𝑎𝑘𝑏𝑛−𝑘𝑧
2𝑛

Here 𝑇 ( 𝑓 · 𝑔) (𝑧) = (𝑇 ( 𝑓 ) · 𝑇 (𝑔)) (𝑧), when 𝑓 · 𝑔 ∈ 𝐻2 (D). Therefore, 𝑇 is a
multiplicative linear map.

Note that to check the multiplicativity of 𝑇 , if 𝑓 · 𝑔 ∈ 𝐻2 (D), then it is required
that 𝑇 𝑓 · 𝑇𝑔 ∈ 𝐻2 (D) and the equality should hold. However, if 𝑓 · 𝑔 ∉ 𝐻2 (D), the
multiplicativity condition need not be verified for such pairs of functions. In the above
example, if we replace 2 with any 𝑘 ∈ N in the definition of 𝑇 , the resulting map 𝑇

is also multiplicative. That is, the map 𝑇
( ∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛
)
=

∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑘𝑛, for any 𝑘 ∈ N is

multiplicative

Example 1.5 Let 𝐴2 (D) be the Bergman space over open unit discD. Let 𝜙 : D → D be
an analytic map. Then themap𝐶𝜙 : 𝐴2 (D) → 𝐴2 (D) defined as𝐶𝜙 ( 𝑓 ) (𝑧) = 𝑓 (𝜙(𝑧)),
for all 𝑧 ∈ D is well-defined and continuous [4]. By the definition, the composition
operator𝐶𝜙 is also multiplicative linear map.

We can also define a composition operator that is multiplicative between general
RKHS as follows:

Example 1.6 LetH be an RKHS over 𝑋 and 𝜙 : 𝑋 → 𝑋 . Then define the composition
operator

𝐶𝜙 : H → H

𝐶𝜙 (𝑔) (𝑥) = 𝑔(𝜙(𝑥)),where 𝑔 ∈ H , 𝑥 ∈ 𝑋

By definition, if the composition operator 𝐶𝜙 is well-defined, then it is a linear and
multiplicative operator.
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6 M.R. Nandan and Sukumar. D

Note that in the case of Hardy-Hilbert space 𝐻2 (D), if 𝜙 is an analytic self-map on
the unit disc D, then the associated composition operator 𝐶𝜙 is bounded. Please refer
[6] for the study of composition operator on analytic function spaces.

The above example gives a class of multiplicative linear operators over RKHS.
Notably, the Perron-Frobenius operator, which is widely used in dynamical systems and
machine learning, belongs to this class.

2 Continuity of Multiplicative maps

Every multiplicative linear functional from a complex Banach algebra is continuous.
Furthermore, the continuity of multiplicative maps between Banach algebras are also
studied.

Theorem 2.1 [22, 19] Let 𝐴 and 𝐵 be Banach algebras such that 𝐵 is commutative and semi-
simple. Then, every multiplicative linear map 𝑇 : 𝐴→ 𝐵 is continuous.

Theorem 2.2 [19] Let 𝐴 and 𝐵 be Banach algebras such that 𝐵 is semi-simple. Then, any
surjective multiplicative linear map 𝑇 : 𝐴→ 𝐵 is continuous.

Recently, in [5], the authors generalized continuity to multiplicative linear function-
als on RKHS with NCP kernel.

Theorem 2.3 [5] Let H be an RKHS with a normalized complete Nevanlinna-Pick (NCP)
kernel, and Λ : H → C be a multiplicative functional. Then, Λ is continuous.

In this section, we study the continuity of the multiplicative maps between RKHS
with NCP kernels.

We begin by observing that every RKHS is semi-simple.

Definition 2.1 (Semi-simple Banach algebra) Let 𝐴 be a commutative Banach algebra
and Δ(𝐴) denote the collection of all non-zero multiplicative linear functionals. Then
𝐴 is semi-simple if ⋂

𝑓 ∈Δ(𝐴)
𝐾𝑒𝑟 ( 𝑓 ) = {0}

We observe that every RKHS is semi-simple. That is, if Δ(𝐻) denotes the multi-
plicative linear functional on 𝐻, then all point evaluations Λ𝑥 ∈ Δ(𝐻), for all 𝑥 ∈ 𝑋 ,
and ⋂

Λ∈Δ(𝐻 )
𝐾𝑒𝑟 (Λ) ⊆

⋂
𝑥∈𝑋

𝐾𝑒𝑟 (Λ𝑥) = {0}

LetM denote the multiplier algebra of RKHS. Then for each point 𝑥 ∈ 𝑋 , the evalu-
ation functional restricted to multiplier algebra, Λ𝑥\M : M → C is multiplicative and
linear. Also, the intersection of the kernels of all such functionals is zero. This implies
M is semi-simple Banach algebra. Additionally, if the reproducing kernel is normalized,
thenM is also unital.
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Continuity and Realization of multiplicative maps and their cyclicity preserving properties 7

Lemma 2.4 Let Φ : H1 → H2 be a multiplicative linear map between two RKHS H1
and H2 with NCP kernel, and let Λ : H2 → C be a multiplicative linear functional. Then
Λ ◦Φ : H1 → C is a multiplicative linear functional.

The proof of the above lemma follows from the same argument as that for mul-
tiplicative linear maps between Banach algebras. The above theorem implies that the
composition of a multiplicative linear functional with a multiplicative linear map gives
another multiplicative linear functional. This observation helps to reduce the problem
of the maps between Hilbert spaces to a linear functional from the Hilbert space.

Theorem 2.5 Let H1, H2 be two RKHS with NCP kernel over the non-empty sets 𝑋1 and
𝑋2, respectively, and Φ : H1 → H2, be a multiplicative linear map. Then ∀ 𝑓𝑛, 𝑓 ∈ H1
satisfying 𝑓𝑛 → 𝑓 , Φ( 𝑓𝑛) converges to Φ( 𝑓 ) pointwise, (i.e.) Φ( 𝑓𝑛) (𝑦) → Φ( 𝑓 ) (𝑦), for
all 𝑦 ∈ 𝑋2.

Proof For every Λ : H2 → C multiplicative linear functional, from Lemma 2.4, we
get that the map Λ ◦ Φ is a multiplicative linear functional. By Theorem 2.3, the map
Λ ◦Φ is continuous inH . That is,

|Λ ◦Φ( 𝑓𝑛 + 𝑎) − Λ ◦Φ(𝑎) | → 0, 𝑎𝑠 𝑓𝑛 → 0

As Λ is linear,

|Λ[Φ( 𝑓𝑛 + 𝑎) −Φ(𝑎)] | → 0, as 𝑓𝑛 → 0,

This happens for all multiplicative linear functionals. In particular, for all point evalua-
tions Λ𝑦 , where 𝑦 ∈ 𝑋2. That is,

|Λ𝑦 [Φ( 𝑓𝑛 + 𝑎) −Φ(𝑎)] | → 0, as 𝑓𝑛 → 0
| (Φ( 𝑓𝑛 + 𝑎) −Φ(𝑎)) (𝑦) | → 0, as 𝑓𝑛 → 0

That is,Φ( 𝑓𝑛) converges toΦ( 𝑓 ) pointwise for all 𝑦 ∈ 𝑋2. ■

Note that, if the above convergence happens in the Hilbert space norm, then the map
Φ is continuous.

Both the examples 1.4 and 1.6 are continuous multiplicative operators. Previously,
we proved that ifΦ is a multiplicative linear map between RKHS with NCP kernel, and
if 𝑓𝑛 → 𝑓 in the Hilbert space norm, then Φ( 𝑓𝑛) → Φ( 𝑓 ) pointwise. This naturally
raises the question of under what conditions this convergence will also happen in the
Hilbert space norm? For that, we will use a characterization of Jury and Martin.

Theorem 2.6 [12] LetH be an RKHS with NCP kernel, and letM be its multiplier algebra.

If ( 𝑓𝑛) is a sequence inH such that
∞∑︁
𝑛=0

| | 𝑓𝑛 | |2H1
< ∞, then there exists a sequence (ℎ𝑛) ∈ M

and a cyclic function 𝑔 ∈ H1 such that:

(1) 𝑓𝑛 = ℎ𝑛 · 𝑔 for all 𝑛,
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8 M.R. Nandan and Sukumar. D

(2)
∞∑︁
𝑛=0

| | 𝑓𝑛 | |2H = | |𝑔 | |2H ,

(3)
∞∑︁
𝑛=0

| |ℎ𝑛 𝑓 | |2H1
≤ || 𝑓 | |2H for all 𝑓 ∈ H , and in particular | |ℎ𝑛 | |M ≤ 1, for all n.

Theorem 2.7 Let Φ : H1 → H2 be a linear map between two RKHS with NCP kernel,
satisfying ∀ 𝑓 , 𝑔 ∈ H1 with 𝑓 · 𝑔 ∈ H1, the pointwise productΦ( 𝑓 ) ·Φ(𝑔) ∈ H2. And ifΦ
is surjective, thenΦmaps the multiplicative elementsM1 ofH1 to the multiplicative elements
M2 ofH2.

Proof LetΦ be a surjective map, then for all ℎ̃ ∈ H2, there exists a ℎ ∈ H1, such that
Φ(ℎ) = ℎ̃. Let 𝑚 ∈ M1, then𝑚 · ℎ ∈ H1 andΦ(𝑚) · ℎ̃ = Φ(𝑚) ·Φ(ℎ). By hypothesis
Φ(𝑚) · ℎ̃ ∈ H2. This implies thatΦ(𝑚) is multiplicative. ■

Theorem 2.8 LetH1,H2 be two RKHS with NCP kernel. LetΦ : H1 → H2 be a surjective
multiplicative linear map, with the norm | |.| |H2 being an algebra norm. ThenΦ is continuous.

Proof Suppose Φ : H1 → H2 is not continuous. Then there exists a sequence 𝑓𝑛 ⊂

H1, such that
∞∑︁
𝑛=0

| | 𝑓𝑛 | |2H1
< ∞, but | |Φ( 𝑓𝑛) | |H2 → ∞. By Theorem 2.6, 𝑓𝑛 = ℎ𝑛 · 𝑔,

where ℎ𝑛 belongs to multiplier algebraM1 and 𝑔 ∈ H1 is cyclic. But

| |Φ( 𝑓𝑛) | |H2 → ∞

||Φ(ℎ𝑛) · Φ(𝑔) | |H2 → ∞

The norm onH2 is an algebra norm, this implies | |Φ(ℎ𝑛) | | → ∞.
ByTheorem2.7,Φ\M1 : M1 → M2, is amultiplicativemap between twoMultiplier

algebras. By Theorem 2.1,Φ\M1 is continuous. Since | |ℎ𝑛 | |M1 is bounded, | |Φ(ℎ𝑛) | |M2

is bounded. Since the norm in multiplier algebra is stronger, | |Φ(ℎ𝑛) | |H2 is bounded,
which is a contradiction. This impliesΦ is continuous. ■

Note that the above Theorem is a generalization of Theorem 2.2 to RKHS setting.
We would like to emphasize that the algebra norm condition is required only for those
pairs 𝑓 , 𝑔 ∈ H1, for which the product 𝑓 · 𝑔 ∈ H1. Reproducing kernel Hilbert algebra
(RKHA) satisfies the norm condition mentioned above. That is, RKHA forms a Banach
algebra under pointwise multiplication of functions. For further details on reproducing
kernel Hilbert algebras, we refer [8, 17].

3 Multiplicativity of cyclicity preserving maps

By Theorem 1.2, every unital invertibility preserving linear map from an unital com-
mutative Banach algebra to an unital commutative semi-simple Banach algebra is
multiplicative. In this section, we generalize the forward implication of Theorem 1.3
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to RKHS setting (i.e.), we study the multiplicativity of unital invertibility preserving lin-
ear maps between two RKHS. As demonstrated in Theorem 1.3, the role of invertible
elements in Banach algebra is replaced by cyclic elements in the RKHS setting.

Theorem 3.1 LetH1,H2 be two RKHS with NCP kernel, and letΦ : H1 → H2 be a unital
cyclicity preserving linear map , and ifΛ : H2 → C is a multiplicative linear functional, then
Λ ◦Φ is multiplicative linear functional.

Proof Since bothΦ and Λ are linear, implies the composition Λ ◦ Φ is a linear func-
tional. For any cyclic element 𝑐 ∈ H1, by the hypothesis Φ(𝑐) is cyclic in H2. Since
Λ is a multiplicative linear functional, by Theorem 1.3 Λ ◦ Φ(𝑐) ≠ 0. Additionally,
Λ ◦ Φ(1H1 ) = Λ(Φ(1H1 )) = Λ(1H2 ) = 1, because Λ is multiplicative. Using the same
Theorem 1.3, it follows that Λ ◦Φ is a multiplicative linear functional. ■

Theorem 3.2 LetH1,H2 be two RKHS with NCP kernel, and Φ : H1 → H2 be a linear
maps satisfying ∀ 𝑓 , 𝑔 ∈ H1 with 𝑓 · 𝑔 ∈ H1, the pointwise productΦ( 𝑓 ) · Φ(𝑔) ∈ H2. If
Λ ◦Φ is a multiplicative linear functional, for all multiplicative linear functionalsΛ : H2 →
C, thenΦ is multiplicative.

Proof GivenΛ ◦Φ is multiplicative functional for all multiplicative functionalΛ and
for all 𝑓 , 𝑔 ∈ H1 such that 𝑓 · 𝑔 ∈ H1,

Λ ◦Φ( 𝑓 · 𝑔) = (Λ ◦Φ( 𝑓 )) (Λ ◦Φ(𝑔))

By linearity of the map Λ,

Λ(Φ( 𝑓 · 𝑔) −Φ( 𝑓 ) · Φ(𝑔)) = 0

This is true for all multiplicative linear functionalsΛ : H2 → C. In particular, the point
evaluation functional Λ𝑦 : H2 → C is a multiplicative linear functional for all 𝑦 ∈ 𝑋2.
This implies

Λ𝑦 (Φ( 𝑓 · 𝑔) −Φ( 𝑓 ) · Φ(𝑔)) = 0, for all 𝑦 ∈ 𝑋2
(Φ( 𝑓 · 𝑔) −Φ( 𝑓 ) · Φ(𝑔)) (𝑦) = 0 for all 𝑦 ∈ 𝑋2

Φ( 𝑓 · 𝑔) −Φ( 𝑓 ) · Φ(𝑔) ≡ 0
Φ( 𝑓 · 𝑔) ≡ Φ( 𝑓 ) · Φ(𝑔)

That isΦ is multiplicative. ■

Theorem 3.3 LetH1,H2 be two RKHS with NCP kernel, and Φ : H1 → H2 be a linear
map satisfying, for all 𝑓 , 𝑔 ∈ H1, such that 𝑓 · 𝑔 ∈ H1,Φ( 𝑓 ).Φ(𝑔) ∈ H2. IfΦ is an unital
cyclicity preserving linear map, thenΦ is multiplicative.

Proof By Theorem 3.1, for all multiplicative linear functional Λ : H2 → C, Λ ◦ Φ is
multiplicative. Then, from Theorem 3.2, we getΦ is multiplicative linear map. ■
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Wewill see examples ofmaps that satisfy the first condition of the preceding theorem
namely, for all 𝑓 , 𝑔 ∈ H1 such that 𝑓 · 𝑔 ∈ H1, it should hold thatΦ( 𝑓 ) · Φ(𝑔) ∈ H2.
It is important to note that every multiplicative map necessarily satisfies this condition.

On theHardy-Hilbert space𝐻2 (D), the right shift operator𝑀𝑧 , the left shift operator
𝑀∗
𝑧 , and the truncation operator𝑇𝑛 are not multiplicative maps. But, all three operators

satisfy the above condition, i.e., for all 𝑓 , 𝑔 ∈ 𝐻2 (D) such that 𝑓 · 𝑔 ∈ 𝐻2 (D), it holds
that 𝑀𝑧 ( 𝑓 ) · 𝑀𝑧 (𝑔), 𝑀∗

𝑧 ( 𝑓 ) · 𝑀∗
𝑧 (𝑔), 𝑇𝑛 ( 𝑓 ) · 𝑇𝑛 (𝑔) ∈ H2. Note that 𝑀2

𝑧 ( 𝑓 · 𝑔) =

𝑀𝑧 ( 𝑓 ) · 𝑀𝑧 (𝑔) holds exclusively for the right shift operator 𝑀𝑧 .

4 Cyclicity preserving properties of Multiplicative maps

In the Banach algebra setting, the unital invertibility preserving properties of alge-
bra homomorphism have been extensively studied in [7]. Similarly, cyclicity preserving
operators have been studied on the Hilbert spaces of analytic functions on C𝑛 [23]. In
this section, we generalize the backward implication of Theorem 1.3 to RKHS setting
(i.e.), we explore the conditions under which a multiplicative linear map between RKHS
is unital and cyclicity preserving.

Definition 4.1 (Strongly non-zero map) LetH1,H2 be two RKHS over the non-empty
sets 𝑋1 and 𝑋2, respectively. The map Φ : H1 → H2 is said to be a strongly non-
zero map if Range(Φ) contains at least one non-vanishing function. That is there exists
a function 𝑓 ∈ Range(Φ), such that 𝑓 (𝑥) ≠ 0, for all 𝑥 ∈ 𝑋2.

Theorem 4.1 LetH1,H2 be two RKHS with NCP kernel, andΦ : H1 → H2 be a strongly
non-zero multiplicative linear map. Then Φ(1H1 ) = 1 and Φ(𝑐) is non-vanishing for all
cyclic functions 𝑐 ∈ H1.

Proof GivenΦ is a strongly nonzero map, then there exists a non-vanishing function
𝑓 ∈ RangeΦ ⊂ H2, (i.e.) there exists 𝑓 ∈ H1 such that Φ( 𝑓 ) = 𝑓 . Let 𝑐 be a cyclic
element of H1, then for 𝑓 ∈ H1, there exists a sequence ℎ𝑛 ∈ M1, where M1 is the
multiplier algebra ofH1, such that ℎ𝑛 · 𝑐 → 𝑓 . By Theorem 2.5,

Φ(ℎ𝑛 · 𝑐) (𝑦) → Φ( 𝑓 ) (𝑦), for all 𝑦 ∈ 𝑋2,
Φ(ℎ𝑛) (𝑦)Φ(𝑐) (𝑦) → 𝑓 (𝑦), whereΦ( 𝑓 ) = 𝑓 ,

Here 𝑓 is a non-vanishing function, which implies Φ(𝑐) is non-vanishing for all cyclic
elements 𝑐 ∈ H2. Then (Φ(𝑐))−1 exist as a well-defined function from 𝑋2 to C. This
implies

Φ(𝑐) = Φ(𝑐) · Φ(1H1 ),
1H2 = Φ(1H1 ).

HenceΦ is unital andΦ(𝑐) is non-vanishing for all cyclic element 𝑐 ∈ H2. ■

We can observe that every cyclic function in RKHS is non-zero for every point in the
underlying set 𝑋 . In the preceding theorem, we proved that every multiplicative map
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Φ is unital-preserving and maps cyclic elements to non-vanishing functions. We now
explore the question: under what conditionsΦ will be cyclicity preserving?

Theorem 4.2 LetH1,H2 be two RKHSwithNCP kernel, such that the norm ofH2 is algebra
norm, and if Φ : H1 → H2 be a strongly non-zero multiplicative linear map and Φ is
surjective, thenΦ is cyclicity preserving.

Proof Let 𝑐 be a cyclic element in H1. Since Φ is surjective, for any ℎ̃ ∈ H2 there
exists ℎ ∈ H1, such that Φ(ℎ) = ℎ̃. By the cyclicity of 𝑐, for ℎ ∈ H1, there exists a
sequence 𝑚𝑛 ⊂ M1, such that 𝑚𝑛 · 𝑐 → ℎ. By Theorem 2.5, Φ is continuous. This
implies Φ(𝑚𝑛) · Φ(𝑐) → Φ(ℎ) = ℎ̃. By Theorem 2.7, Φ(𝑚𝑛) ∈ M2. By definition of
cyclicity,Φ(𝑐) is cyclic inH2. ■

5 Realization of continuous multiplicative operators

The realization of multiplicative linear functionals on RKHS has been studied previ-
ously. If H is an RKHS over a non-empty set 𝑋 , then for every 𝑥 ∈ 𝑋 the point-
evaluation functionalΛ𝑥 is multiplicative. In [2], the authors proved the converse in the
case of maximal domain, (i.e) if 𝑋 is maximal domain forH , then every multiplicative
linear functional can be realized as a point-evaluation functionals. In [23] the same result
is proved for more general spaces.

Note that in the last section, we proved that multiplicative maps between RKHSwith
NCP maps the unit elements of the domain to the unit elements of the co-domain, and
map cyclic functions to non-vanishing functions. The map also preserves cyclicity, if
the norm of co-domain has an algebraic structure. In [16], it is proved that every linear
map from the Hardy space 𝐻 𝑝 (D) to the space of holomorphic functions on D, that
maps cyclic functions to non-vanishing functions, is necessarily aweighted composition
operator. They also generalized the result to more general spaces over D. In [23], the
authors proved that cyclicity-preservingmaps areweighted composition operators over
more general spaces, which need not be Hilbert spaces.

In this section, we will realize multiplicative operators between Hilbert spaces. In
Section 2, we presented composition operators as a natural class of multiplicative oper-
ators. Now the natural question is whether all multiplicative operators are, in fact,
composition operators. While this is not true in general, we provide a partial answer.
Over Hardy-Hilbert space 𝐻2 (D), Dirichlet spaceD , weighted Bergman space 𝐴2

𝛼 (D),
and many more, every continuous multiplicative operator is indeed a composition
operator.

Theorem 5.1 Let 𝑀 : 𝐻2 (D) → 𝐻2 (D) be a continuous multiplicative operator on the
Hardy-Hilbert space. Then there exists an analytic self-map 𝜙 : D → D, such that 𝑀 = 𝐶𝜙 ,
where 𝐶𝜙 is the composition operator induced by 𝜙.

Proof Let 𝑀 : 𝐻2 (D) → 𝐻2 (D) be a continuous multiplicative linear operator.
If 𝑓 ∈ 𝐻2 (D), then it admits the power series expansion 𝑓 =

∑︁
𝑎𝑛𝑧

𝑛, and the
co-effecients {𝑎𝑛} ∈ ℓ2, where 𝑧 denotes the identity function on D. Since 𝑀 is a
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continuous multiplicative linear map, we have

𝑀 ( 𝑓 ) (𝑥) = 𝑀 (
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛) (𝑥)

=

∞∑︁
𝑛=0

𝑎𝑛 (𝑀 (𝑧) (𝑥))𝑛, for all 𝑥 ∈ D

That is for any function
∑︁

𝑎𝑛𝑧
𝑛 ∈ 𝐻2 (D), the image

∑︁
𝑎𝑛𝑀 (𝑧)𝑛 should belong to

𝐻2 (D), and 𝑧 ∈ 𝐻2 (D), this implies 𝑀 (𝑧) ∈ 𝐻2 (D). We prove that the Range𝑀 (𝑧) is
a subset of the open unit disc D. Suppose not, there exists 𝑥 ∈ D, such that 𝑀 (𝑧) (𝑥) =
𝑟𝑒𝑖 𝜃 , where 𝑟 ≥ 1. We define the function

𝑓𝑟 , 𝜃 =

∞∑︁
𝑛=0

1
𝑟𝑛
𝑒−𝑖𝑛𝜃

𝑛
𝑧𝑛

| | 𝑓𝑟 , 𝜃 | | =
∞∑︁
𝑛=0

1
𝑟2𝑛𝑛2

Here | | 𝑓𝑟 , 𝜃 | | < ∞, for all 𝑟 ≥ 1, this implies 𝑓𝑟 , 𝜃 ∈ 𝐻2 (D). Since M is a well-defined
operator, 𝑀 ( 𝑓𝑟 , 𝜃 ) ∈ 𝐻2 (D). But for that 𝑥 ∈ D, 𝑀 ( 𝑓𝑟 , 𝜃 ) (𝑥) =

∑ 1
𝑛
, which is not

defined. This contradicts the fact that 𝑀 is well-defined. Now, we define the map 𝜙 :
D → D as 𝜙(𝑥) = 𝑀 (𝑧) (𝑥), for 𝑥 ∈ D. Therefore, as defined above, every continuous
multiplicative linearmap can be seen as a composition operator𝐶𝜙 for above defined 𝜙.

■

Note that the above theorem is also true for Bergman space, Dirichlet space, and
many other spaces. For Bergman spaceA2 (D), define the function

𝑓𝑟 , 𝜃 =

∞∑︁
𝑛=0

1
𝑟𝑛
𝑒−𝑖𝑛𝜃 𝑧𝑛 ∈ A2 (D).

And for Dirichlet spaceD , define the function

𝑓𝑟 , 𝜃 =

∞∑︁
𝑛=0

1
𝑟𝑛

𝑒−𝑖𝑛𝜃

𝑛 log 𝑛
𝑧𝑛 ∈ D .

Theorem 5.2 Let H be an analytic Hilbert space over D, and {ℎ𝑛𝑧𝑛} be its orthonormal
basis ofH , where ℎ𝑛 ∈ C. If |ℎ𝑛 | ≥ 1√

𝑛
, then every continuous multiplicative linear operator

𝑀 : H → H , can be characterized as a composition operator 𝐶𝜙 , for some 𝜙 : D → D.

Proof Let {ℎ𝑛𝑧𝑛} be the orthonormal basis ofH , then a power series 𝑓 =

∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛

belongs toH , if | | 𝑓 | | =
∞∑︁
𝑛=0

���𝑎𝑛
ℎ𝑛

���2 < ∞.
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Suppose if there exists 𝑥 ∈ 𝑋 , such that (𝑀𝑧) (𝑥) = 𝑟𝑒𝑖 𝜃 , where 𝑟 ≥ 1, then define

𝑓𝑟 , 𝜃 =

∞∑︁
𝑛=0

𝑒−𝑖 𝜃

𝑟𝑛𝑛 log 𝑛
𝑧𝑛

| | 𝑓𝑟 , 𝜃 | | =
∑︁ 1

𝑟2𝑛𝑛2 log2 𝑛|ℎ𝑛 |2

≤
∑︁ 𝑛

𝑟2𝑛𝑛2 log2 𝑛

this is a convergent series for any 𝑟 ≥ 1, implies 𝑓𝑟 , 𝜃 ∈ H . But𝑀 ( 𝑓𝑟 , 𝜃 (𝑥)) =
∑ 1

𝑛 log 𝑛 is
not defined. This contradicts the fact that𝑀 is a well-defined operator. So range(𝑀) ⊆
D. Now, the proof follows as in Theorem 5.1. ■

Additionally, the condition ∀ 𝑛 ∈ N, |ℎ𝑛 | ≥ 1√
𝑛
, can be weakened by assuming the

inequality eventually.
It is worth noting that many well-known Hilbert spaces satisfy the above condition

of orthonormal basis. For instance, in Hardy-Hilbert space 𝐻2 (D), refer [14] the co-
effecient ℎ𝑛 = 1. In the Dirichlet spaceD , refer [9] the co-effecient ℎ𝑛 = 1√

𝑛
. And in the

weighted Bergman space 𝐴2
𝛼 (D), refer [11] the co-effecient ℎ𝑛 =

√︃
Γ (𝑛+2+𝛼)
𝑛!Γ (2+𝛼) . In each

of these cases, the sequence ℎ𝑛 satisfies the hypothesis of Theorem 5.2.
In Section 2,we presented composition operators as examples ofmultiplicative oper-

ators. Now,we have proved that every continuousmultiplicative operator belongs to the
class of composition operators.

Also, note that our line of proof will not work for analytic Hilbert space H with

|ℎ𝑛 | ≤ 1
𝑛1+𝜖 , for any 𝜖 > 0. This is because, if 𝑓 =

∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 ∈ H , then

∞∑︁
𝑛=0

���𝑎𝑛
ℎ𝑛

���2 < ∞,

Since this is a convergent series, ���𝑎𝑛
ℎ𝑛

���2 < 1,

|𝑎𝑛 | ≤ |ℎ𝑛 | ≤
1

𝑛1+𝜖
,

For such 𝑎𝑛,
∑ |𝑎𝑛 | will be convergent. This implies that, for 𝑟 ≥ 1, we cannot find

𝑓𝑟 , 𝜃 =

∞∑︁
𝑛=0

1
𝑟𝑛
𝑎𝑛, such that

∞∑︁
𝑛=0

���𝑎𝑛
ℎ𝑛

���2 < ∞, and
∞∑︁
𝑛=0

|𝑎𝑛 | is divergent.

Note that for any 𝑛 ∈ N, and 𝜖 > 0, the inequality 1√
𝑛
< 1

(𝑛)1+𝜖 holds. We proved
that for analytic Hilbert space with ℎ𝑛 ≤ 1√

𝑛
, every continuous multiplicative linear

operator can be characterized as a composition operator 𝐶𝜙 , for some 𝜙 : D → D.
Also, we showed that our line of proof will not work for ℎ𝑛 ≥ 1

(𝑛)1+𝜖 . But the question
is still open for ℎ𝑛 between 1√

𝑛
and 1

𝑛
.
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6 Conclusion

Our study establishes some analogies between semi-simple Banach algebras and RKHS
withnormalized complete Pickkernels throughmultiplicative linearmap.OtherBanach
algebra results of multiplicative functionals, such as the Gelfand-Naimark construction,
in the RKHS setting are still open for exploration.
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