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Abstract

Daniel et al. [6] analysed the singularity structure of the continuum limit of the one-
dimensional anisotropic Heisenberg spin chain in a transverse field and determined the
conditions under which the system is nonintegrable and exhibits chaos. We investigate the
governing differential equations for symmetries and find the associated first integrals. Our
results complement the results of Daniel et al.

1. Introduction

Towards the end of the nineteenth century two very significant developments occurred
in the field of differential equations. The first of them was the systematisation of the
formerly ad hoc techniques for the integration of differential equations through the
concept of symmetries which was developed by Lie in a series of lengthy papers and
books [15-17]. The second, which was an outcome of the study of complex functions
initiated by Cauchy, was the analysis of the singularities of the solutions of ordinary
differential equations. Generally known as the Painleve analysis these investigations
commenced with the work of Kovalevski on the rotation of a rigid body with one point
fixed [12], received many contributions from Painleve [18-20] and was continued by
Gambier [8], Chazy [3] and Bureau [1,2] even up to the present day with the works of
Kruskal and Clarkson [13], Cosgrove [5] and Conte [4]. The singularity analysis of
partial differential equations was developed by Weiss et al. [21] and greatly simplified
by an Ansatz of Kruskal [11]. One of the outstanding questions in the discussion
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of the integrability of differential equations is the connection between symmetry and
singularity. There has been some progress along these lines [7,14], but it would seem
that the twentieth century has come to pass without a definite answer to this question.

Daniel et al. [6] analysed the singularity structure of the continuum limit of the
one-dimensional anisotropic Heisenberg spin chain in a transverse field with the
Hamiltonian

H = -J J2 Si;• S,+1 + A J2W ~ MB J2 S,,

where S, = (S*, Sf, Sf), i = I,... , N,are three-component unit vectors with only
nearest neighbour interactions, J > 0 is the pair interaction parameter, A is the
anisotropy parameter (> 0, easy plane; < 0, easy axis) and /x = gfxB is the gyromag-
netic ratio. The corresponding equation of motion in the continuum limit becomes the
Landau-Lipshitz equation

S, = S x [Szz - 2A(S • n)n + /xB],

where the subscripts t and z denote partial differentiation and S(/, z) = (Sx, Sy, Sz),
|S| = 1 and n = (0, 0, 1). Daniel et al. performed the singularity analysis of the
system

(1 + FG)[iF, + Fzz + fxB(l - F2)/2] - 2GF* + 2AF(l - FG) = 0,

(1 + FG)[-iG, + Gzz + fiB(l - G2)/2] - 2FG\ + 2AG{\ - FG) = 0, (1 )

where the transverse field is given by B = (B, 0,0), B is a constant and

S* + iSy S*-iS>
F = and G = .

From their analysis they concluded that the anisotropic Heisenberg spin chain in a
transverse magnetic field is nonintegrable when both of the parameters A and B
are nonzero. It becomes integrable when one or other or both of the constants is
zero, that is, the anisotropic interaction and/or the external magnetic field is zero.
They confirmed their results of the nonintegrability of the system by a numerical
examination of the static version of (1) for which they found chaotic patterns.

In this paper we demonstrate that the Lie point symmetry analysis and consequent
determination of the first integrals when they can be found leads us to the same
conclusion. We recall that the possession of the Painleve property is a stronger
condition for integrability than the possession of a sufficient number of Lie point
symmetries and associated first integrals/invariants since it requires the solution to be
meromorphic at all movable singularities.
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2. Formulation of the problem in plane polar coordinates

Daniel et al. [6] assume F = P(z) + i Q(z) to arrive at the static equations of (1),
that is,

(1 + P2+ Q2)P-2PP2 + 2PQ2-4PQQ + 2AP(l - P2 - Q2)

+ Otfl/2) (1 + P2 + G2)U -P2 + Q2) = 0, (2)
2 2 2 2 - P2 - Q2)

(3)

in which we are denoting differentiation with respect to the independent variable z by
an overdot.

We can simplify the appearance of (2) and (3) by means of the combinations
P x (2) + Q x (3) and P x (3) - Q x (2) and a change of variables to plane polar
coordinates given by

P = rcos6, Q = rsinO.

In the new coordinate system the first combination gives the equation

(l + r2)(r-r92)-2rr2+2r3e2+2Ar(l-r2) + !1(MBcos6(l-r2)(l + r2)=0 (4)

and the second combination gives the equation

(1 + r2)(r0 + 2r9) - 4r2r9 - \fiB sin0(1 + r2)2 = 0. (5)

Daniel et al. observed that the system (2) and (3) could be written in Hamiltonian
form. In terms of the plane polar coordinates the Hamiltonian is

1 , . / 2 1 2 \ Ar2 1 rcos0
H = -(1 + r2)2 [] 2) B

/ 2 1
2 v * -r • J y r - r r2rei ^ ^ + ^ 2 ) 2 - r 2 ^ " l + r 2 '

where the canonical momenta are given by

P ' = ,-i , - ^ 2 a i l d P<> = / , , 7 X 7 -

3. The Lie point symmetries

The number of Lie point symmetries and their appearance depends upon the pres-
ence or absence of the two parameters A and B. We distinguish four cases.
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(i) A = 0, B = 0: There are five Lie point symmetries given by

d = dz, G4 = (1 + r2)cos0dr + (r- l/r)sin9d9,
2 (6)

which have the algebra A2 © AiiS, where A3,8 is in a representation of so(2, 1) rather
than sl(2, R).
We note in passing that an alternative representation of G4 and Gs is

G± = ±iG4 + G5= e±ie [±i(l + r2)3r + (r - l

(ii) A ^ 0, B = 0: In this case the number of Lie point symmetries is reduced to
two. They are G{ and G3 of (6) with the algebra 2A,.

(iii) A = 0, B ,£ 0: Again there are two symmetries They are Gt and G5 of (6)
which also have the algebra 2A t.

(iv) A ^ 0, B ^ 0: In this case there is the single symmetry G\ of (6).

The way the symmetry breaking works is quite interesting. There is no introduction
of a new symmetry to accommodate the additional terms, such as happens with x = 0
and x + x = 0 for example. If an existing symmetry is compatible with the term
introduced, it remains. Otherwise it is lost. The loss of the homogeneity symmetry,
G2, from (6) is not surprising since it really reflects the fact that without the parameters
all terms in the equations contain two differentiations with respect to z. When the
parameter A is introduced, the loss of G4 and G5 is not surprising as they represent
more of an interaction between the radial and angular variables than a purely radial
effect. At first sight the persistence of G5 when B is introduced while G4 is lost strikes
one as curious, but eventually we shall see that it makes sense.

4. First integrals for the case A = 0, B = 0

A first integral, I{z,r,6,r,6), associated with a Lie point symmetry G satisfies
the two conditions

GWI = 0 and — = 0, (7)
dz

where the first condition expresses the requirement that the function be invariant under
the action of the first extension of G and the second that the function be a constant
in z. In this case (4) and (5) become

(1 + r2)(r - rG2) - 2rr2 + 2ri62 = 0,

(1 + r2)(r0 + 2r6) - 4r2h9 = 0.
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We seek the first integrals associated with Gt = dz. The first condition of (7) gives
the associated Lagrange's system

which has the obvious invariants r,6,r and 9. The second condition of (7) gives the
associated Lagrange's system

dr _ d_0 _ (l + r 2 )dr _ r(l + r2)dfl

r ~ 0 ~ r[2r2 - (r2 - 1)<92] ~ 2(r2 - \)r9 '

The combination of the first and fourth terms of (8) gives

d^_^-l)
dr r(l + r2)

which is easily integrated to give the first integral

r2e
' (9)

This integral is suggestive of angular momentum.
We may use the integral 7] to eliminate 6 from the third term of (8) and so, with

the first member of (8), we have an equation in just the two variables r and r. The
combination of the two gives

.d r 2rr2 r(r2 - 1)-2

d(f2) 2r2 r2 - 1 .2 _ d / r2 \ 2 / 1 \

which is easily integrated to give another first integral

a / i

The structure of the first integral is rendered more attractive by taking the combination
72 + 2 If to give the energy-like integral

E_
(1+r2)2'

With these two first integrals we may eliminate r and 6 from the combination of
the first and second terms of (8), namely

d<9 = ?dr,
r
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dd =
r2)/,dr

- /,2(1 + r4)

in which we have used I2 instead of E since the resulting expression is simpler. The
relationship between the radial distance and the angle is found from the quadrature

lt) - 1 - (I? - (/2/2/l
2))2

Since /2 — 2/2 > 0, the integral is real and is easily evaluated by a trigonometric
substitution. We obtain [10, 2.551.3, p. 179]

9 - 0O = \

where we have made use of the substitution

(11)

We observe that (11) is not invertible to give r as a function of 6 except locally.
The evolution of the system in z cannot be obtained using Gx. We turn to G3 for

which the first condition of (7) gives the associated Lagrange's system

dz
0

dr d0
1

dr d0
0

(12)

which has the obvious invariants z, r, r and 6. The second condition of (7) gives the
associated Lagrange's system

dz dr
r

r2)dr

r[2r2 - (r2 - 1)62] 2(r2 - l)r(9

Evidently combinations of the second, third and fourth terms of (12) and (13) will
give the two integrals It and I2 already obtained. From the first and the second terms
we have dz —dr/r from which, in a manner analogous to that for the calculation of
0 — 90, we obtain from (9) and (10), that is, the two first integrals Iu I2,
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which can be integrated through MAPLE 6 to give

~^< . • / ( / 2 + 2 / 2 ) ( r 2 - l ) \
+ 2/f (z — zo) = arctan I — I .

It is possible to invert the result of the integration to give

2 _ 7/2 + 2/2 ± y72 - 2/2 sin

~ y/2 + 2/2 T V/2 - 2/,2 sin

where W = 2y/l2 + 2/2(z — zo). Evidently the motion is periodic in z.

5. First integrals for the case A 96 0, B = 0

For this case (4) and (5) become

(1 + r2)(r - rd1) - 2rr2 + 2r302 + 2A\{1 ' ^ = 0,
1 + r2

(1 + r2) (rO + 2r6) - 4r2r0 = 0.

We commence with Gt = dz. The first condition of (7) gives the obvious invariants
r,0,r and 6. The second condition of (7) gives the associated Lagrange's system

d r _ d 6 > _ (l + r 2 )dr _ r ( l + r 2 ) d < ?

T ~ T ~ r [2r2 - (r2 - 1)02] - 2Ar(l - r2) ~ 2(r2 - \)r0 '

From the combination of the first and fourth terms of (14) we again obtain the first
integral /, = r2d/{\ + r2)2.

Using 11 and the first and third terms of (14) we obtain

which is easily integrated to give

*2 / 1 \ 2Ar2

This is obviously the generalisation of (10). Again we take the combination I2 + 2l\
to obtain the energy-like integral

r2 -)- r262 2Ar2

E = — — +
( l + r 2 ) 2

 ( 1 + A - 2 ) 2 '
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From the first and second terms of (14) we obtain

" , (1 + f ) / " ' r (15)
/ l 2 - /,2(1 + r4) - 2A*

after the elimination of r and 8. From this we obtain the relationship between 0 and r.
As a function of r the integrand is a complication on the square root of a quartic
polynomial which one presumes can be expressed as a collection of elliptic integrals
and which one would not expect to be able to invert to obtain the orbit equation in the
standard form of r (8).

With the symmetry de we again obtain I\ and I2 as two of the characteristics of
the second condition of (7). The third characteristic gives the evolution in z as the
quadrature

+ r,)2 - / , V + DO + r,)2 - 2Ar,2

which will be an expression of somewhat less complexity than that obtained by the
quadrature of (15), but still not invertible.

6. First integrals for the case A = 0, B jt 0

In this case we have

(1 + r2)(r - rd'2) - 2rr2 + 2r3<92 + ^fiB cos0(1 - r2)(l + r2) = 0,

(1 + r2)(r8 + 2r6) - 4r2r8 + -fj, sin0(1 + r2)2 = 0.

The symmetry 3Z has the invariants r,6,r and 8. The second condition of (7) gives
the associated Lagrange's system

dr &8 dr

r 8 j ^ [2r2 - (r2 - \)62] - {ixB cos0(1 - r2)

d0
(16)

This system of first-order equations is far more difficult to solve than the comparable
systems in the first two cases. However, one can proceed to make combinations which
eliminate terms in the denominator of the third and fourth terms in (16) and then to
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combine them to obtain the integral. The combination is

• ( « H W ) ' (l+r2)2

and the integral is

rcostf

This is a bit of a piecemeal approach, but that is the way the integral comes together.
We note that we obtain the energy-like integral immediately, probably because there
is no angular momentum-type integral due to the presence of 9 in the equations of
motion.

The rationale behind the combinations used to obtain (18) was that of finding a first
integral quadratic in the velocities. We observe that a combination of the third and
fourth terms of (17) can be made which eliminates the terms which are not quadratic
in r and 6. We can then eliminate the quadratic terms using the first and second terms
of (17) to obtain zero in the denominator. By a happy happenstance the numerator is
exact and so we obtain a second integral. The combination is

. r(r2-l) . r(r2 - 1)
d r 4 c o s 0 d 0 + ^ 41 + r 2 (1+r2)2 (1 + r2)2

2r . „. , l-6r2

which indicates the term by term elimination subsequent to the combination of the
third and the fourth terms of (17). Fortunately the integral does not look quite as
horrendous as (19) could suggest. It is

fsinfl r(l-r2)flcosfl
h = TT7*+ (i + H)' • (20)

This integral is reminiscent of the conservation of momentum and is probably the
generalisation of the angular momentum-like integral found in the cases for which
B = 0.

We may use (18) and (20) to eliminate r and 6 from (16) to obtain a first-order
equation in r and 6. However, it is so complicated that one has serious doubts about
the existence of a closed-form solution. We simply give the equation which is

]dr _ (l + r2)/2sin6> ± (1 - r 2 ) 2 Q
- r2r2) ± (1 - r2)(l + r2)sin6>(?'
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where

'-feW^lh-^-in**-
Nevertheless the existence of the two independent first integrals guarantees integra-
bility since the system is Hamiltonian.

7. First integrals for the case A 56 0, B 56 0

We now have the full system

(1 +r2)(r0 + 2rB) - 4r2r9 - ^/xB sin0(l + r2)2 = 0

and the single Lie point symmetry dz with the characteristics r,9, r and 9. The first
integrals are to be found from

d r A9 dr

r 0 _L_[2f2 — (r2 -

dff
~T7 (21)

and we find the obvious one, the Hamiltonian,

_ 1 r2 + r292 Ar2 1 rcos0
1 ~ 2 (1 + r2)2 + (1 + r2)2 + 2M 1 + r 2 '

The calculation of any other characteristics from (21) is by no means obvious. This
in itself is not a sure indication of nonintegrability since our search for symmetries
has been confined to Lie point symmetries. However, in the paper by Daniel et
al. [6] there is evidence, both from the singularity analysis of the Painleve test and
numerical experiments, of the nonintegrability of the original system, (2) and (3).
In the light of those results we would not expect to be able to find any symmetry
which would be of use in the reduction of the order of the system to an autonomous
two-dimensional system which is always integrable. (One can always find an infinite
number of symmetries for any differential equation [9].)
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