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Abstract

For a locally finite directed graph E, it is known that the graph C-algebra C"*(E) has real rank zero if and
only if the graph E satisfies the loop condition (K). In this paper we extend this to an arbitrary directed
graph case using the desingularization of a graph due to Drinen and Tomforde.
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1. Introduction

The Cuntz-Krieger algebra GA associated with a finite {0, 1}-matrix A has been
introduced in [5], and it is proved that J(f ® GA is an invariant of the isomorphism
type of an irreducible topological Markov chain together with the automorphisms
(id<S>A.z)zeT, where (kz)z<ij is the gauge action on 6A. If each entry of an n x n
matrix A is one then the algebra is the Cuntz algebra On (n > 2), and it is well known
that for each n > 2, Gn has real rank zero. But for Cuntz-Krieger algebras it is not
hard to find a matrix A for which the algebra CA has nonzero real rank. Nevertheless
one may still expect that many of the Cuntz-Krieger algebras have real rank zero since
they already contain enough projections and partial isometries as generators. The
Cuntz-Krieger algebra GA is now well understood as a graph C*-algebra C*(E) where
the matrix A is the vertex matrix of a finite directed graph E, or if B is the edge matrix
of E then 6A is isomorphic to OB. The graph C*-algebra C*(E) is generated by a
family of partial isometries and projections satisfying the relations determined by the
graph £ and thus it would be useful if one can find a necessary and sufficient condition
for RR{0A) = 0 (or RR(C*(E)) = 0) in terms of the matrix A (or the graph E) itself.
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Recently, for graph C*-algebras their ideal structures, simplicity criteria, and their
K-theory have been studied by many authors (see [1,2,6,8-11,13] among others),
and we know from [9] and [8] that if £ is a locally finite directed graph then its
graph C*-algebra C*(E) has real rank zero exactly when the graph E satisfies loop
condition (K), which implies that for a Cuntz-Krieger algebra 6B, where B is the
edge matrix of a finite graph E, RR{0B) = 0 if and only if the matrix B satisfies
condition (II) considered in [4]. The purpose of this paper is to generalize this result to
an arbitrary graph E (see Theorem 3.5). To prove the theorem we need to understand
the ideal structure of graph C* -algebras but the description of the ideal structure of a
directed graph which is not row-finite is quite complicated [1] while it seems natural
and convenient to work with row-finite graphs. Since the property of having real
rank zero is preserved under strong Morita equivalence (equivalently, under stable
isomorphism for separable C*-algebras) it suffices to prove our theorem only for
row-finite graphs with no sinks by virtue of the result of Drinen and Tomforde ([6,
Theorem 2.11]): For any directed graph E, the graph C*-algebra C*(E) is a full corner
of C*(F), where F, the desingularization of £ , is a row-finite graph with no sinks.

In view of the fact that the C'-algebras C*(E) associated with arbitrary graphs
are much harder to understand than those associated with locally finite ones it would
be useful to present the proof of Theorem 3.5 here applying several recently known
generalized facts for arbitrary graphs (or row-finite graphs) to handle the general case
even though the main idea of the proof is basically same as in [8,9].

2. Directed graphs and their C* -algebras

A directed graph E = (E°, E\ r, s) consists of the set of countable vertices E°,
the set of countable edges £ ' , and range, source maps r, s : El ->• E°. A vertex v
is called a sink if it emits no edges, |5~'(v)| = 0. Following terminology in [6], we
call a vertex v an infinite-emitter if it emits infinitely many edges, and singular if
it is either a sink or an infinite-emitter. A graph E with no infinite-emitters is said
to be row-finite, and if in addition r~l(v) is finite for each u then we call E locally
finite. If g ] , . . . , en (n > 2) are edges with r(e,) = s(ei+i), 1 < i < n — 1, one can
form a (finite) path a = (ex,..., en) of length \a\ = n, and extend the maps r, s by
r(a) = r(en), s(a) = s(ei). We denote the set of all finite paths by E* and infinite
paths by E°°. Note that vertices are regarded as finite paths of length zero. A loop
at a vertex v is a finite path a with |or| > 0 such that s(a) = r(a) = v. A graph E
is said to satisfy condition (L) if every loop in E has an exit, and condition (K) if for
each vertex v on a loop there exist at least two distinct loops based at v. Note that
condition (K) is stronger than (L).

For a directed graph E, a Cuntz-Krieger £-family consists of partial isometries
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{Se | e 6 £•'} and mutually orthogonal projections [Pv | v e E0} satisfying the
relations:

S*eSe = Prlt), SeS*e < P,le), and

Pv = Y^ Se 5* if v is not a singular vertex.

For a row-finite directed graph E, the existence of a universal C*-algebra generated
by a Cuntz-Krieger E-family {se,pv \ e e E\ v e E0} is proved in [10, Theorem 1.2];
there is a C-algebra C*(£) generated by a Cuntz-Krieger £-family {i,,, pv \ e e £ ' ,
v e E0} of nonzero elements such that for every Cuntz-Krieger E-family [Se, Pv \
e € E\ v e E°] in a C*-algebra A, there is a *-homomorphism n : C*(E) -> A such
that 7r(s,,) = Se,n(pv) = Pw for all e € £ ' , v e E°. For arbitrary directed graphs E
and their associated universal C-algebras C*(E) (see [1,7]).

Let {se,pv | e e El, v e E0} be a Cuntz-Krieger £-family generating the C -
algebra C*(£). Then for each z e T we have another Cuntz-Krieger £-family
[zse,pv | e e E1, v e E°) in C*(E), and by the universal property of C*(E) there
exists an isomorphism yz : C*(E) —> C*(£) such that yz(se) = zie and yz(pu) = Pv
In fact, y : z i-> yz e Aut(C*(£)) is a strongly continuous action of T on C*(E) and
it is called the gauge action. It is known (see [1,2]) that for a C-algebra C*(Se, Pv)
generated by a Cuntz-Krieger Zs-family of nonzero elements, the existence of the
gauge action on C*(Se, Pv) implies that C*(Se, Pv) = C*(E). Also the ideal structure
of C*(E) is analyzed in [1,2], which is essential to prove our theorem.

3. Real rank of graph C*-algebras

Recall that a C*-algebra A is said to have real rank zero, RR(A) = 0, if the set of
all invertible self-adjoint elements in A is dense in the set of all self adjoint elements
of A, where A is the smallest unitization of A. It then turns out [3] that RR(A) = 0
if and only if every nonzero hereditary C*-subalgebra of A contains an approximate
identity of projections, hence every hereditary C*-subalgebra of A with RR(A) = 0
always has real rank zero.

Let E be a directed graph. Then for two vertices v, w we simply write w < v if
there is a path a e E* from v to w. A subset H of E° is said to be hereditary if
w < v e H implies w e H, and a subset H of E° is saturated if every vertex v
such that 0 < |s~'(u)| < oo and r(e) e H for each e 6 ^ ' ( v ) belongs to H'. The
saturation of a hereditary set H is the smallest saturated subset of E° containing H.
Let H be a saturated hereditary subset of E°. Then

IH = spanks; | a, p e E*, r(a) = r(fi) e H]
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is an ideal generated by the projections [pv \ v e H}.

THEOREM 3.1 ([2, Theorem 4.1, 4.4]). Let E be a row-finite directed graph.

(a) Let H be a saturated hereditary subset of E°and let F be the quotient graph
F = (F° := E° \ H, F1 := {e e El \ r(e) g //}), then C*(E)/IH = C*(F).
(b) Let H be a hereditary subset of E°, and let

G = (G° := H, G1 := {e (= El \ s(e) e / / } , r, s),

then C*(G) is isomorphic to the subalgebra C*{se,pv | e e G1, v <= H] of C*(E),
and this subalgebra is a full corner of the ideal IH.

The above theorem for a locally finite graph was first proved in [11], and is
generalized to arbitrary directed graphs in [1].

Let us recall [6] the definition of the desingularization F of a graph E: Let vQ be a
singular vertex of E. If i>0 is a sink then we add an (infinite) tail T to VQ,

T:=(T° = {v, \i = 0, 1, . . . } , Tl = {e, \ s(e.) = v,-_,, r{e,) = vt, i = 1, 2,. . .}).

If i>o is an infinite emitter, first list the edges gu g2, #3, • • • that v0 emits, then add a
tail T to v0, remove the edges {g,}, and for each g, draw an edge/ , from v,_i to r(g,)-
This procedure is referred to as adding a tail to v0. Then the desingularization F of
a graph E is the graph obtained by adding a tail to each singular vertex of E. Then it
is clear that the desingularization F is a row-finite graph with no sinks, and E and F
share the same loop condition, that is, E satisfies condition (L) (respectively, (K))
if and only if F satisfies condition (L) (respectively, (K)). Moreover it is proved
[6, Theorem 2.11] that the graph C*-algebra C*(E) is isomorphic to a full corner
pC*(F)p of C*(F), where p := YIVZE0 a" *s t n e projection in the multiplier algebra
of C*(F) and [te, qv | e e F\ v e F0} is aCuntz-Krieger F-family generating C*(F).
Hence RR(C*(E)) = 0 if and only if RR(C*(F)) = 0.

Recall [3] that if / is an ideal of a C*-algebra A then RR(A) = 0 if and only if
RR(l) = RR{A/I) = 0 and every projection in A/1 lifts to a projection in A. Then
we have the following proposition.

PROPOSITION 3.2 (see [9, Theorem 4.3]). IfRR(C*(E)) = 0 then E satisfies con-
dition (K).

PROOF. By considering the desingularization of E we may assume that £ is a
row-finite graph with no sinks. If E has a simple loop a = a ia 2 • • • ocn with no exits,
the vertex subset H = {s{oij) \ j = 1 , . . . , n] is hereditary and by Theorem 3.1 (b)
the C*-algebra C*(G) is a full corner of the ideal /w, where

G := (G° = / / , G1 = [e e El | s(e) e G0}).
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But G consists of the single loop or and hence C*(G) is isomorphic to C(T) <g> Mn

and so RR(C*(G)) ^ 0. Thus RR(IH) ^ 0, which contradicts to the assumption
that RR(C*(E)) = 0. Therefore E must satisfy condition (L). Suppose E does not
satisfy condition (K), and let v be a vertex lying only one loop a. Let H be the
smallest saturated hereditary vertex subset containing the range vertices of the exits
of a. Then clearly H is a nonempty proper subset of E°. Then the quotient algebra
C*(E)/IH is isomorphic to the graph algebra C*(F) by Theorem 3.1 (a), where
F = (E° \ H, [e | r(e) £ H}). Since F has a loop a which has no exits in F, we see
from the first argument that RR(C*(F)) £ 0. Therefore RR(C*(E)) ^ 0. D

Let £ be a subgraph of G. Then the subgraph Ee of G obtained by adding to E all
the exits, that is, the edges e e G1 \ Ex such that s(e) = s(f) for some f e E} and
their range vertices r(e) is called the exit completion of E.

PROPOSITION 3.3 (see [9, Theorem 4.6]). Let E satisfy condition (K). IfC*(E) has
only finitely many ideals then RR(C*(E)) = 0.

PROOF. Let F be the desingularization of E. Then F also satisfies condition (K)
and C*(F) contains the same number of ideals as C ( £ ) . Since RR(C*(F)) = 0
implies RR(C*(E)) = 0 we may assume that the given graph E is row-finite and has
no sinks.

We prove the assertion by induction on n, the number of nonzero ideals of C*(E).
Ifn = 1, that is, C{E) is simple then RR(C*(E)) = 0 by [6, Remark 2.16]. Now let
n > 1, and IH be a maximal ideal of C*(E) corresponding to a saturated hereditary
vertex subset H of E°. Then C*(E)/IH = C*(F), where F = (£° \ H, {e \
r(e) £ //}). Let Fe be the exit completion of F in E. Then one can prove that
RR(C*(Fe)) = 0 by the same argument as in the proof of [9, Theorem 4.6]. Since Fe

satisfies condition (K), the subalgebra B of C*(E) generated by [pv, se | v e (Fe)°,
e € (F,)1} is isomorphic to C{Fe) by [2, Theorem 3.1]. Hence RR(B) = 0. But
C*(E) = IH + B and RR(IH) = 0 by induction hypothesis. Therefore C ( £ ) = 0
by [3, Proposition 3.18]. •

LEMMA 3.4 (see [8, Proposition 4.1]). Let E be a graph and H be a saturated
hereditary vertex subset of E°. If RR(IH)^RR(C*(E)/IH)=:0, then RR(C*(E))=O.

PROOF. We show that RR(C*(F)) = 0, where F is the desingularization of E.
Since C*(E) = pC*(F)p for a full projection p in the multiplier algebra of C*(F),
there is an inclusion preserving bijection p between the sets of ideals such that for an
ideal / in C(£ ) , p(I) (C*(F)/p(I), respectively) is strong Morita equivalent to /
(C*(E)/I, respectively), in fact, the isomorphism p is given by p(I) = pip. Also by
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[6, Lemma 3.2] the ideal IH of C*(E) is mapped to the ideal

Jft = span{^; | a, 0 € F*, r(a) = r(0) e H)

of C*(F), where H is the saturated hereditary vertex subset of F° obtained from E°
by adding the vertices on a tail added to each singular vertex in H. Now by Theo-
rem 3.1 (a) the quotient algebra C*(F)/J^ is the graph algebra C*(G) for the quotient
graph G. Since the Ko group K0(C*(F)) is generated by the equivalence classes
{[pv] | v e F0} subject to the relation [pv] = J^sM=v[p«*)] by [12, Theorem 3.1],
it follows that the quotient map C*(F) —>• C*(F)/ J^ induces the surjection from
K0(C*(F)) onto K0(C*(F)/JH). This implies that every projection in the quotient al-
gebra C*{F)/Jfi lifts to a projection in C*(F) [3, Proposition 3.15], and we conclude
that/?/?(C*(F)) = 0. •

Recall that for a subgraph F of E the loop completion tE{F) is the subgraph of
E obtained by adding all the loops based at vertices of F° to the graph F, and the
loop contraction tc{F) of F is the graph obtained by shrinking each loop in F
to a loop consisting of a single edge, [8, Definition 3.1]. Then F and lc(F) have
the same isomorphic lattice structure of hereditary subsets of vertices. Moreover [8,
Lemma 3.1] holds for row-finite graphs.

THEOREM 3.5 (cf. [8, Theorem 4.1]). Let E be a directed graph. Then the follow-
ing are equivalent:

(1) C*(E) has real rank zero.
(2) E satisfies condition (K).
(3) C*(E) has no quotients containing a corner that is *-isomorphic to Mn(C(J)).

PROOF. (1) =» (3) and (3) =>• (2) can be proved by the same arguments as in the
proof of [8, Theorem 4.1].

(2) => (1). By considering the desingularization we may assume that £ is a row-
finite graph with no sinks. Since the linear span of the elements of the formes* is dense
in C*(E), a, 0 e £*, to prove RR(C*(E)) = 0 it suffices to approximate a self-adjoint
element* = Xifinite^Sa-^+^-1 m C*(£)~ by invertible self-adjoint elements. Let F
be the loop completion of the finite subgraph consisting of edges of a's and fi's in the
expression of x and their source and range vertices, and let Fe be the exit completion
of F. Then we only need to prove that RR(C*{Fe))(- RR(C*(Fey)) = 0. But
the same proof of [8, Theorem 4.1] applies to show the assertion. Then C*(Fe)~
can be identified with the unitization of the C-subalgebra of C*(E)~ generated by
[se,pv | v e F,0, e e F*) since the subgraph Fe satisfies condition (K) and hence
the uniqueness theorem ([2, Theorem 3.1]) applies. We have shown that for each
self-adjoint element* e C*(E)~ there is a C-subalgebra B{= C*{Fe)~~) of C*{E)"
such that x € B and RR{B) = 0 , which completes the proof. •

https://doi.org/10.1017/S1446788700010211 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010211


[7] Real rank of C*-algebras associated with graphs 147

References

[1] T. Bates, J. H. Hong, I. Raeburn and W. Szymanski, 'The ideal structure of the C*-algebras of
infinite graphs', Illinois J. Math. 46 (2002), 1159-1176.

[2] T. Bates, D. Pask, I. Raeburn and W. Szymanski, 'The C*-algebras of row-finite graph', New York
J. Math. 6 (2000), 307-324.

[3] L. G. Brown and G. K. Pedersen, 'C*-algebras of real rank zero', / Fund. Anal. 99 (1991),
131-149.

[4] J. Cuntz, 'A class of C*-algebras and topological Markov chains II: reducible chains and the
Ext-functor for C*-algebras', Invent. Math. 63 (1981), 25^4.

[5] J. Cuntz and W. Krieger, 'A class of C*-algebras and topological Markov chains', Invent. Math.
56 (1980), 251-268.

[6] D. Drinen and M. Tomforde, 'The C*-algebras of arbitrary graphs', Rocky Mountain J. Math., to
appear.

[7] N. J. Fowler, M. Laca and I. Raeburn, 'The C*-algebras of infinite graphs', Proc. Amer. Math. Soc.
128(2000), 2319-2327.

[8] J. A Jeong and G. H. Park, 'Graph C*-algebras with real rank zero', /. Fund. Anal. 188 (2001),
216-226.

[9] J. A Jeong, G. H. Park and D. Y. Shin, 'Stable rank and real rank of graph C*-algebras', Pacific J.
Math. 200(2001), 331-343.

[10] A. Kumjian, D. Pask and I. Raeburn, 'Cuntz-Krieger algebras of directed graphs'. Pacific J. Math.
184(1998), 161-174.

[11] A. Kumjian, D. Pask, I. Raeburn and J. Renault, 'Graphs, groupoids, and Cuntz-Krieger algebras',
J. Fund. Anal. 144 (1997), 505-541.

[12] D. Pask, 'Cuntz-Krieger algebras associated to directed graphs', in: Operator Algebras and
Quantum Field Theory (Roma, 1996) (Internat. Press, Cambridge, MA, 1997) pp. 85-92.

[13] W. Szymanski, 'Simplicity of Cuntz-Krieger algebras of infinite matrices', Pacific J. Math. 199
(2001), 249-256.

BK21
Mathematical Sciences Division
Seoul National University
Seoul 151-742
Korea
e-mail: jajeong@math.snu.ac.kr

https://doi.org/10.1017/S1446788700010211 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010211

