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Abstract

Understanding the properties of lower-carbon concrete products is essential for their effective utilization. Insufficient
empirical test data hinders practical adoption of these emerging products, and a lack of training data limits the
effectiveness of current machine learning approaches for property prediction. This work employs a random forest
machine learning model combined with a just-in-time approach, utilizing newly available data throughout the
concrete lifecycle to enhance predictions of 28 and 56 day concrete strength. The machine learning hyperparameters
and inputs are optimized through a novel unified metric that combines prediction accuracy and uncertainty estimates
through the coefficient of determination and the distribution of uncertainty quality. This study concludes that
optimizing solely for accuracy selects a different model than optimizing with the proposed unified accuracy and
uncertaintymetric. Experimental validation compares the 56-day strength of two previously unseen concrete mixes to
the machine learning predictions. Even with the sparse dataset, predictions of 56-day strength for the two mixes were
experimentally validated to within 90% confidence interval when using slump as an input and further improved by
using 28-day strength.

Impact Statement

This paper demonstrates that machine learning can predict concrete strength, even for small datasets, by utilizing
new test results as they become available over the concrete lifetime. This has important implications for
accelerating the decision-making process currently adopted in concrete practice, accelerating the adoption of
novel low-carbon materials with limited test data. Furthermore, the machine learning methodology developed in
this paper, including a newly proposed accuracy-uncertainty metric to compare various machine learning
models, has application to the broader field of emerging materials design, allowing bespoke materials to be
designed rapidly for particular applications.

1. Introduction

Concrete usage causes around 8% of global greenhouse gas emissions, primarily due to the production of
ordinary Portland cement (OPC) (Turner and Collins, 2013; Miller et al., 2021). Efforts are underway to
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reduce and replace OPC with alternative materials. Lower carbon OPC replacement materials include
calcined clay, ground granulated blast furnace slag (GGBS), and other supplementary cementitious
materials. Extensive historical testing of OPC-based mixes enabled researchers to establish general
relationships between the constituent proportions and the properties of the resulting concrete. From this,
prescriptive design principles are used in many aspects of concrete mix formulation, ensuring appropriate
short-term and longer-term properties, including strength and durability (Teychenne et al., 1997).

Current guidelines for OPCmixes may not reflect the performance of newly developed concrete mixes
that incorporate novel materials to reduce OPC content and embodied carbon. Experimental testing of
lower carbon mixes, including such materials, can reduce uncertainty, but testing all possible mixes is
prohibitively time-consuming and expensive. Therefore, accurate predictive methods are required to
reduce experimental testing requirements. Machine learning is a powerful tool that can capture complex
non-linear relationships between inputs (such as mix proportions) and outputs (desired physical proper-
ties) from historical data, even if the available data is sparse and noisy (Conduit et al., 2017, 2018, 2019).
The approach has been successfully used to predict the physical properties of many different materials
(Bhadeshia et al., 1995; Sourmail et al., 2002; Agrawal et al., 2014; Ward et al., 2016, 2017; Kim et al.,
2018), including concrete (Taffese et al., 2015; Chaabene et al., 2020; Prayogo et al., 2020; Liu et al.,
2021; Tran et al., 2022). Furthermore, machine learning has been exploited to design concrete with high
confidence in meeting requirements (Forsdyke et al., 2023).

One of the most important properties of concrete is the compressive strength, which increases over
time. In practical settings, strength is conventionally assessed at 28 days via compressive testing, but a
target strength at 56 days can also be specified, particularly for materials with lower early-age strength
development. Machine learning algorithms are increasingly being used to predict concrete compressive
strength for mixes with a range of OPC replacement materials, including fly ash (Chou et al., 2014; Deng
et al., 2018; Young et al., 2019; Feng et al., 2020; Khursheed et al., 2021; Salami et al., 2021; Wan et al.,
2021; Nguyen et al., 2021a; Liu, 2022; Lee et al., 2023; Li et al., 2023; Pakzad et al., 2023; Hariri-Ardebili
et al., 2024), blast furnace slag (Chou et al., 2014; Feng et al., 2020; Salami et al., 2021; Wan et al., 2021;
Nguyen et al., 2021a; Lee et al., 2023; Li et al., 2023; Hariri-Ardebili et al., 2024) and other materials
including silica fume, metakaolin and rubber (Chou et al., 2014; Hadzima-Nyarko et al., 2020; Mansouri
et al., 2022). Some attention has also been given to predicting the properties of high-strength mixes
(Nguyen et al., 2021b), binary and ternary blended concretes (Murthy et al., 2024) and self-compacting
mixes (Chakravarthy et al., 2023) using machine learning algorithms.

Despite a wealth of academic literature in this area, the adoption of machine learning models in
practical settings remains limited. Most existing predictive tools have been developed using large test
banks (greater than 1000 data points) offering high prediction accuracy. Due to the rapid introduction of
new materials and the evolving nature of concrete mixes, there will be limited data for each OPC
replacement material. As such, prediction models must be robust for smaller datasets, with highly
accurate strength predictions, but also realistic uncertainty estimates.

From a review of the 20 articles highlighted in the area of machine learning strength prediction, it
emerges that existingmodels commonly rely on themix aggregates, binder (ordinary Portland cement and
other cementitious materials), and water contents to estimate strength at a specific age (Figure 1). Due to
the increasing complexity of concrete mix behaviour and the limitations of traditional mix design
principles, it may be necessary to include more than three primary input variables to obtain accurate
predictions for a variety of concrete mixes with varying materials, especially when test data is sparse.
Therefore, this work proposes utilizing information obtained along the concrete life-cycle, such as fresh
state measurements, to improve strength predictions without having to wait extended periods. This
potentially reduces the risk of adopting mixes with sparse historical data, given strength estimations can
be updated in real time.

Practitioners need good estimates of model uncertainty to be confident in the prediction outputs and to
assess the risk profile of different concrete products. Most existing prediction models assess performance
using a single accuracymetric, i.e., how close on average all of the predictions are to the actual strength. A
measure of how trustworthy any particular prediction is, i.e. its uncertainty, is currently limited.
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Reviewing existing machine learning models revealed that most work considers a very limited range of
accuracymetrics (Alkayem et al., 2024). Almost all of the papers relied solely on accuracymetrics such as
coefficient of determination R2, mean absolute error, or root mean square error, to compare model
performance (Chou et al., 2014; Chopra et al., 2018; Deng et al., 2018; Young et al., 2019; Chaabene et al.,
2020; Feng et al., 2020; Hadzima-Nyarko et al., 2020; Pham et al., 2020; Nunez et al., 2021; Salami et al.,
2021; Wan et al., 2021; Nguyen et al., 2021a; Han et al., 2022; Khan et al., 2022; Liu, 2022; Mansouri
et al., 2022; Chi et al., 2023; Lee et al., 2023). A very small number of papers directly considered the
uncertainty inmodel predictions (Pakzad et al., 2023; Hariri-Ardebili et al., 2024).Where uncertainty was
considered, it was to minimize prediction uncertainty, rather than assess the quality of uncertainty
estimates and metrics such as the scatter index were adopted. From this review, it is clear that the practical
considerations of applying machine learning for concrete strength prediction are often overlooked,
resulting in predictive tools that are insufficiently robust for real-world use.

In this work, a sparse dataset (fewer than 50 data points) is adopted containing both OPC and GGBS
materials to train a machine learning model to predict concrete compressive strength. The dataset used in
this study is comparable to what a practitioner would have access to for an emerging lower-carbon
material. This work aims to determine howmachine learningmodels can be informed in real time over the
life cycle of the concrete product as newly obtained information, such as fresh state measurements or
earlier age strength data, becomes available. To do this, the following objectives are addressed:

• Which properties are most helpful to predict longer-term (56-day) strength?
• When predicting the strength of concrete mixes with OPCwith or without GGBS binders, are better
predictions achieved when using datasets separated by binder type or a single unified dataset?

• What is the role of uncertainty in the performance assessment of machine learning models and for
concrete strength prediction? Can a broader range of predictive performance measures, including
accuracy and uncertainty, be effectively captured in a single metric?
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Figure 1. Prevalence of model input variables used to predict compressive strength in the literature
(Chou et al., 2014; Deng et al., 2018; Young et al., 2019; Feng et al., 2020; Hadzima-Nyarko et al., 2020;
Pham et al., 2020; Khursheed et al., 2021; Nunez et al., 2021; Salami et al., 2021; Wan et al., 2021;
Nguyen et al., 2021a; Han et al., 2022; Khan et al., 2022; Liu, 2022; Mansouri et al., 2022; Chi et al.,

2023; Lee et al., 2023; Li et al., 2023; Pakzad et al., 2023; Hariri-Ardebili et al., 2024).
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This paper is organized into several sections to achieve its objectives. Section 2 highlights the key
properties of concrete throughout its life cycle and reviews the correlations between various concrete
properties within the adopted dataset. Initially, the correlations for fresh state properties are examined
separately for Ordinary Portland Cement (OPC) only mixes and mixes containing Ground Granulated
Blast Furnace Slag (GGBS). This is followed by an assessment of the correlations within a unified dataset
that includes both types of binder materials. Guidance is presented for processing datasets for property
prediction in practical settings. Section 3 discusses the random forest machine learning methodology
employed in this study. It begins with an overview of the two-layer model and the decision tree process.
Next, the accuracy and uncertainty metrics are evaluated, and a unified accuracy-uncertainty metric is
proposed. Finally, leave-one-out cross-validation is performed to optimize model performance. In
Section 4, two previously unseen concrete mixes are used for experimental validation of the proposed
approach, demonstrating the advantages of the just-in-time prediction method. Section 5 addresses the
limitations of the presented approach and discusses potential future applications of this work within the
concrete industry and beyond.

2. Key concrete properties

This section discusses the key properties of concrete, which change throughout its lifecycle from the
fresh to hardened state. Correlations between the properties are then reviewed. After the design and
mixing of the constituent materials, concrete is initially in a fluid state for the first few hours (fresh state)
and then solidifies into a hardened state (Figure 2). Because of the different states passed through,
several performance measures are used throughout the life cycle of concrete. Research has shown that
shorter-term fresh-state performance impacts longer-term performance due to compaction effects and

Figure 2. Life cycle of concrete, frommixing to the hardened state, with the step-wise prediction approach
and decision tree highlighted at each concrete age.

e37-4 Bahdan Zviazhynski et al.

https://doi.org/10.1017/dce.2025.10018 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10018


microstructure development (Lydon, 1972; Neville, 1988). Fresh state testing, therefore, may aid
understanding of the development of hardened state properties, leading to the early identification of
issues in the later stages of the life cycle of a concrete product (Tattersall, 1991).

Figure 2 outlines a flow chart of how longer-term compressive strength predictions could be updated
when new information becomes available over the life cycle of the concrete product. This offers a
mechanism to reduce risk via several decision stages and, therefore, increase the adoption of mixes
whose behavior is relatively unknown. The most basic input for the strength predictions is the mix
constituents. Inputting solely this information to the machine learning model is advantageous as
predictions can be performed before mixing. However, for novel mixes, these inputs alone will likely
cause the prediction output to have large uncertainty as the training data will be primarily formed of
traditional concrete mixes whose behaviour may not be representative of emerging materials. If large
prediction uncertainty is observed, the next step is to update the strength predictions with fresh state
results (such as slump testing)measured at the placement stage. Updating the strength predictions at this
stage is advantageous as a decision can be made whether to proceed with the pour based on the
improved estimates of strength and uncertainty. If the pour proceeds based on the output of this
prediction step, then the strength predictions can be updated with the hardened state strength results
taken at early ages. Progressively, the strength predictions will be closer to the actual compressive
strength, with reduced uncertainty in the estimates. This step-wise prediction approach is adopted in this
paper, with the experimental validation demonstrating the improved prediction performance as the
model is updated with new information in real time.

First, in Section 2.1, we describe the preparation of concretemixes used in the dataset and experimental
validation performed in this study. Second, in Section 2.2, we describe fresh state performance testing of
the mixes. Third, in Section 2.3, we set out hardened testing following the setting process of the mixes.
Finally, in Section 2.4, we describe the correlations between the concrete properties observed in the sparse
dataset, including mix proportions, fresh state properties, and hardened state properties, to form a sound
basis for developing the machine learning model.

2.1. Preparation of concrete mix dataset

A total of 29 concrete mixes, 20 of which had 56-day strength data, were produced to form the training
dataset (see the Supplementary Material) adopted in this study. These concrete mixes were produced in
the University of Cambridge Civil Engineering Building laboratories. The experimental series adopted
CEMI 52.5 ordinary Portland cement and sand fine aggregates with a maximum aggregate size of 2mm.
A coarse crushed aggregate with a maximum aggregate size of 10mm was also adopted. A 100-litre
planetary concrete mixer with variable rotor and drum speed was utilized throughout the test series. To
produce a suitable range of fresh and hardened state properties, the water–binder ratio (0.50–0.91), total
binder content (260–418 kg=m3), sand–aggregate ratio (0.48–0.62), aggregate–binder ratio (3.9–7.0),
and the GGBS cement replacement content of the mix (0–70%) were manipulated. These values are
typical of those used in the wider large-scale concrete activity. The full table of data is included in the
Supplementary Material.

The mix proportions, including the total binder content (ordinary Portland cement plus other
cementitious materials), water–binder ratio, sand–aggregate ratio, aggregate–binder ratio, and supple-
mentary cementitious material (SCM) percentage, were designed to achieve adequate variation in the
fresh and hardened properties and represent the diversity in mix design seen in practice, whilst
maintaining the scale of a small dataset. Several mixes exhibit comparable mix proportions but were
batched at different total volumes, replicating the real-life production processes. This also replicates the
nature of data within a practical setting, where the potential of novel mixes is scoped before scaling up
production. Where SCMs were adopted, ground granulated blast furnace slag (GGBS) was utilized,
given it is one of the primarymaterials used in practice to replace OPC and reduce embodied carbon as it
is a waste material from the steel industry. GGBS is used as an example, but the process is developed so
that it is valid for other SCMs.
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2.2. Fresh state properties

Immediately, and up to around two hours after water is added to themix, concrete is in its fresh state so that
it can flow with a relatively small applied stress (Tattersall, 1991). This allows concrete to be poured and
shaped within molds to form the desired geometry as the mix hardens. Tests are completed in the fresh
state to ensure that the concrete is suitable for placement and that a stable mix has been produced. Fresh
state testing often takes the form of the Abrams slump test, conducted in this study and in practice,
according to BS EN 12350-2 (BSI, 2019a). In this test, concrete is added to a conical mold in three layers,
with each layer tamped sequentially. The slump cone is lifted steadily to allow the material to flow due to
its weight, and the concrete is classified according to the difference between the height of the deformed
material and the height of the slump cone. This classification is termed the total slump height. Other
properties, including the rheological measures of yield stress and viscosity, can further describe the fresh
state characteristics of concrete as a non-Newtonian fluid. A concrete rheometer was used in this study to
measure yield stress and viscosity directly, although alternative easier-to-access mechanisms to derive the
rheological properties have been developed (White and Lees, 2023; White and Lees, 2025). The fresh
state properties of each mix within the adopted dataset are provided as the Supplementary Material.

2.3. Hardened state properties

Following the addition of water, a chemical hydration process begins, and over time, structural build-up
results in a hardened state as the concrete develops strength. After the design concrete strength is
specified, the actual concrete mix placed during constructionmust achieve at least this value. The strength
development of the concrete is tracked by conducting hardened state testing at various ages on 100mm ×
100 mm × 100 mm cube specimens cast at the same time as the structure. In this study, compressive
strength testing is conducted according to BS EN 12390-3 at 28 and 56 days via the application of axial
force onto a concrete cube through parallel platens (BSI, 2019b). For each concrete mix, three samples are
taken, and the maximum load reached by each sample is recorded. The average of these maximum load
values is considered as the compressive strength of the specimen. The 28-day strength is taken as an
intermediate value to be used as an input for machine learning; the 56-day strength is taken as
representative of the longer-term strength performance. The actual compressive strength values attained
via experimental testing, and the predicted strength for each mix are provided as the Supplementary
Material.

2.4. Correlations between properties

The previous sections demonstrated how the properties of concrete change throughout its lifecycle. Since
these properties pertain to the same concrete mix, they can be related to one another, which is discussed in
this section.

The correlations between properties within the dataset, calculated using the Pearson correlation
coefficient, are shown in Figure 3. Color intensity indicates the correlation coefficient, with the lightest
shade indicating the strongest positive correlation and the darkest shade indicating the strongest negative
correlation. Threematrices are presented for theOPCmixes (Figure 3a), theGGBSmixes (Figure 3b), and
the unified dataset comprisingOPC andGGBSmixes (Figure 3c). The first seven rows of thematrix (eight
rows for GGBSmixes and the unified dataset) display the proportions of the constituent materials present
in the concrete. The following four rows display the fresh state testing completed, such as the slump test.
The final three rows of the correlation matrix display the hardened state testing completed, including
density and strength measurements.

In all three datasets, the fresh state properties of the mix are only weakly correlated with mix
proportions. There is, as expected, a moderate positive correlation between water content and total slump
height during fresh state testing, which is increased in the presence of GGBS (0.51 for OPC, 0.72 for
GGBS and 0.52 for unified). There are similar physically justified negative correlations between water
content and static yield stress (�0.55 forOPC,�0.65 forGGBS, and�0.52 for unified). Viscosity ismore
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strongly correlated with the mix proportions, particularly with coarse aggregate content (0.80 for OPC,
0.56 for GGBS, and 0.75 for unified) and with aggregate–binder ratio (0.82 for OPC, 0.56 for GGBS, and
0.76 for unified). Furthermore, a strong negative correlation of �0.98 for OPC, �0.94 for GGBS, and
�0.96 for the unified dataset was observed between total slump height and static yield stress. This effect
has been observed elsewhere (Ferraris and Larrard, 1998; Laskar, 2009; White and Lees, 2023).

In the GGBS dataset, a much stronger correlation between cement content and compressive strength at
both 28 days (0.43 for OPC, 0.95 for GGBS) and 56 days (�0.30 for OPC, 0.93 for GGBS) is observed.
Combined with the fact that strong negative correlations between GGBS content and compressive
strength at both 28 days (�0.95) and 56 days (�0.94) mean that including GGBS within the mix has a
significant negative effect on strength. Therefore, GGBS mixes should be included in the training data if
this material is to be adopted in practice to enable accurate predictions of compressive strength with the
presence of a novel material.

A negative correlation between the water–binder ratio and compressive strength is expected in both
OPC and GGBSmixes (Neville, 1988; Newman and Choo, 2003; Fan et al., 2021). Increasing the water–

(a) (b)

(c)

Figure 3. (a) Correlation map for the OPC mixes within the dataset, (b) correlation map for the GGBS
mixes within the dataset, and (c) correlation map for the unified dataset. The right-hand scale bar

calibrates the correlation values.
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binder ratio means more water is available for the chemical reaction between binder and other materials,
but too much water results in weak concrete with pores and large matrix spacing. In the OPC dataset, a
much stronger and negative correlation between the water-binder ratio and compressive strength at both
28 days (�0.65 for OPC, 0.11 for GGBS) and 56 days (�0.83 for OPC, 0.05 for GGBS) is observed. The
lack of this correlation in the GGBS dataset could spuriously arise due to the small size of the dataset.
Therefore, including OPC mixes and forming a unified dataset would allow machine learning to capture
the expected fundamental relationships based on non-material specific elements while still capturing any
differences that appear due to the inclusion of alternative binder materials besides ordinary Portland
cement.

As expected, in all three datasets, the 28 day strength is highly correlated to the 56 day strength,
meaning this earlier strength measure could be used to accurately predict the 56 day strength, following
the workflow in Figure 2. Overall, Figure 3 displays strong correlations between many of the variables
within the dataset, which can be utilized by machine learning to make predictions. These correlations are
overall most accurately reflected when both GGBS and OPCmixes are included in the dataset. Therefore,
moving forward, we adopt the unified dataset to train machine learning models, and a unified dataset is
suggested for practical adoption of machine learning for emerging materials with sparse empirical data.
This section has provided an understanding of the key properties of concrete and their interrelationships.
The following section will outline the machine learning methodology used to predict concrete strength. It
will cover the training process, the performance metrics adopted for the model, and comparisons of the
model’s performance.

3. Machine learning methodology

Following the identification of the key relationships between concrete properties through its fresh and
hardened states, the machine learning methodology used to predict concrete strength and uncertainty is
discussed in this section. First, in Section 3.1, we describe the machine learning algorithm used in this
work based on the property relationships discussed previously. Second, in Section 3.2, we describe the
development of a single metric that incorporates both the accuracy of model predictions and the quality of
uncertainty estimates. Finally, in Section 3.3, we demonstrate that optimization of the single metric leads
to a model that gives overall better predictions of strength and its uncertainty. Based on the single metric,
we demonstrate that using intermediate measures such as slump as an input improves predictions of
longer-term strength (56 day strength) and its uncertainty. This informs the strategy of real-time strength
prediction, as discussed in later sections.

3.1. Model training

This section first reviews the available tools for concrete strength prediction, a process which was guided
by existing reviews of soft computing processes and the results of other prediction models for these
purposes, e.g.Alkayem et al. (2024)). Supervised learning processes are most common and examples of
widely used machine learning models are k-means clustering (Cohn and Holm, 2021), neural networks
(Hastie et al., 2001), and Gaussian processes (Tancret, 2013). This work adopts a two-layer random forest
model (Zviazhynski and Conduit, 2023). This model is computationally cheap, robust against outliers,
and can uncover non-linear relationships from sparse data. This method has been used previously to
successfully design concrete mixes (Forsdyke et al., 2023) and, when compared to k-nearest neighbor and
other models, has produced the best accuracy and more stability with less susceptibility to preprocessing
of data (Ghunimat et al., 2023; Verma et al., 2023). The Scikit-Learn Python package (Pedregosa et al.,
2011) is adopted for the random forest model.

The two-layer random forest model can be seen in Figure 4a. The first layer random forest model is
trained on the concrete mix proportions (Flow A2) to predict all of the intermediate and output variables,
such as 28-day strength, alongside their uncertainties (FlowA3). The second layer random forest model is
then used, which takes the concrete mix proportions (FlowA1) and other recently predicted variables and
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uncertainties (Flow A4) to predict the final output, such as 56-day strength (Flow A5). Random forest
model predictions are affected by their hyperparameters. In this work, to achieve the best overall
predictions of the output variable and its uncertainty, we vary the min_samples_leaf hyperparameter,
which is the minimum number of samples in a leaf of each constituent decision tree within a random
forest, which, when increased, allows it to average out the noise.

An example of fitting a decision tree with min_samples_leaf ¼ 4 is illustrated in Figure 4b. The tree
leaves are represented by green boxes, each containing at least four training data points (black points). The
resulting prediction is calculated as the average value of the output variable within each leaf and is
represented by the pink stepped line. Our final model is an ensemble of such decision trees and is called
random forest. Each decision tree within random forest is trained on a bootstrap sample from the training
set, which is obtained by repeatedly drawing an entry from the training set randomly with replacement
(Hastie et al., 2001). The differences among the bootstrap samples lead to differing decision trees that give
a range of predictions represented by the pink shaded area in Figure 4b. The predictions are averaged to
give the overall prediction along the center of the pink shaded area (without overfitting because they
average across different samples); their standard deviation is the uncertainty in the overall prediction,
which is represented by the width of the pink-shaded area. The performance of the adopted model is
reviewed in the next section.

3.2. Model performance metrics

To evaluate the performance of the developed random forest model, three metrics are used. The first
metric–R2

–captures how close the predictions are to the true values. The second metric–Γ–captures how
accurately the model estimates uncertainty. The third metric is proposed in this work, α, which combines
the first two metrics. Each of these metrics is discussed in turn.

Figure 4. (a) The two-layer random forest model. (b) A graphical description of a tree with
min_samples_leaf ¼ 4. Green boxes are tree leaves, black points are training data, the pink stepped line
is the prediction of a single tree with all data present, and the pink shaded area is the range of the

predictions from the ensemble of trees.
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3.2.1. Coefficient of determination (R2)
The coefficient of determination,R2, assesses the quality ofmodel predictions of strength. The formula for
R2 is:

R2 ¼ 1�
PN

i¼1 Yi� Ŷ i
� �2

PN
i¼1 Yi� �Yð Þ2

(1)

where Yi is the true value of strength for the ith mix of N, Ŷ i is machine learning prediction of Yi, and �Y is
the mean value of Y : R2 ranges from 1 for perfect predictions to�∞ for arbitrarily inaccurate predictions.

The coefficient of determination (R2) is chosen over other metrics, in particular the widely used
Pearson correlation coefficient (r2), because the coefficient of determination not only accounts for the
slope of the predictions versus experimental values, but also accounts for any possible shift. The Pearson
correlation coefficient, on the other hand, only reports whether there is a linear relationship between
predictions and experimental values, so it would report a perfect fit even if either the data were shifted or
had different slopes (Neter et al., 1989; Whitehead et al., 2019).

3.2.2. Distribution of uncertainty quality (Γ)
The quality of uncertainty estimates from the model is now considered. We first calculate the error in
machine learning prediction scaled by uncertainty–εi–for each mix:

εi ¼ Yi� Ŷ i

σŶ i

(2)

where Yi is the true value of strength for the ith mix, Ŷ i is the machine learning prediction, and

σŶ i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i,mlþσ2i,exp

q
is the uncertainty, calculated as the quadrature sum of machine learning uncertainty

σi,ml and experimental uncertainty σi,exp .
The values of εi are accumulated across all the predictions and then binned into a histogram. This

histogram is then compared to the histogram of a standard normal distribution, as shown schematically in
Figure 5.

When uncertainty estimates are accurate, the weight in each bin of the ε histogram and the normal
distribution histogram is equal. Therefore, the similarity between the two histograms is represented by the
distribution of uncertainty quality Γ:

Γ¼ 1
2

M
M�1

XM
m¼1

nm
N

� 1
M

����
���� (3)

where nm is the number of entries in the mth bin ofM. Bins are chosen so that the normal distribution has
equal weight of 1=M in each. The number of binsM is typically chosen to be close to

ffiffiffiffi
N

p
(Lohaka, 2007).

The quantity Γ is known as the distribution of uncertainty quality (Taylor and Conduit, 2022). The
quantity Γ ranges from 0 for perfect uncertainty estimates to 1 for poor uncertainty estimates.

3.2.3. Single metric for model performance
A single metric α that combines R2 and Γ is proposed to identify the overall best model. The metric favors
high R2 value and low Γ value, and is given by:

α¼R2�1
2
Γ (4)

The factor 12 is chosen so that variation of each term contributes approximately equally to the variation of α
(Taylor and Conduit, 2022). The final metric achieves the peak value of 1. If all predictions are shifted by a
constant, both R2 and Γ get worse, so the metric will award uncertainty estimates becoming larger, which
is the desired behavior in this scenario.
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3.3. Comparison of model performance

In the previous section, a combined performance metric integrating accuracy and uncertainty measure-
ment was introduced. This section utilizes this metric to evaluate the performance of the proposed random
forest model. The machine learning model has hyperparameters that must be selected to give optimal
model performance. In order to select hyperparameters leave-one-out cross-validation is performed
(Hastie et al., 2001): we start with a putative set of hyperparameters, train a model on all but one row
of the dataset, and then blind test against the held-out row. As shown in Figure 6, the procedure is then
repeatedN times, with a different held-out row each time, until we obtain predictions for the entire dataset
of N rows, and the accuracy of those predictions is found using the metrics R2, Γ, and α. The blind testing
in cross-validation is essential, as it ensures that we are not simultaneously training and testing the model
against the same piece of data to avoid data leakage, and to not overfit the training data, and thereby

Figure 5. Binned distribution of ε (magenta rectangles) and standard normal distribution (white
transparent rectangles).

Figure 6. (a) Schematic of leave-one-out cross-validation. Gray squares are entries in the existing data
and magenta squares are the test entries for each fold. (b) Model performance for different values of

min_samples_leaf .
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replicating the real-life usage of the machine learning model to design a concrete formulation that has
never before been produced. The suggested hyperparameters are then adjusted and the metrics R2, Γ, α
recomputed iteratively until the hyperparameters that give the best metric are found, here, we focus on the
αmetric. Below we illustrate the procedure by focusing on just one hyperparameter, which also serves to
highlight the benefits of optimizing the α metric.

We vary the min_samples_leaf hyperparameter of the model, which is the minimum number of
samples in a leaf of each tree within a random forest, and identify its values that lead to the optimum R2, Γ,
and α for the 56-day strength prediction. The metrics for each value of min_samples_leaf considered are
shown in Figure 6.

The table in Figure 6 shows that min_samples_leaf ¼ 1 it offers the highest quality of predictions R2

but a relatively poor quality of uncertainty Γ. Increasing min_samples_leaf to 2 better averages the noise,
so gives an improvement in Γ, but a relatively small decrease in R2, resulting in the best value of α.
Therefore, the model selected by optimizing R2 is generally different from the model chosen by
optimizing α. This conclusion indicates that the inclusion of uncertainty quality affects the appropriate
selection of the machine learning model. This has significant implications for previous work that has
omitted consideration of the quality of the uncertainty estimates. Therefore, going forward, we consider
the performance metric α, as α incorporates both R2 and quality of uncertainty as defined in Equation 4.
This metric is calculated during the leave-one-out cross-validation procedure, and model selection
determines the hyperparameters that maximize its value.

The input variables that yield the best overall results for strength prediction are now investigated, using
the previously proposed just-in-time approach. Table 1 demonstrates model performance depending on
whether slump and/or 28 day strength inputs are used.Mix proportions include ordinary Portland cement,
GGBS, fine aggregate, coarse aggregate, and water content used alongside the water-binder, sand-
aggregate, and aggregate-binder ratios. The last row of the table shows the results for 56-day predictions
when 28-day strength is included as an additional input. For each set of inputs and the output, the best
value of min_samples_leaf is selected by optimizing α on leave-one-out cross-validation. This value of
min_samples_leaf was different from the value of min_samples_leaf that optimizes R2 for 28-day
predictions using slump and 56-day predictions without using slump.

Including slump improves R2 from 0.820 to 0.848 and also improves Γ, which reduces from 0.207 to
0.172, demonstrating the utility of fresh-state concrete properties for 28-day strength predictions. The
inclusion of slump as an input for 56 day strength predictions improves Γ (0.200 to 0.133) at a cost of a
marginally smaller R2 (0.834 to 0.821). The noise observed in the slump measurements reflects the
underlying variability of concrete constituents mixed together and is captured by the model, resulting in
better uncertainty estimates for strength. When 28-day strength is used as an input to predict 56-day
strength, we see an improvement in R2 from 0.821 to 0.897, driven by the strong correlation between 28-
day strength and 56-day strength.We show the performance of this final model in Figure 7, where we plot
predicted versus experimentally measured 56-day strength. We observe that predictions agree with
experimental results within model uncertainty, confirming the strong correlations between properties
and the utility of fresh-state measurements to predict strength using the random forest model.

Table 1. Model performance for different inputs and outputs

Day of strength prediction Uses slump as input? Uses 28-day strength as input? R2 Γ α

28 No N/A 0.820 0.207 0.717
Yes N/A 0.848 0.172 0.762

56 No No 0.834 0.200 0.734
Yes No 0.821 0.133 0.754

56 Yes Yes 0.897 0.200 0.797
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The effectiveness of this approach to predict the performance of unseen concrete mixes is evaluated in the
following section.

4. Experimental validation

Given the optimization of the machine learning model in the previous section, this section considers the
performance of the model to predict the strength of previously unseen concrete mixes. In particular, the
benefit of incorporating intermediate data (slump and earlier age strength) to improve longer-term
strength predictions and confidence intervals of the two concrete mixes shown in Table 2 is considered.
The two mixes are expected to have significantly different compressive strengths and, hence, represent a
good opportunity to test the predictions of the developed model across a strength range. Furthermore,
these mixes are interesting from a concrete technology perspective as they both contain high levels of
OPC replacement materials (50% GGBS content) and, therefore, have a lower carbon content compared
to OPC-only mixes. Mix B contains a low aggregate-binder ratio of 3.0, so it would be of particular
interest to practitioners as compressive strength is expected to increase with a decreased aggregate-binder
ratio and hence offers an opportunity to somewhat offset the reduced strength offered by GGBS inclusion
while maintaining sustainability credentials (Poon and Lam, 2008). Furthermore, this mix sits outside the
binder content and aggregate-binder ratio within the training data, so it offers an opportunity to test the

Figure 7. The predicted versus experimental 56 day strength with model uncertainty (blue points). The
magenta line shows the ideal trend.

Table 2. Comparison of Mix A, Mix B, and training data parameters

Property Mix A Mix B Training data

Percent OPC replacement (%) 50 50 0–70
Total binder content (kg/m3) 338 512 260–418
Aggregate–binder ratio 5.0 3.0 3.9–7.0
Water–binder ratio 0.67 0.49 0.50–0.91
Sand–aggregate ratio 0.50 0.50 0.48–0.62
Total slump height (mm) 150–230a 150–230a 40–240
28 day compressive strength (MPa) 30a 40a 24.5–51.4
aThe property target values.
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extension capabilities of the model in the presence of sparse training data, replicating practical conditions.
The mix proportions and test results attained during the experimental series are shown in Table 3, and
further details are provided in the Supplementary Material.

Machine learning predictions of 28-day strength and the experimental value of compressive strength
obtained forMixA are presented in Figure 8a.Without using slump as an input, machine learning predicts
a 90% confidence interval that does not overlap with the 90% confidence interval of the experimental
result. When adding slump as an input, machine learning takes advantage of the additional information to
not only give a predicted strength that is closer to the experimental value but also a more realistic
uncertainty estimate, which results in a 90% confidence interval that includes the experimental value. This
is advantageous given the predicted strength is above the experimental results in both models. The
machine learning predictions of 28 day strength and its experimental value for Mix B are presented in
Figure 8b. Both models give 90% confidence intervals that include the experimental value. However,

Table 3. Mix composition and fresh and hardened testing results for the experimental series

Property Mix A Mix B

Mix proportions
OPC (kg/m3) 169 256
GGBS (kg/m3) 169 256
Total binder content (kg/m3) 339 512
Fine aggregate (kg/m3) 847 768
Coarse aggregate (kg/m3) 847 768
Water (kg/m3) 227 249
Aggregate–binder ratio 5.0 3.0
Water–binder ratio 0.67 0.49
Sand–aggregate ratio 0.50 0.50
Fresh state measurements
Total slump height (mm) 180 150
Hardened state measurements
Mean hardened density (kg/m3) 2270 2275
Day compressive strength (MPa) 28:0 ± 0:6 39:3 ± 1:0
Day compressive strength (MPa) 32:8 ± 0:9 43:7 ± 0:9

(a) (b)

Figure 8. Predictions of 28-day strength for (a) Mix A using the model without slump (blue) and model
with slump (orange) and (b) Mix B using the model without slump (blue) and model with slump (orange).

Small error bars represent standard deviation of predictions, large error bars correspond to 90%
confidence intervals of predictions. Dashed vertical line is the experimental value, and gray shaded area

is 90% confidence interval of the experimental value.
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error bars are large for predictions from both models. This is expected since Mix B has a formulation far
from those within the training dataset. The model with slump gives a slightly more conservative strength
prediction with a higher uncertainty, which is better for practical applications.

Themachine learning predictions of 56-day strength and the experimental value of compressive strength
obtained forMixA are presented in Figure 9a. First of all, prediction from themodel that optimizes α agrees
with the experimental value within one standard deviation, whereas prediction from the model that
optimizes R2 does not. This endorses the approach to optimize α rather than R2 to select the model that
gives both accurate predictions and good uncertainty estimates. Furthermore, prediction improves as fresh
state data is added to the model input. When 28-day strength is included as input, the prediction becomes
even closer to experimental value, again supporting the live updating of strength predictions as information
becomes available. The machine learning predictions of 56-day strength and the experimental value of
compressive strength obtained forMixB are presented inFigure 9b.Again,with 28-day strength as an input,
the predicted strength significantly improved, and moreover, the uncertainty is reduced owing to the strong
correlation between 28 and 56-day strength, demonstrating the utility of the proposed machine learning
approach to accurately predict strength and associated uncertainty. In the following section, the practical
limitations and suggested uses for the developed model and approach are discussed.

5. Discussion

Following the demonstration of the utility of fresh state properties and a combined accuracy-uncertainty
metric in a newly developed machine learning approach for concrete strength prediction, this
section discusses the limitations and future improvements of the work. In Section 5.1, the limitations
of the work are reviewed. In Section 5.2, the ramifications for the concrete industry are set out, and for
machine learning practitioners in Section 5.3.

5.1. Limitations and future improvements

In this section, the key limitations of the modeling are reviewed, and suggestions for future improvements
are presented. Data is key for machine learning to train a detailed, accurate model and to produce a model

(a) (b)

Figure 9. Predictions of 56 day strength for (a) Mix A using the model without slump that optimizes α
(blue), model without slump that optimizes R2 (purple), model with slump that optimizes α (orange), and
model with slump and 28 day strength that optimizes α (green); (b) Mix B using the model without slump
that optimizes α (blue), model without slump that optimizesR2 (purple), model with slump that optimizes α
(orange), and model with slump and 28 day strength that optimizes α (green). Small error bars represent
standard deviation of predictions, large error bars correspond to 90% confidence intervals of predictions.
Dashed vertical line is the experimental value, and gray shaded area is 90% confidence interval of the

experimental value.
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with the breadth to apply to many concrete mixes. In this study, we adopted a dataset with only 29 mixes,
which is comparable to the datasets that exist in practice for materials where extensive mix trials have not
been conducted. Although the adopted dataset and training approach led to accurate strength predictions,
the developed model may have limited extension capabilities to other lower-carbon materials. The full
extension capabilities to alternativematerials, e.g., calcined clays and fly ashes, have not been tested in the
current work. Therefore, a key topic for future work is to gather more data to train the machine learning
model on alternative emerging materials, and to conduct experimental validation on the proposed
machine learning model for such materials.

The paper demonstrates the benefits of optimizing themodel that gives excellent uncertainty estimates,
and how uncertainty estimates can be effectively used to focus on robust predictions. However, the
simultaneous optimization of quality and uncertainties in the metric α, with relative weighting of 1=2 in
Equation 4, should be explored further in a theoretical work. This future work should ascertain whether
the optimum weighting factor should dynamically change. For example, when model quality is poor,
greater weight should be assigned to the quality of uncertainty to deliver an improved understanding of
robustness.

The paper focused solely on predicted strength at 28 and 56 days. However, many other properties of
interest in the commercial use of concrete, including carbon footprint, density, shrinkage, durability,
workability, permeability, and cost, are also of interest. Follow-up work should extend the proposed
machine learning approach for these properties to develop models that can be used practically in the real
world.

5.2. Uses for concrete industry digitization

This work demonstrates that using fresh state variables as inputs for machine learning can improve the
accuracy of strength predictions and the quality of uncertainty estimates in these predictions. The
uncertainty estimates provided by the tool can be compared with the risk profile of the concrete mix,
for example, the cost and development time associated with the rejection of the mix if deemed unsuitable.
For practical applications, this means that the inclusion of recently obtained slump test results as a model
input can improve the accuracy of strength predictions and estimates of uncertainty. Therefore, by
updating strength predictions with the slump attained at delivery, a real-time decision on whether to
accept the concrete mix for use at the construction site, or to revisit the question after 28 days. This is
particularly valuable in the context of growing uncertainty with smaller datasets containing concrete
mixes with a wider range of constituent materials.

Just-in-time predictions support the growing interest in digitizing the concrete sector and the broader
construction industry. Recently, methods have been developed to track concrete materials across the
supply chain, linking constituents to test data, including slump and strength testing (White et al., 2024).
This work’s machine learning strength prediction methodology can be embedded in such modular digital
frameworks. For the end user, automated strength predictions for each concrete element could be observed
and updated as time progresses, and new test data added. Furthermore, in a similar fashion to strength
prediction, the prediction of carbonation permeability or long-term durability may be aided by inter-
mediate measures such as slump height or fresh density and is, therefore, the subject of further
investigation.

5.3. Uses for machine learning applications

This work has demonstrated that it is crucial to have ametric that can assess both the quality of predictions
and uncertainty estimates concurrently to determine the optimummachine learning model. The approach
set out in this study allows for selecting the most suitable model for predicting concrete strength, and its
inputs can be adjusted as new test data becomes available to improve strength predictions. This process
can help decide whether the concrete should be approved at a construction site. This method represents a
significant improvement over previous efforts, which solely focused on prediction accuracy and relied on
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large amounts of test data that may not be available for emerging low-carbon materials. The approach to
assess both predictions and uncertainty estimates has potential applications in areas beyond concrete mix
design, including financial markets (Sharpe, 1966), cancer diagnosis (Hunter et al., 2022), additive
manufacturing (Rasiya et al., 2021), information engineering (Płaczek and Bernaś, 2014), and language
processing (Zerva et al., 2017).

6. Conclusions

Limited empirical data exist for emerging lower-carbon materials, which presents challenges in adopting
machine learning approaches to predict key properties, such as concrete strength. This work used a
random forest machine learning model to predict concrete strength when trained on a sparse dataset,
reflecting the datasets observed for emerging materials. A novel metric to assess prediction performance
that combines accuracy and uncertainty estimates is proposed to reflect the pertinent concerns of sparse
datasets. Model selection using this metric differs from the traditional method, which relies solely on
accuracy metrics.

In addition to a model assessment method that combined accuracy and uncertainty, fundamental
understanding of the concrete lifecycle has led to developing a just-in-time machine learning prediction
technique. This approach uses intermediate test results, such as slump and early age strength, as inputs for
a machine learning model, meaning long-term strength prediction accuracy and uncertainty are improved
through time. Cross validation and experimentation of unseen concrete mixes outside the sparse training
data demonstrates that the just-in-time approach results in progressively more accurate confidence
intervals of strength predictions. Predictions of 56-day strength for the two mixes were experimentally
validated towithin a 90% confidence interval when using slump as an input and further improved by using
28-day strength. Overall, these results are promising for the practical implementation of machine learning
in the concrete industry, using real-time measurements throughout the life cycle.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/dce.2025.10018.
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