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The Range of the Cesaro Operator Acting
on H*

Guanlong Bao, Hasi Wulan, and Fangqin Ye

Abstract. In 1993, N. Danikas and A. G. Siskakis showed that the Cesaro operator C is not bounded
on H*; that is, C(H*) ¢ H®, but C(H*) is a subset of BMOA. In 1997, M. Essén and J. Xiao
gave that C(H*®) & Q, for every 0 < p < 1. In this paper, we characterize positive Borel measures
¢ such that C(H*) ¢ M(Dy) and show that C(H*®) & M(Dyy) & No<cpcoo Lp by constructing
some measures po. Here, M(D ) denotes the Mobius invariant function space generated by D,
where D, is a Dirichlet space with superharmonic weight induced by a positive Borel measure y on
the open unit disk. Our conclusions improve results mentioned above.

1 Introduction and Main Results

Let D be the open unit disk in the complex plane C and let H(ID) be the space of
analytic functions in ID. For f(z) = Yo, a,2" belonging to H(ID), the Cesaro oper-
ator C is defined by

1 n

€N =3 (= a)e"

a0 \n+1 3
The study of the Cesaro operator acting on various spaces of analytic functions in D

has attracted a lot of attention (cf. [9,10,14,18,21,22]).
For 0 < p < oo, the Hardy space H? consists of those functions f € H(ID) such that

1 2 0y p 1/p
=sup (— re'’)|Pdo < 00.
Il = sup (5= [ 17(re)rd0) < oo

<r<1 27 Jo

Denote by H* the space of bounded analytic functions in D. Namely, H*> consists of
functions f € H(D) with

[ flla= = sup|f(2)] < co.
zeD

Every function f € H? has non-tangential limits f({) for almost every ¢ on the unit
circle dD. See [11] for the theory of Hardy spaces. A. G. Siskakis [21,22] showed that
the Cesaro operator € is bounded on H? for p > 1. J. Miao [19] proved that the same
situation holds for 0 < p < 1.
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Let BMOA be the space of analytic functions on D whose boundary values are of
bounded mean oscillation on 0. The space BM OA has its root in the corresponding
space in harmonic analysis (see [17]). H* is a subset of BMOA. It is well known
(¢f.[4,15]) that BMOA can be defined as the set of functions f € H! satisfying that

fllwon =@ +sup (= [ FOPELE am(e) - 1700))
oA = WEB 21 Jap |w - (]2
is finite. Here dm is the Lebesgue measure on JD.

Let C(H*) be the range of the Cesaro operator € acting on H*. N. Danikas and

A. G. Siskakis [10] showed that C(H*) ¢ H* but C(H*) ¢ BMOA. They proved
the following interesting result.

Theorem A  Suppose f € H. Then Cf e BMOA and
s
I Iamoa < (1+ =) Ifl

The constant 1 + % is best possible.

Later, M. Essén and J. Xiao [14] studied the relation between C(H>) and Mébius
invariant Q, spaces. Recall that the Mobius group Aut(ID) is the set of one-to-one
analytic functions mapping DD onto itself. It is well known that each ¢ € Aut(D) can
be written as

i a-z
¢(z) = e"0a(2), 0a(2) = —,
1-az
where 6 is real and a € D. In 1995, R. Aulaskari, J. Xiao, and R. Zhao [3] introduced
Q, spaces, which have attracted a lot of attention in recent years. For 0 < p < oo, the

space Q, consists of functions f € H(ID) with
P
1713, =swp [ 1f(@P(1=lou(2)P) dA() < oo,
aeD JD

where dA denotes the area measure on ID. The space Q, is Mobius invariant in the
sense that

Ifolo, =1fle,
for every f € Q, and ¢ € Aut(D). Clearly, Q) € Q,, for 0 < p; < p, < oco. It is
known that for 1 < p < oo, all Q, spaces are the same and equal to the Bloch space B
consisting of functions f € H(ID) such that

Ifl = su]g(l— 21| (2)] < oo

Also, Q; = BMOAand Q, $ BMOA when 0 < p < 1. We refer to J. Xiao's monographs
[24,25] for more results of Q, spaces.

M. Essén and J. Xiao [14, Theorem 5.4] gave the relation between C(H*) and Q,
spaces as follows.

Theorem B C(H*) & Q, for 0<p<1.

In this paper, we investigate C(H*) further via some Mdobius invariant spaces. In
particular, we find certain Mébius invariant spaces locating strictly between C(H*®)
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and Mo<pcoo Qp. These Mobius invariant spaces are related to some Dirichlet type
spaces induced by superharmonic weights.

S. Richter [20] introduced Dirichlet spaces with harmonic weights. A. Aleman’s
work [2] initiated a study of Dirichlet spaces with superharmonic weights. Let y be a
positive Borel measure on ID. Denote by D, the space of functions f € H(ID) with

LI @PUL)dAG) <+oo,

where _
-wz

Uu(z) = fDlog‘HP#(W)
is a superharmonic function on D. For the study of D, spaces, we assume that
Jp(1=12]*)du(z) < oo. Otherwise, the space D, contains only constant functions.
D, spaces are always subsets of the Hardy space H* (cf. [2, 12]). Let du,(z)=
-A[(1 - |2]*)P]dA(z), z € D, p € (0,1), where A is the Laplace operator. By [1],
the space D, is equal to the radial Dirichlet type space D, consisting of functions
f € H(D) with

LI @Pa-1P)dA) < oo.

The classical Dirichlet space D is the set of functions f € H(IDD) satisfying the formula
above with p = 0. By [5, Corollary 5.6], there exists a positive Borel measure y such
that D, is not equal to any generalized radial Dirichlet type space. We know from
[5, Lemma 5.1] that every D, space can also be defined as the class of functions
f € H(D) for which

71, = [ 1f'(2)PVu(2)dA(2) <+,
where
Vi(2) = [ (=l ()P du(w).
Recently, G. Bao, J. Mashreghi, S. Pouliasis, and H. Wulan [8] investigated M(D,,),
the Mobius invariant space generated by the space D,. Namely M(D,,) consists of
functions f € H(D) with
[ f o,y = wp [fo¢-f(#(0)]n, < oo

peAut(

Equivalently,
laco = s [ 17 00) PV (o ()dAw).

We will say that M(D,) is trivial if M(D,) contains only constant functions. For
example, set dv(z) = (1-|z|)>dA(z). Then M(D,) is trivial. In fact, it is known
from [8] that if M(D,) is not trivial, then D ¢ M(D,) ¢ BMOA. Furthermore,
M(D,) = BMOA if and only if y(ID) < oo. Let du,(z) = —A[(1 - |z]*)?]dA(z) as
before. Then M(D,,) = Q, when 0 < p <1.

For an increasing function K: (0,1] — [0, o), let Qk be the space of functions
f € H(D) for which

I, = sup [ 1 (@K1~ loa(2)PJdA(2) < oo.
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If K(t) = t?, then Q is the space Q,. See the monograph [23] for Qk spaces. From
(8, p. 5], if K € C?(0,1] is increasing and concave on (0, 1] with lim,_o K(¢) = 0, then
Qk = M(D,), where

dv(w) = -A(K(1-|w|*))dA(w), weD.

The aim of this paper is to consider the relation between C(H*) and M(D,). In
particular, we construct measures y such that C(H*) ¢ M(D,) & Mo<p<oo 2p» Which
improves Theorems A and B.

Theorem 1.1  Let u be a positive Borel measure on D. Then the following conditions
are equivalent.

(i) C(H*)cM(D,).

(ii) log(l1-z)e M(D,).

(iii)
Vu(2)
(1.1) )Leau]) > = Aef dA(z) < oo.
(iv)
Vu(2)
" B o o aap A <

Theorem 1.2 Let

1
dpa(z) = —A(ma
(log7p)

(i) Ifo<a<l, then M(D,,) is not trivial and C(H**) ¢ M(D,,, ).
(i) Ifa>1, then C(H*) & M(D,,) & Nocpcoo Lp-

)dA(z), a>0, zeD.

Throughout this paper, the symbol A ~ B means that A $ B $ A. Wesaythat AS B
if there exists a constant C such that A < CB.

2 Some Preliminary Results

In this section, we collect some results that will be used to prove Theorem 1.1 or
Theorem 1.2.

Theorem C ([8, Theorem 3.3]) Let u be a positive Borel measure on D. Then the
following conditions are equivalent.
(i) M(D,) is not trivial.
(i) DcM(D,).
(i) DG D,.
(iv) (1-12|*)du(z) is a Carleson measure on D, i.e., sup,,.p, Vu(w) < oo.

Lemma D ([6, Lemma 2.2]) Let v be a positive Borel measure on D. Then

1-|z? 1-|z?
sup |2 | ) = sup i dv(z).

ach JD |l - az |2 tean D [1- (22
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Lemma E ([16, Theorem 1.7]) Let z € D and let 3 be any real number. Then
2 de ; ) l.f/} <
Jy e o 180,
e FE>0

as|z| > 1°.
The following result can be found in [8, p. 5].

Lemma F  Suppose K € C*(0,1] is increasing and concave on (0,1] with lim,_o K(t)
=0. Then Qg = M(D,), where

dv(w) = -A(K(1- |[w]*))dA(w), weD.

We also need the following result on Qx spaces, which is from [13, Theorem 2.6].
See [8, p. 10] for the corresponding result on M(D,,) spaces.

Theorem G  Suppose K and K, are increasing and positive functions on (0,1]. Let
Ki(r)/Ky(r) = 0 asr — 0 and let Qk, # B. Then Qx, & Uk,

3 Proof of Theorem 1.1

By [10, p. 295], if f € H(DD), then Cf also belongs to H(ID) and Cf can be written as

1 ref(Q)
== [ %4, zen.
©NE)= [ gl =
For convenience, set ) .
ED:{ZE]D):0<|Z|<E}.
(i)=(ii). Let C(H**) € M(D,,). Clearly, the function

1 1
C1 =-log—
(€1)() = Tlog
belongs to M(D,). By Theorem C,
sup V,(w) < oo.
welD
Consequently,

00> sup [(€1) (2)]*Vu(Aoa(2))dA(2)
aeD,1edD Y D\3D

1 1 1 2
B S i 2 R O @)iace)
Note that
sup f ilogLrV (Lo,(2))dA(z) $
aeD, eoD D\{D 2 l1-z #

1 2
v log——| da .
sup V, (w) D\%D\ogl_z\ () < oo
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Thus,

1 2
— V(A dA < 00,
s fD\%D\l_Z\  (L04(2))dA(2) < o0

which gives that log(1-z) e M(D,,).
(ii)=(iii). Suppose log(1-z) € M(D,). Then

sup f|1 /\aa(z)‘ 20 af)’ Vu(2)dA(z) < oo,

4
aeD,AedD - az|

which yields

Viu(2)
su dA(z) < co.
Aea% [1-Az|? (=)

(iii)<>(iv). Set

dv(z) = ”ﬁ)z A(z), zeD,

in Lemma D. Then the desired result follows.
(iv)=(i). Suppose condition (1.2) holds. Then

: Alab: )2
su Vu(z)dA(z) = su Vu(z)dA
3 [ IS @PVAEAR) =sup [ STV (2)dAG)
S sup b i V51Z)|2 dA(z) < oo.
aeD

This means that the identity function belongs to M(D,, ). By Theorem C, we get that
sup,,p Vi (w) < 0.
Let f € H*. Write g = Cf for convenience. Clearly, to show g € M(D,), it suffices

to prove that
/ 2
(3.1) ¢621:5D) D\LD 8" (2)"Viu(¢(2))dA(2) < 0.
Since
< f()
g(z) = - ) l_ch zeD,
we see that
oy fz)  glz)
g(2) = z(1-z) z
and

@< [ D<)l [

o [1- | - |zlt

1
= oo log
el 1]
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Thus, for any ¢ € Aut(D), we deduce that

fm\l ()P Vu($(2))dA(2)
S [D} ‘f(z)‘ Vy((p(z))dA(Z) +[]D)\LD |g(z)|2V[4(¢(Z))dA(z)

\3D [1-2f?

SUI [ s Vil(#(2)dAc)

D [1-2> ¥

1 2
log—— ) dA
0g1_|2‘) (Z)

SUFI [y o g Ve(#(2)AG) ¢ IF 1R

Consequently, (3.1) holds if

sup /]I;ﬁvﬂ(gb(z))dA(z) < o0;

+ iosu Vi(w
It sup vu(w) L (

¢eAut(D)
that is,
(1- Ial )?
(3.2) I=: / V. (z)dA(z) < oo.
ae]D) )LEB]D) |1_A0a(z)|2 |1 |4 ( ) ( )
Since
1+ l’l__f 4
1-A0o,(z) = (1- da)—=2%,
1-az
we obtain
- Vv
I= su (1-|af)" f x(2) dA(z).
acD, AealD) [1-2al> Jp |1+ 2582201 - GzP?
Set
_A-a
=1
Then |7| = 1. By the change of variables, one gets
(1-a)? Vu(70)
I= su ~——dA((
R ©
2
= sup f v, (11()‘ dA({)
aeD,1edD
Vu(19) Vu(19)
< “ dA(Q) + 2T dA {
neap JD 1+ (2 ©) aeD,1eaD |1—a’1(|2 ()
Vu(z)
N SU dA(z) + sup
qeal]lj) [ |1 +1nz |2 ( ) aE]DJ |1 - az|2

Combining this with the validity of conditions (1.1) and (1.2), we obtain that (3.2)
holds. Hence, (3.1) also holds. The proof of Theorem 1.1 is complete. ]
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Corollary 3.1  Suppose K € C*(0,1] is increasing and concave on (0,1] with
lim,_,o K(t) = 0. Then the following conditions are equivalent:
(i) C(H™)cQx;
(i) log(1-2z) € Qk;
(i) [, X3¢ < co.

t

Proof Let K satisfy the hypothesis in this corollary. By Lemma F, Qg = M(D,),
where
dv(w) = -A(K(1- |w]*))dA(w), weD.
In fact, Greens Theorem (cf. [1, p. 99]) yields
K(1-12*) = U,(z), zeD.
From Theorem 1.1, we know that both (i) and (ii) are equivalent to
Vi(2)
)LeB]D) D |1 - Az
It follows from [7, p. 693] that (3.3) holds if and only if

(3.3) dA(z) < oo.

Sup Uv (Z)
reap ID [1-Azf?

By Lemma E (see also [27, Lemma 3.10]),

dA(z) < oco.

K(1-[2*)
su ———2dA(z
Aea% 11— Az|? (=)

2n 1
K(1-7)rd f — _df
ﬂf:la%f (1= rSrdr o [1-Areff?

LK(1-r*)r K(t)
N/o B drwfo — dt.

Thus, we obtain the desired result. [ ]

4 Proof of Theorem 1.2

For a > 0, set

1
K(x(t):ﬁ’ 6(0,1]
(log )
Then K, € C?(0,1] and K, is increasing and concave on (0, 1] with
(4.1) lim Ko (1) = 0.
Note that )
dya(z) :—A(m)dA(Z), zeD.
(log 1-|z\2)
By Lemma F, M(D,,) = Qk,.
(i) For0<a <1,
1K,
f a(t) 5,
0 t
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By Corollary 3.1, @(H*) ¢ Qg,. Because of (4.1), it follows from Theorem G that
D g Qk, and hence Q, is not trivial.

(ii) For a > 1,
1K, (t
[ Ldt<oo.
0 t

By Corollary 3.1 again, C(H*) ¢ Qg,. Note that

im Kal(t) —
t—0 K“Z(t)

0, ar>a,>1,

and M(D,) € BMOA & B for all positive Borel measures 4. From Theorem G, one
gets that Qg & Qk, . Thus, C(H*) & Qk,. If p > 0, then

P
Ka(t) -

By Theorem G again, Qk, S No<pcos Lp- Note that k., & Uk, for a; > ay > 1. Thus,
Qk, & Mo<p<oo 2p- The proof of Theorem 1.2 is complete.

lim 0.
t—0

5 Final Remark

In the theory of Mdbius invariant Q, spaces, the fact that log(1-z) € Q,,0 < p <1,
plays certain role in the proofs of some important results (cf. [24-26]). As mentioned
in Section I, the space Q,, 0 < p < 1, is a special case of M(D,) spaces. Theo-
rems 1.1 and 1.2 in this paper yield that there exist nontrivial M(D,,) spaces such that
log(1-2z) ¢ M(D,). It is interesting to develop further the theory of this kind of
M(D,) spaces.
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