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In inviscid, incompressible flows, the evolution of vorticity is exactly equivalent to that
of an infinitesimal material line-element and, hence, vorticity can be traced forward or
backward in time in a Lagrangian fashion. This elegant and powerful description is not
possible in viscous flows due to the action of diffusion. Instead, a stochastic Lagrangian
interpretation is required and was recently introduced, where the origin of vorticity at
a point is traced back in time as an expectation over the contribution from stochastic
trajectories. We herein introduce for the first time an Eulerian, adjoint-based approach to
quantify the back-in-time origin of vorticity in viscous, incompressible flows. The adjoint
variable encodes the advection, tilting and stretching of the earlier-in-time vorticity that
ultimately leads to the target value. Precisely, the adjoint vorticity is the volume-density
of the mean Lagrangian deformation of the earlier vorticity. The formulation can also
account for the injection of vorticity into the domain at solid boundaries. We demonstrate
the mathematical equivalence of the adjoint approach and the stochastic Lagrangian
approach. We then provide an example from turbulent channel flow, where we analyse
the origin of high streamwise wall-shear-stress events and relate them to Lighthill’s
mechanism of stretching of near-wall vorticity.

Key words: turbulence simulation, general fluid mechanics

1. Introduction
Vorticity and vortex lines have often been advocated as key to the very difficult problem
of fluid turbulence, by scientists such as G. I. Taylor (Taylor 1932; Taylor & Green 1937;
Taylor 1938), M. J. Lighthill (Lighthill 1963) and G. L. Brown & A. Roshko (Brown &
Roshko 1974, 2012). Quoting directly from the latter authors:
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‘An understanding of the mechanics is most likely to be obtained from the vorticity.
The subject stands at the beginning of a new era in which both LES and DNS
calculations can provide details of the vorticity field and the fluxes of vorticity
(vortex force).’ (Brown & Roshko 2012).

Much of the power and appeal of vorticity arises from its deep Lagrangian properties for
ideal fluids, known since the 19th century from the classical works by Cauchy (1815),
Helmholtz (1858), Kelvin (1868) and Weber (1868). Unfortunately, the ideal Lagrangian
vorticity invariants of Cauchy and Kelvin–Helmholtz are not conserved for real-world
viscous flows, even in the limit of very high Reynolds number, where the viscous effects
might naïvely be assumed to negligible. Several experimental and numerical studies have
verified that the material properties of vortex lines for ideal flow are not observed to hold
in such turbulent flows (Luthi et al. 2005; Guala et al. 2005, 2006; Chen et al. 2006;
Johnson & Meneveau 2016). It is of course easy to incorporate viscosity into the Eulerian
description of vorticity by the Helmholtz equation. However, the direct connection to the
ideal vorticity dynamics is then lost and intuitive Lagrangian arguments for turbulent flow
such as those made by Taylor & Green (1937); Taylor (1938) and by Lighthill (1963) appear
then baseless and doubtful.

A fundamental advance was made, in our opinion, by Constantin & Iyer (2008) and
Constantin et al. (2011), who discovered that the remarkable Lagrangian properties
of vorticity for ideal Euler flows carry over to viscous Navier–Stokes in a stochastic
formulation. In this approach, the equations for deterministic Lagrangian particle
trajectories are perturbed by a Brownian noise which represents the viscous diffusion of
vorticity, and averaging over the realisations of this process then recovers the vorticity of
the viscous Navier–Stokes solution. This stochastic approach is widely used to represent
diffusion in applied mathematics (Oksendal 2013), and also in engineering modelling
(Sawford 2001) and theoretical physics analysis (Bernard et al. 1998) of passive scalar
advection. The original paper by Constantin & Iyer (2008) for flows in a periodic
domain considered forward-in-time stochastic trajectories and averaged all vorticity
vectors arriving, stretched and rotated, to the same final point. The second work by
Constantin et al. (2011) considered wall-bounded flows and used an equivalent formulation
by backward-in-time stochastic trajectories which all emanate from the target point, with
vorticity vectors then transported forwards along these paths and averaged. The conceptual
difference between the inviscid and viscous viewpoints is illustrated in figure 1. Vortex
lines are plotted at three time instances in the vicinity of the wall in turbulent channel
flow. In panel (b), the naïve inviscid interpretation regards the red line as a material line.
The correct, stochastic Lagrangian interpretation is in panel (c). The vorticity identified
by the red point at the terminal time is traced back using the stochastic trajectories,
four of which are shown. The earlier vorticity vectors at the tips of these trajectories are
then transported forward, tilted and stretched, and finally averaged to make up the target
value. This fact corresponds to validity of a stochastic Kelvin theorem and a stochastic
Cauchy invariant backward in time for viscous Navier–Stokes solutions (Eyink 2010). The
stochastic trajectories also illustrate that, in a viscous flow, the vorticity at the final target
point has contributions from a large spatial domain relative to the view from ideal flows.

A Monte Carlo numerical scheme to identify the origin of vorticity exploiting such
backward stochastic trajectories was developed by Eyink et al. (2020a,b). They examined
the precursors of a low- and a high-vorticity event in turbulent channel flow at Reτ =
1000, located within five viscous units above the wall. The use of Dirichlet boundary
conditions on the vorticity implied that stochastic Lagrangian trajectories stopped once
they first reached the boundary. As such, these boundary conditions, unfortunately, do
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Figure 1. Contours of streamwise wall shear stress in turbulent channel flow at Reτ = 180. (a) Stress at final
time t = T , with symbols marking the local maxima. (b) Schematic of the evolution of vortex lines in the
inviscid viewpoint at three instances t = {T − 2�t, T −�t, T }. Five vortex lines are plotted in each frame.
(c) Stochastic trajectories in backward time for the viscous flow, released at t = T from a point along the vortex
line above a stress maximum.

not permit the investigation of the origin of the wall-vorticity itself and, hence, the wall
stress. The following paper by Wang et al. (2022a) introduced the Neumann boundary
conditions on the vorticity, by using stochastic Lagrangian trajectories reflected at the wall
to sample the boundary vorticity source of Lighthill (1963). Furthermore, Wang et al.
(2022a) exploited this new stochastic representation numerically to investigate the origin
of the high wall-stress that is observed in transition to turbulence. They were able to verify
a conjecture by Lighthill (1963) that strong concentration of vorticity at the boundary must
result from spanwise stretching of spanwise vortex lines.

Despite the scientific success of the stochastic Lagrangian representation, the Monte
Carlo method suffers from a slow convergence rate, which is a serious numerical
limitation. Errors vanish only proportional to σΩ/

√
N , where N is the number of sample

realisations and σΩ is the standard deviation of the stochastic Cauchy invariant (whose
mean is conserved). This is the same slow convergence which plagues random walk
approaches for introducing viscosity in direct vortex methods to solve Navier–Stokes
(Mimeau & Mortazavi 2021). The problem is made much worse by the Lagrangian
chaos observed in turbulent wall-bounded flow (Johnson & Meneveau 2016), because the
exponential growth of vorticity in individual realisations leads to an exponential growth of
σΩ backward in time. This error growth thus requires exponentially large sample sizes N
to obtain converged results.

The Lagrangian interpretation of the origin of vorticity suggests that an Eulerian
formulation may be possible, although none has been derived in the literature. In this work,
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we will pursue such an Eulerian, back-in-time description of the origin of vorticity using
adjoint techniques. While adjoint methods are commonly adopted to compute gradients,
for example, in optimisation, flow control and data assimilation (e.g. Giles & Pierce 1997;
Bewley et al. 2001; Wang & Zaki 2021; Zaki 2025), here, we will be seeking to evaluate the
full contributions of stretching and tilting (Orszag & Patera 1983) of earlier vorticity to the
target event. Such adjoint representations can be constructed in many different ways and
it is unclear why any one should be preferred over others. We must therefore ensure that
the derived equations are mathematically equivalent to the Lagrangian representation. We
will also provide a clear physical interpretation of the adjoint representation and relate the
mathematical expression precisely to the fluid dynamics. A key advantage of an Eulerian
approach will be that it requires only the solution of deterministic partial differential
equations, which can be accomplished by standard numerical discretisation methods, and
avoids completely the slow convergence problems of Monte Carlo methods.

The derivation of the Eulerian back-in-time vorticity equation is introduced in § 2.1 and
its equivalence to the stochastic Lagrangian representation is shown mathematically in
§ 2.2. We then provide a concrete application of the method in § 3, in turbulent channel
flow where we examine the origin of the vorticity at five viscous units above maxima of
the streamwise wall shear stress as well as the origin of the stress maxima themselves. Our
analysis quantifies the contributions of tilting and stretching of the earlier vorticity and of
the wall fluxes. Our main physical conclusions are twofold: that strong near-wall vorticity
arises primarily from spanwise stretching of interior spanwise vorticity and, to a lesser
extent, from the vorticity flux at the boundary. The inefficacy of the latter mechanism is
explained using the concept of phase speed of physical fields (Sreenivasan 1988; Kim &
Hussain 1993), specifically of the wall-vorticity flux relative to the adjoint variable, and
their relative dephasing which will be explained in detail. These results, as summarised
in § 4, illustrate the fundamental new insights on vorticity dynamics that can be obtained
from our novel adjoint scheme.

2. The origin of vorticity in backward time
Our goal is to derive an adjoint equation that relates the terminal vorticity vector ω(x f , T )
at a target point in space and time to the vorticity field ω(x, s) at an earlier time s < T . We
shall do this in § 2.1 and then we explain the equivalence of this adjoint representation to
the stochastic Lagrangian representation in § 2.2.

2.1. Adjoint representation of vorticity
We start from the Helmholtz equation that governs the forward evolution of vorticity,

∂ω

∂t
+ u · ∇ω − ω · ∇u − ν∇2ω = 0, (2.1)

where ω = ∇ × u is the vorticity and u is the velocity, and ν is the fluid kinematic
viscosity. This parabolic partial differential equation is not time-reversible due to the
viscous term. As such, it cannot be solved backward in time to obtain vorticity at an earlier
time from its final value at time T . In addition, a standard approach to derive an adjoint
to the forward system would start by introducing an additional evolution equation for the
velocity. Rather than adopt this standard approach, we introduce a key assumption and
derive an adjoint equation that will be shown to be equivalent to the stochastic Cauchy
invariant. Specifically, we will freeze the forward trajectory of the velocity u(x, t), or
assume its knowledge. This step is different from the standard adjoint derivation where
variations are considered for all state variables (Giles & Pierce 1997; Luchini & Bottaro

1011 A33-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.134


Journal of Fluid Mechanics

2014, 2024). Here, we are not concerned with variations in the vorticity due to change in
the flow trajectory in state space. Instead, we are concerned with the ‘origin of vorticity’
backward in time, along a frozen trajectory in state space. This assumption was inspired by,
and is fully consistent with, the stochastic formulation as will be shown in the next section.

With the above assumption, the standard procedure for deriving forward-adjoint duality
yields the relation(

Ω,
∂ω

∂t
+ u · ∇ω − ω · ∇u − ν∇2ω

)
=

(
ω,
∂Ω

∂τ
− u · ∇Ω − ∇u · Ω − ν∇2Ω

)

+
∫

D
Ω (x, T ) · ω (x, T ) dV −

∫
D

Ω (x, s) · ω (x, s) dV

+
∫ T

s

∮
∂D

[(Ω · ω) u · n − ν ((n · ∇ω) · Ω − (n · ∇Ω) · ω)] dS dt.

(2.2)

In the above expression, the adjoint variable is the vector Ω , the space–time inner product
is ( f , g)= ∫ T

s

∫
D f · g dV dt , where dV is the volume element in the flow domain D,

dS is the area element on the boundary surface ∂D, n is the outward pointing surface
normal and τ = T − t is the reverse time. The derivation can be considered as a variational
calculation, in which Ω represents a field of Lagrange multipliers to enforce the Helmholtz
equation. Variation over ω then yields the evolution equation for the adjoint vorticity,

∂Ω

∂τ
− u · ∇Ω − ∇u · Ω − ν∇2Ω = 0. (2.3)

The remaining terms relate the vorticity field at the final time T to the initial vorticity field
at time s and the vorticity boundary conditions over the interval [s, T ]:∫

D
Ω (x, T ) · ω (x, T ) dV =

∫
D

Ω (x, s) · ω (x, s) dV

+
∫ T

s

∮
∂D

[ν ((n · ∇ω) · Ω − (n · ∇Ω) · ω)] dS dt,

(2.4)

where we have discarded the term
∫ T

s

∮
∂D(Ω · ω)u · n dSdt because it vanishes at periodic

boundaries, at no-penetration walls and at the far field if the velocity decays. To obtain
a useful representation of vorticity from (2.4), we must impose additional initial and
boundary conditions for Ω .

We now denote as Ωk the particular adjoint field which enables us to trace back from
the kth component of the vorticity vector at a point in space x f and time T to its origin.
In other words, Ωk will capture how earlier vorticity ω(x, s) was tilted, stretched and
diffused to generate ωk(x f , T ). This adjoint field is defined at t = T according to

Ωk (x, T )= ekδ
(
x − x f

)
, (2.5)

which, substituted in (2.4), yields the relation between the terminal and initial vorticity,

ωk
(
x f , T

) =
∫

D
Ωk (x, s) · ω (x, s) dV

+
∫ T

s

∮
∂D
ν

(
(n · ∇ω) · Ωk −

(
n · ∇Ωk

)
· ω

)
dSdt.

(2.6)

Hence, Ωk, k = 1, 2, 3 are Eulerian vector fields that map the corresponding kth
component of vorticity to its origin in a viscous flow.
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In the presence of solid boundaries, a choice of homogeneous Dirichlet Ωk = 0 or
homogeneous Neumann n · ∇Ωk = 0 boundary conditions can be adopted for the adjoint
vorticity. The Dirichlet condition leaves a surface integral − ∫ T

s

∮
∂D ν(n · ∇Ωk) · ω dS dt ,

where the wall-normal flux of the adjoint samples the wall vorticity over time. Equation
(2.6) then yields the solution at time t = T of the Helmholtz equation (2.1), with initial
data at time t = s and Dirichlet boundary conditions for vorticity over the interval [s, T ].
On the other hand, the zero Neumann condition leaves a surface integral

∫ T
s

∮
∂D ν(n ·

∇ω) · Ωk dS dt , where the adjoint field samples the diffusive influx of vorticity at the
wall νn · ∇ω over time. In that case, (2.6) then yields the solution at time t = T of
the Helmholtz equation (2.1), with initial data at time t = s and Neumann boundary
conditions for vorticity over the interval [s, T ]. Note that either boundary condition for
the adjoint variable can be adopted for tracing back the origin of the vorticity within
the bulk. However, only the Neumann version is compatible with the initial condition
Ωk(x, T )= ekδ(x − x f ) for a point on the wall, and hence only the Neumann boundary
condition can be adopted for tracing back the origin of the wall vorticity, or equivalently
of the wall stress.

The representation (2.6) is not unique. Other duality relations can be derived starting
from different forms of the vorticity equation, for example, by replacing the viscous
term by ν∇ × ∇ × ω and repeating the derivation. As we show in § 2.2, however, the
representation (2.6) is distinguished by the fact that it is equivalent to the stochastic
Lagrangian representation of Constantin & Iyer (2008). To facilitate the comparison, we
gather the three adjoint fields for k = 1, 2, 3, interpreted as column vectors, to form the
rows of a matrix Ω= [Ω1,Ω2,Ω3]�, which satisfies

∂Ω

∂τ
− u · ∇Ω−Ω(∇u)� − ν∇2Ω= 0. (2.7)

Rewriting the duality relation (2.6), we see that Ω acts on the initial vorticity vector and
boundary sources to give the vorticity vector at the target position and time by the formula

ω
(
x f , T

) =
∫

D
Ω (x, s)ω (x, s) dV +

∫ T

s

∮
∂D
ν (Ω (n · ∇ω)− (n · ∇Ω)ω) dS dt.

(2.8)
The physical interpretation of the Eulerian matrix Ω is most important. The field Ω(x, t)
is the volume density of mean deformation experienced by vorticity from space–time
point (x, t) to the target point (x f , T ), as will emerge from the proof of equivalence in the
following section. In particular, for a smooth Euler solution obtained in the inviscid limit,
the matrix Ω coincides with the deformation tensor D of standard continuum mechanics.
Another instructive connection in the inviscid limit is to the evolution of an infinitesimal
fluid element with volume δV = δl · δA, where δl is the line element and δA is the area
vector element. The forward vorticity vector satisfies the same evolution equation as δl ,
which is the foundation for our intuition regarding vorticity tilting and stretching. Each
row of Ω is an adjoint-vorticity vector Ω , which satisfies the same evolution equation as
δA (see (3.1.5) of Batchelor (2000), which is identical to (2.3) with τ = −t and ν = 0).
Therefore, terms such as (−∇u · Ω) have an intuitive physical interpretation as stretching
and tilting of the area vector element, i.e. enlarging and rotating the area.

In summary, Ω represents the action of advection, stretching, tilting and also viscous
diffusion on the initial vorticity and boundary source, which transforms them to produce
the target vorticity vector. As we will see by aid of an example from channel flow in § 3,
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this interpretation permits one to understand intuitively the adjoint field and to connect its
behaviour with the Lagrangian dynamics of the flow vorticity.

In § 2.2, we very succinctly review the stochastic Lagrangian representation and
explain its connection with the adjoint-vorticity equations (2.7). The proof requires basic
knowledge of stochastic calculus, and can be skipped without loss of continuity. The most
important consequence is a more precise statement of the above physical interpretation, in
terms of Lagrangian particle trajectories.

2.2. Equivalence with stochastic Lagrangian approach

In the forward Lagrangian description (Constantin & Iyer 2008), a particle position X̃
t
s(a)

depends on time t and the particle label a, where the label can be defined in terms of the
initial position X̃

s
s(a)= a at the initial time s. In the backward time approach (Constantin

et al. 2011), which is our current interest, one uses instead the back-to-label map Ã
t
T (x f ),

which starts from the terminal particle position x f at the terminal time T and traces back
to its original label a at the initial time s. The forward and inverse satisfy X̃

T
t ◦ Ã

t
T =

Id, where Id is the identity map. In presence of viscosity, this back-to-label map can be
computed by solving the backward Itō stochastic differential equation (SDE) for stochastic
Lagrangian particle trajectories,

d̂ Ã
t
T (x f )= u( Ã

t
T (x f ), t)dt + √

2ν d̂W̃(t), s < t < T ; Ã
T
T (x f )= x f , (2.9)

with dt < 0 and where W̃ is Brownian motion. A few such trajectories are plotted in
figure 1. Along these trajectories, a material element undergoes tilting and stretching
which can be encoded in the deformation matrix,

D̃ t
T (x f ) := (∇a X̃

T
t (a))

�
∣∣∣
a= Ã

t
T (x f )

= (∇x f Ã
t
T (x f ))

−�, (2.10)

and is computed by solving the ordinary differential equation (ODE),

dD̃ t
T (x f )= −D̃ t

T (x f ) · (∇u)�( Ãt
T (x f ), t)dt, s < t < T (2.11)

backward in time. We now have all the ingredients to relate vorticity at the terminal
position and time (x f , T ) to its back-in-time origin,

ω(x f , T )=E

[̃
D s

T (x f )ω( Ã
s
T (x f ), s)

]
. (2.12)

The above expression describes the terminal vorticity as the expectation over back-in-time
stochastic Lagrangian particles that all emanate from x f at time T . It is interesting to note
that the above expectation is independent of the initial time s < T . In fact, the random
variable in the expectation has been shown to be a backward martingale, or a statistically
conserved quantity backward in time. It has therefore been dubbed the stochastic Cauchy
invariant (Eyink et al. 2020a), since it generalises the invariant of Cauchy (1815) for Euler
solutions to viscous Navier–Stokes solutions.

The stochastic Lagrangian representation using backward evolution in time and the
adjoint representation of vorticity can be shown to be exactly equivalent. We start by
rewriting the above expectation as

ω(x f , T )=
∫

E

[̃
D s

T (x f )δ
3
(

x − Ã
s
T (x f )

)
ω(x, s)

]
d3x. (2.13)

1011 A33-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.134


T. Xiang, G.L. Eyink and T.A. Zaki

Since the vorticity is no longer a stochastic variable in this representation, we can move it
outside the expectation,

ω(x f , T )=
∫

E

[̃
D s

T (x f )δ
3
(

x − Ã
s
T (x f )

)]
ω(x, s)d3x. (2.14)

Comparing the above form to the duality relation in the adjoint approach, we define the
adjoint field using the backward stochastic flow as

Ω(x, t) :=E

[̃
D t

T (x f )δ
3(x − Ã

t
T (x f ))

]
, (2.15)

so that the stochastic representation (2.14) is rewritten as

ω(x f , T )=
∫

D
Ω(x, s)ω(x, s) d3x, s < T . (2.16)

This expression coincides with the adjoint representation (2.8) derived in the previous
section, in the absence of solid boundaries.

To derive the evolution equation for Ω, we evaluate the time derivative of (2.15),

∂tΩ(x, t)dt =E

[
∂t D̃

t
T δ

3(x − Ã
t
T )

]
dt +E

[̃
D t

T d̂tδ
3(x − Ã

t
T )

]
. (2.17)

The first time-derivative ∂t D̃
t
T on the right-hand side is given by (2.11), and the backward

Itō rule in used for the second term,

d̂tδ
3(x − Ã

t
T )= −(d̂t Ã

t
T ·∇x)δ

3(x − Ã
t
T )− ν∇2

xδ
3(x − Ã

t
T )dt. (2.18)

Substituting in (2.17), we obtain using (2.9) and (2.11) that

∂tΩ= −Ω(∇u)� − u · ∇Ω− ν∇2Ω, (2.19)

which coincides with the adjoint vorticity equation (2.7) after switching to reversed time
τ = T − t.

Equation (2.15) is a fundamental result of this section, which provides the direct link
between the adjoint and stochastic Lagrangian representations, and gives the precise
physical intepretation of the adjoint vorticity field Ω(x, t), as noted earlier, as the volume
density of mean Lagrangian deformation experienced by vorticity from space–time point
(x, t) to the target point (x f , T ).

The equivalence between the adjoint formulation of § 2.1 and the stochastic Lagrangian
representation applies also in wall-bounded flows. The Dirichlet and Neumann conditions
on the adjoint, introduced in the previous section, are equivalent to stochastic counterparts.
In the Dirichlet case, the stochastic Lagrangian process stops at the wall (Constantin et al.
2011; Eyink et al. 2020a), while in the Neumann case, the stochastic Lagrangian process
reflects at the wall (Wang et al. 2022a). The details are provided in Appendix A. This
equivalence enhances the importance of both methods. The adjoint vorticity field now
gains an intuitive Lagrangian interpretation, whereas the stochastic representation gains a
partial differential equation (PDE) implementation which is much more computationally
efficient than direct Monte Carlo averaging over Lagrangian trajectories.

3. Application to turbulent channel flow
The utility of the adjoint-vorticity equations (2.7) is general, as they can be used in
conjunction with (2.8) to trace back the origin of vorticity in any viscous, incompressible,
free or wall-bounded flow. To demonstrate this utility, we consider the example of
turbulent channel flow. The flow is periodic in the streamwise (x) and spanwise (z)
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Reτ Re Lx Lz Nx Ny Nz �x+ �y+ �z+

180 2800 2π π 256 384 256 4.4 0.36–1.43 2.2

Table 1. Computational domain size and grid parameters.

directions, and is bounded by no-slip walls at y ∈ {0, 2}, where lengths are normalised
by the channel half-height h�. The velocity scale is the bulk flow speed U �

B and the
Reynolds number is therefore Re ≡ U �

Bh�/ν� = 2800, where ν� is the fluid viscosity. The
corresponding friction Reynolds number is Reτ ≡ u�τh�/ν� = 180, where u�τ = √

τ �w/ρ
�

is the friction velocity and τ �w is the mean wall shear stress and ρ� is the density. We
emphasise that whenever we use the term ‘stress’ in this work, we mean the viscous shear
stress at the wall and, in particular, its streamwise component associated with drag.

The evolution of the turbulent channel flow is computed using direct numerical
simulation (DNS). The Navier–Stokes equations are advanced using a fractional-step
algorithm, where advection terms are treated explicitly using Adams–Bashforth and
diffusion terms are treated implicitly using Crank–Nicolson. The spatial discretisation
adopts a local volume flux formulation on a staggered grid (Rosenfeld et al. 1991). The
pressure Poisson equation is solved by performing Fourier transforms in the horizontal
directions and tridiagonal inversion in the wall-normal direction. The algorithm has been
extensively tested and applied widely for DNS of transitional and turbulent flows (Zaki
2013; Lee et al. 2017). Validation for channel flow was performed against the DNS data by
Kim et al. (1987), at the same Reynolds number adopted here, and was presented by Jelly
et al. (2014). The velocity field is stored throughout the flow evolution, since it is needed
for the adjoint equation (2.3). The forward vorticity is computed from the stored velocity
fields when and where needed. Specifically, when decomposing the vorticity at a target
space–time point (x f , T ) into interior and wall contributions from earlier time t = s, we
require evaluation of the vorticity field ω(x, s) and the wall vorticity or its flux within
t ∈ [s, T ].

A discrete adjoint of the Navier–Stokes algorithm is available, which satisfies forward-
adjoint duality for the velocity field to machine precision, and which has been adopted for
data assimilation in transitional and turbulent flows (Wang et al. 2019, 2022b; Wang &
Zaki 2021). We adopted the same discretisation for the numerical solution of the adjoint
vorticity equation (2.3). The only new term is the adjoint stretching ∇u · Ω . We discretised
∇u using the coordinate-free definition ∇u = (1/Vc)

∮
Sc

dScu evaluated over the cell
volume Vc with bounding areas Sc and we evaluated ∇u · Ω at cell centres. Our choice
for the discretisation of the adjoint vorticity does not garner any benefit since it is not
the dual of the effective forward vorticity equation. In this respect, it should be viewed
similarly to a continuous adjoint approach. To ensure accuracy and more specifically that
our forward-adjoint duality for the vorticity equation (2.6) is satisfied, we have adopted a
fine simulation grid (see table 1). In all the results presented herein, the forward-adjoint
duality relation (2.6) is satisfied to within less than one percent error over the time horizon
of interest.

We will focus our analysis on high-stress events on the channel wall and track their
origin in backward time. We initially identified all the stress maxima during the interval,
t ∈ [0, 500]. A probability density function (p.d.f.) of these events is shown in figure 2(a).
The two marked vertical lines identify the peak of the p.d.f. and an upper bound on the
events that we will examine, so we are not including infrequent extreme events in our
analysis. Within this range, we only considered uncorrelated wall-stress maxima, defined
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Figure 2. (a) Probability density function of all local maxima of the shear stress, during the time horizon
t ∈ [0, 500]. Vertical dashed lines mark the range of events of interest, in the range τ+

xy,max ∈ [1.6, 2.5]. (b)
An instantaneous visualisation of the wall shear stress, with uncorrelated local maxima marked by crosses. (c)
Number of uncorrelated events of maximum shear stress on the bottom wall, within the range identified in (b).

to have a separation in space and time that satisfies�x � 1 or�z � 0.15 or�t � 1. These
criteria were based on the streamwise and spanwise two-point correlations of τxy reducing
to one half, and the time interval is based on the streamwise separation and the phase speed
of the shear stress. An instance of the wall-stress contours is shown in figure 2(b), with the
uncorrelated stress events marked by symbols. The red dot is a particular event that will
be analysed in detail below. Using these criteria, the total number of uncorrelated stress
maxima is 109 and their distribution is reported in figure 2(c).

3.1. Comparison of Dirichlet and Neumann conditions
For our first demonstration of the back-in-time tracking of vorticity using the adjoint, we
will examine a single stress maxima and then proceed to report results from the ensemble
of 109 cases. To compare the choice of Dirichlet versus Neumann boundary conditions
on the adjoint variable, we must consider a point within the bulk of the fluid since only
the Neumann condition is compatible with the initial condition Ωk(x, T )= ekδ(x − x f )

sampling a point on the wall. We therefore initialise the adjoint variable above the location
of the stress maximum, at a height y+

f = 5. The particle stress maximum that we consider
here is marked by the red circle in figure 2(b).

In figure 3, we report the contributions to the dominant spanwise-vorticity at the target
point, by evaluating the terms in the integral (2.6) with k = z,

ωz
(
x f , T

) =
∫

D
Ω z (x, s) · ω (x, s) dV

+
∫ T

s

∮
∂D
ν

(
(n · ∇ω) · Ω z − (

n · ∇Ω z) · ω
)

dSdt.

(3.1)

The time horizon is chosen to be T = 30 (or T + = 347), which is equivalent to 1.92 large-
eddy turnover times h/uτ . The two panels correspond to the Dirichlet and Neumann
boundary conditions. The horizontal grey line marks the value of the target spanwise
vorticity at ωz(x f , T )= −13.5. The black solid line shows the sum of the right-hand
side terms, plotted as a function of the reverse time τ = T − t preceding the event. The
constancy of this value is a consequence of adjoint duality and the observed horizontal
line demonstrates the accuracy of our numerical method.
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Figure 3. Back-in-time contributions to the target spanwise vorticity ω∗
z =ωz(x f , T ) for (a) Dirichlet and (b)

Neumann boundary condition on the adjoint. The starting location is at y+
f = 5, above the wall-stress maximum

shown in figure 2(b) marked by a red circle. ( ) The total vorticity is evaluated from (2.8) and compared
with ( ) the reference value ω∗

z . Internal and boundary contributions: Iz
x ; Iz

y ; Iz
z ; Iz ;

. . . .Bz .

In addition, however, the reconstruction by the above formula gives precise, detailed
information about the origin of the vorticity. In figure 3, we have divided the target
spanwise vorticity into three interior contributions:

Iz
i (s)=

∫
D
Ω z

i (x, s) ωi (x, s) dV, i = x, y, z (3.2)

that result from twisting/tilting of vorticity from the i = x, y directions and stretching of
vorticity in the i = z direction, at time s < T . We also report in the figures the boundary
contribution for Dirichlet (D) or Neumann (N ) conditions:

Bz
D(s)= −

∫ T

s

∮
∂D
ν
∂Ω z

∂n
· ω dS dt =

∫ T

s

∮
∂D

Bz
D(s) dS dt, (3.3)

Bz
N (s)=

∫ T

s

∮
∂D
ν
∂ω

∂n
· Ω z dS dt,=

∫ T

s

∮
∂D

Bz
N (s) dS dt, (3.4)

arising from either the wall vorticity or its flux, respectively, over the considered time
interval [s, T ]. To indicate partial integrals of any quantity C over variables A ∈ {x, z, t},
we will adopt the notation CA

, etc.
The various contributions for the Dirichlet boundary condition are plotted in figure 3(a).

There is a very substantial increase of the wall contribution over approximately twenty
viscous time units. This back-in-time abrupt return to the wall corresponds in the forward
evolution to ‘abrupt lifting’ (Sheng et al. 2009). However, this process contributes only
approximately 50 % of the target vorticity. The rest arises from the wall only after a
much longer interval of several hundred viscous time units, corresponding to a slow
diffusion process. The interior contribution at intermediate times arises almost entirely
from Ω z

z , indicated by the red dashed line, which corresponds to the spanwise stretching
of pre-existing spanwise vorticity. By contrast, tilting and stretching make negligible
contributions. These results are consistent with the high-stress event analysed by Eyink
et al. (2020b) numerically using the stochastic Lagrangian approach. However, with the
Monte Carlo algorithm of that earlier study, conservation within a few percent was possible
for only approximately 100 viscous time units, even averaging over N = 107 sample paths.
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Figure 4. Iso-surfaces ofΩ z
z /max |Ω z

z | as a function of backward time at τ = {0.4, 1.4, 3.4} for (a) Dirichelet
and (b) Neumann boundary conditions. The line contours are the wall values for (a) ν(∂Ω z

z /∂y) and (b) Ω z
z .

The vertical axes are stretched for clarity of the visualisation.

In addition, the number of samples required for accurate reconstruction grew exponentially
in backward time, so that integrating further was prohibitively expensive. Here, we obtain
higher accuracy further back in time for much lower computational cost.

The various contributions in the case of Neumann boundary conditions are plotted in
figure 3(b). The contribution from the wall is now much less significant, and grows very
slowly and non-monotonically. Even after 300 viscous time units, the wall contributes
only 26 % of the total. Most importantly, the dominant contribution arises from interior
vorticity. Just as for the Dirichlet case, this interior contribution arises very predominantly
from Ω z

z , which corresponds to the spanwise stretching of pre-existing spanwise vorticity.
A key difference, however, is that spanwise stretching now accounts for the majority of the
total vorticity rather than the wall term. It is perhaps important to underscore that this result
is the first of its kind in two ways. First, earlier analysis of the Neumann condition using
the stochastic Lagrangian approach has only been attempted in a transitional boundary
layer, to determine the origin of skin-friction increase at the onset of turbulence spots
(Wang et al. 2022a), and has never been applied in the fully turbulent regime. Second,
the importance of the spanwise stretching on internal vorticity is precisely the mechanism
suggested by Lighthill (1963) for concentration and magnification of spanwise vorticity
in near-wall turbulence. Whether this behaviour is statistically typical, beyond this single
analysed event, is a question that we will address later in this section.

For a detailed view of the space–time origin of vorticity, we plot in figure 4 iso-surfaces
of the adjoint field Ω z

z and iso-contours of the wall terms (ν∂Ω z
z /∂y for Dirichlet, Ω z

z for
Neumann). The figure shows three time instances together, τ = {0.4, 1.4, 3.4}, which are
selected to be within the interval of fast changes in the contributions in the Dirichlet case
(see figure 3). The expanding iso-surfaces in backward time represent the spreading of the
adjoint field, which accounts for the accumulated stretching rate of earlier vorticity as it is
transported by advection and viscous diffusion. The level sets of the wall terms clearly lag
behind those of the interior. This observation is easily understood by the faster streamwise
fluid velocities at greater distances from the wall. The most prominent difference between
the two figures is related to the interior contribution. While the iso-surfaces appear similar
away from the wall, they are qualitatively different in the near-wall region. Specifically,
the iso-surfaces of the Neumann adjoint have a large lobe near the wall, which is entirely
missing for the Dirichlet case. This difference is intuitive since the Neumann condition is
akin to an adiabatic condition while the Dirichlet counterpart annihilates the adjoint at the
wall. In the stochastic formulation, the former condition reflects the particles when they
hit the wall, whereas the latter absorbs the particles and hence depletes the adjoint field.
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The total contribution to the target vorticity arises, however, not only from the adjoint
field, but also from its products with the interior vorticity and with the wall vorticity or its
flux. These initial vorticities and wall conditions are advected and diffused, stretched and
rotated to the target point, where they are fused by viscosity to yield the resultant vorticity.
These fluid dynamical processes are all precisely represented by the adjoint vorticity, or
density of the deformation field. Figures 5–9 illustrate how these processes operate in the
specific high-wall-stress event discussed thus far.

The Dirichlet case is shown first in figures 5 and 6, for the two backward times τ = 1.4
and τ = 3.4, respectively. The target point is at y+ = 5 and its horizontal coordinates are
taken as the origin in the wall xz-plane. Panels (a) of both figures focus on the interior
contribution to the target vorticity. The three panels show a side view at the target location:
(a-i)colour contours of the spanwise vorticity ωz and lines for Ω z

z ; (a-ii)a zoomed-in view
of Ω z

z and (a-iii) their instantaneous product Ω z
zωz . The last term, once integrated over

volume, is the largest interior contribution to the target vorticity even if it is decaying
while the wall value is increasing. To interpret these results, it is helpful to recall that
Ω z

z is the volume density of mean spanwise stretching. The colour contours in panels (ii)
for the two times show clearly that the adjoint backward in time samples regions further
upstream and vertically higher. The vorticity ωz, however, is strongly concentrated near
the wall, with narrow tongues ejected into the interior. Thus, the product Ω z

zωz arises
also mainly from the near-wall region, although the contours are attenuated because of the
Dirichlet condition on Ω z

z .
Panels (b) of figures 5 and 6 relate to the contribution from the wall vorticity. The three

panels show a top view in the wall plane: (b-i)colour contours of the spanwise vorticity ωz
and lines for ν∂Ω z

z /∂y; (b-ii)a zoomed-in view of ν∂Ω z
z /∂y and (b-iii) the time integral of

their product over the interval [T − τ, T ], which represents the cumulative contribution to
the target vorticity per area. Recall that the quantity in panels (b-ii) represents the density
per area and time of mean deformation of wall vorticity, which ultimately reaches the target
location. The figures clearly illustrate that the adjoint samples the wall farther upstream
backward in time. However, the product field which is the boundary contribution shown
in panels (b-iii) is retarded relative to the adjoint field and to the interior contribution in
panels (a-iii), because it is cumulative and is dominated by early times when the adjoint
field first reaches the wall.

The analogous plots in figures 7 and 8 for the Neumann case show the same event and the
same times, for direct comparison. Panels (a) in the two new figures show the analogous
interior quantities. The interior contributions may appear similar to those for Dirichlet
boundary conditions except, as already noted, there is a much larger near-wall region due
to the adiabatic condition. As a result, the interior contribution for the Neumman case
is much larger and is in fact the overall dominant term as reported in the overall duality
balance (see figure 3). The boundary contribution in the Neumann case is particularly
interesting since it is related to the vorticity flux at the wall. The relevant quantities are
reported in panels (b) of figures 7 and 8: (b-i) colour contours of the Lighthill vorticity
source (−ν∂ωz/∂y) and lines for the adjointΩ z

z ; (b-ii) a zoomed-in view ofΩ z
z and (b-iii)

the time integral of their product over the interval [T − τ, T ], which again represents the
cumulative contribution to the target vorticity per area. The Lighthill source in panels (b-i)
is notable in having values of both positive and negative sign, distinctly different from the
spanwise vorticity itself which is almost always the same sign as the mean vorticity. Since
at the wall, (−ν∂ωz/∂y)= ∂p/∂x , this quantity has a negative mean value in the pressure-
driven channel flow. However, this mean is more than an order of magnitude smaller than
the fluctuations and its relative magnitude decreases proportional to 1/Reτ . This very
small mean pressure gradient was already argued by Lighthill (1963) to be unable to
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Figure 5. Contributions to the terminal vorticity at τ = 1.4, for Dirichlet boundary conditions. (a-i) Side view
showing colour contours of the spanwise vorticity and line contours of the adjoint Ω z

z . (a-ii) Zoomed-in
view with colours showing Ω z

z . (a-iii) Contribution to the terminal vorticity by spanwise stretching Ω z
zωz .

These side-view plots are all vertically stretched. (b-i) Top view of the wall, showing colour contours of the
spanwise vorticity and lines contours of ν∂Ω z

z /∂y. (b-ii) Zoomed-in view with colours showing ν∂Ω z
z /∂y.

(b-iii) Boundary contribution Bz
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Figure 6. Same as figure 5, except showing the contributions to terminal vorticity at τ = 3.4, and the contours
levels are adjusted as marked.
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Figure 7. Contributions to the terminal vorticity at τ = 1.4, for Neumann boundary conditions. (a-i) Side view
showing colour contours of the spanwise vorticity and lines contours of the adjoint Ω z

z . (a-ii) Zoomed-in view
with colours showing Ω z

z . (a-iii) Contribution to the terminal vorticity by spanwise stretching Ω z
zωz . These

side-view plots are all vertically stretched. (b-i) Top view of the wall, showing colour contours of −ν∂ωz/∂y

and line contours of Ω z
z . (b-ii) Zoomed-in view with colours showing Ω z

z . (b-iii) Boundary contribution Bz
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Figure 8. Same as figure 7, except showing the contributions to the terminal vorticity at τ = 3.4, and the
contours levels are adjusted as marked.
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Figure 9. Comparison of the internal contributions to the terminal vorticity at the large backward time τ =
10, using (a) Dirichlet and (b) Neumann boundary conditions. (i) Side view showing contours of spanwise
vorticity, overlaid by lines of the adjoint Ω z

z . Solid and dashed line contours represent positive and negative
values of Ω z

z , respectively. (ii) Contours of the contribution of vorticity stretching Ω z
zωz . The plane is located

at the spanwise location where the target vorticity is sampled. These side-view plots are all vertically stretched.

account for the strong near-wall concentration of spanwise vorticity, writing that ‘even
in an accelerating flow, the rate of production. . . is too small’ (p. 98). The argument by
Lighthill (1963) is not entirely compelling, however, because it does not take account of the
very large fluctuating values of the pressure gradient. Nevertheless, panels (b-i,b-ii) show
that the adjoint samples vorticity sources of both signs and the cumulative contribution
may suffer extensive cancellation, and hence the small total boundary contribution in
figure 3 at early times. Notice, in fact, that for this particular example, the boundary
contributions at both times, τ = {1.4, 3.4}, have net positive sign which is opposite to
the target vorticity.

In figure 9, we directly compare the interior contributions using Dirichlet and Neumann
boundary conditions for the same event, at an earlier time τ = 10. At this time, the target
vorticity in the Dirichlet case is almost entirely from the wall, while for the Neumann
case, the majority contribution remains due to the interior. In panels (i) of these figures,
the spanwise vorticities ωz are the same, but the level sets of Ω z

z , while very similar far
from the wall, show that the Neumann adjoint field samples the near-wall region much
more densely. Because this region is also the site of the strongest magnitudes of ωz ,
the volumetric contributions Ω z

zωz plotted in panels (ii) show much larger values for the
Neumann case and is heavily localised near the wall.

Returning to figure 9(i), we may note that, at these early times, some of the contours of
Ω z

z are negative, which can be explained by adjoint chaos in the buffer layer (Wang et al.
2022b): the adjoint vorticity is advected, tilted and stretched by the turbulent velocity field.
Furthermore, to make our observations regarding the adjoint fields near the wall more
quantitative, we plot in figure 10 the L1-norms

∫
S(y) |Ω z

z | dx dz as functions of y+ and
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Figure 10. Comparison of horizontally integrated |Ω z
z | as a function of backward time, for (a) Dirichlet and

(b) Neumann boundary conditions.

backward time τ = T − t . These show a vertical spreading in y, for both the Dirichlet and
Neumann boundary conditions, as back-in-time advection extends the adjoint field upward.
There is also a strengthening of magnitudes with τ , associated with the accumulated
stretching. Most importantly, while the Dirichlet condition depletes the near-wall adjoint
field, the Neumann condition preserves the near-wall magnitudes, which corresponds to a
high density of stretching in this region. For this reason, the near-wall stretching of internal
vorticity remains the dominant term in the overall makeup of the terminal vorticity (see
figure 3).

Thus far, we have considered a particular high-stress event, and examined it in detail
using the adjoint fields with Dirichlet and Neumann boundary conditions. Whether the
reported trends are statistically robust is examined in the next section.

3.2. Ensemble analysis of spanwise vorticity above stress maxima
In the remainder of this section, we analyse the entire ensemble of 109 local stress-maxima
that were identified. To continue the comparison of the Dirichlet and Neumann adjoint
boundary conditions, we must examine a point in the interior of the fluid domain. We
therefore continue the analysis of the spanwise vorticities at y+ = 5, above these local
wall maxima. Our aim here is to identify generic features in the development of such
strong near-wall vorticities. We will then exploit the Neumann condition, which can be
applied for the analysis of vorticity points that are directly on the wall, to study the origin
of the extrema in the spanwise wall shear stress.

We begin by plotting in figure 11, as a function of reverse time τ , the two largest
fractional contributions to the target vorticity when the Dirichlet boundary condition is
adopted. In panel (a), we report the spanwise stretching of interior spanwise vorticity, Iz

z
as defined in (3.2) for i = z, and in panel (b), we plot the wall-vorticity contribution, Bz

D
as defined in (3.3). The light curves are the 109 ensemble members, and the red lines
mark the mean plus-and-minus a standard deviation. We see that many of the features
observed for the results of the single realisation plotted in figure 3(a) hold quite generally.
The entire contribution arises at very small τ (immediately before the target time) from
Iz

z and the decline in this contribution in backward time is compensated by a growth
in the contribution from Bz

D. There is remarkable similarity in the time histories for all
realisations, although with clear fluctuations and occasional large excursions. In all cases,
the contribution from spanwise stretching of interior vorticity declines to near 8 % within
a few hundred viscous times and the contribution from wall vorticity rises to near 93 % in
the same time. The development of large ω∗

z at y+ = 5 appears to occur in a very regular
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Figure 11. Ensemble of 109 target vorticity events, at y+ = 5 above a wall-stress maximum, tracked back
in time using the Dirichlet condition. Grey lines are the (a) interior vorticity stretching Iz

z =Ω z
zωz and

(b) boundary contributions to the target vorticity, normalised by the target values ω∗
z =ωz(x f , T ). ( )

Ensemble-averaged value; ( ) ± the standard deviation.
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Figure 12. Same as figure 11, except that the target vorticity is tracked back in time using the Neumann
condition.

fashion when traced back to wall vorticity, which is demonstrated by the small standard
deviation for vorticity stretching and boundary contributions in figure 11.

The analogous data for the adjoint with Neumann boundary conditions are shown in
figure 12. We again plot the fractional contributions to ω∗

z from the interior Iz
z in panel

(a) and from the boundary term Bz
N in panel (b). Note that the latter samples the wall

vorticity flux, as defined in (3.4). We see again that many of the features observed for the
results of the single realisation plotted in figure 3(b) hold quite generally. The stretching
of interior spanwise vorticity, Iz

z , accounts for an appreciable fraction of the total, whether
for the individual cases or for the average. Different from the specific realisation plotted
in figure 3, some of the curves of Iz

z persist in exceeding the target value. In addition,
while the boundary contribution Bz

N generally grows backward in time, some of the events
have the opposite sign to the target vorticity. In other words, the flux of vorticity from
the wall reduces the observed value and must be compensated by other terms. Of course,
this is quite understandable given the space plots of the vorticity source σz over the wall

1011 A33-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.134


Journal of Fluid Mechanics

1.5

(a)

1.0

(I
z z  
+

 B
z N

)/
ω

* z

( I
z z  
+

 B
z D

)/
ω

* z
τ+ τ+

ττ

0.5

0

−0.5

1.5

1.0

0.5

0

−0.5
0

0 100 200 300

5 10 15 20 25 30

(b)

0

0 100 200 300

5 10 15 20 2 05 3

Figure 13. Ensemble of 109 target vorticity events, at y+ = 5 above a wall-stress maximum, tracked back in
time showing the sum (Iz

z +Bz
D/N )/ω

∗
z of interior stretching and boundary contributions for (a) Dirichlet (D)

and (b) Neumann (N ) boundary conditions.

in figures 7–8(b-i), which reveal that the instantaneous flux takes on large values of both
signs. We know that the boundary flux contribution must grow to 100 % extremely far back
in time since all the vorticity originates ultimately at the walls. However, even at the final
time τ2 = 30 in figure 12, the mean contribution over the ensemble is only approximately
31 %. We see much larger fluctuations over the ensemble for Neuman boundary conditions
than we did in the Dirichlet case, which means that the origin of high-ωz events at y+ = 5
appears much more idiosyncratic in terms of wall vorticity flux than it does in terms of
wall vorticity. This state of affairs is reflected in the appreciable increase of the standard
deviation of the interior and wall contributions in figure 12. At early time τ ≈ 1, the
figure shows sharp distributions with Iz

z /ω
∗
z 
 1 and Bz

N/ω
∗
z 
 0, whereas at τ = 30, both

distributions have become quite broad, with Iz
z contributing 75 % of ω∗

z on average and
Bz

N contributing 31 % on average, but with standard deviations of order 54 % for Iz
z and

70 % for Bz
N . Additional statistical characterisation of the results in figures 11 and 12 are

presented in Appendix B.
In figure 13, we report the sum of the two dominant terms, namely the stretching of

interior spanwise vorticity Iz
z and the boundary contribution Bz

D/N . Figure 13(a) is for
the Dirichlet case and figure 13(b) is the Neumann counterpart. We see that the sum of
these two terms is close to ω∗

z for all reverse times, so that we can infer that the other
interior terms, Iz

x and Iz
y , are relatively small, certainly on average. In addition, for the

Neumann case, the variance in the sum is reduced relative to the individual terms (compare
figures 13b and 12).

In summary, the key contribution to the vorticity at y+ = 5, above a high-wall-stress
event, is due to the combined effects of stretching on interior vorticity and the boundary.
When the adjoint satisfies the homegeneous Dirichlet condition, it samples the wall
vorticity, which progressively becomes the more important of the two contributions in
this case (50 % by τ+ ≈ 20 and exceeds 70 % by τ+ � 50). However, this choice does
not account for the origin of that wall vorticity itself. In the Neumann case, the dominant
contribution within the entire interval of reverse time that we considered (τ+ ≤ 347) was
primarily due to the spanwise stretching of interior vorticity. The Neumann condition also
has the advantage of being applicable directly at the wall, starting from the high-stress
events themselves – the focus of the subsequent analyses.
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Figure 14. (a) Horizontally integrated interior contribution to the wall vorticity at stress maxima, as a function
of backward time. The integral is normalised by the target vorticity and ensemble averaged. (b) Distribution
of interior contributions at τ = 30, all normalised by the target value ω∗

z . ( ) The total interior contribution
(dashed line), and its spanwise Iz

z (red), wall-normal Iz
y (green) and streamwise Iz

x (blue) components.

3.3. Ensemble analysis of wall-stress maxima
Starting from each of the 109 high-stress events on the wall, we have tracked back their
origin using the adjoint approach with Neuman boundary conditions. The general trends
are similar to the results from y+ = 5, so we will here report new quantities that were not
previously discussed to expand the scope of the analysis. In figure 14(a), we report the
horizontally integrated interior contribution, normalised by the target value and ensemble
averaged over the 109 events. The contours are plotted as a function of y+ and reverse
time. The results show that the interior term is concentrated in the near-wall region,
y+ � 15. This trend is the combined effect of the adjoint vorticity being large near the
wall, as we have seen in figure 10, for example, and the vorticity being largest at the wall.
In figure 14(b), we report the distribution of the interior terms Iz

(x,y,z) and their sum, at
τ = 30. The streamwise and wall-normal contributions Iz

(x,y) are, as anticipated,
distributed near zero. The spanwise stretching term is by far the largest, accounting for
approximately 75 % of the target value. In addition, this term accounts for the majority of
the total interior contribution.

The boundary term is examined in figure 15. The distribution is of the fractional
boundary contributions from the ensemble of events, at τ = 30 or τ+ = 347. Interestingly,
this distribution has a small positive mean of approximately 0.25. To test if the small mean
value we observe arises entirely from the mean streamwise pressure gradient, we consider
the contributions from separate components of the vorticity source,

Bz
Ni (s)=

∫ T

s

∮
∂D
Ω z

i σi dS dt, i = x, y, z, (3.5)

where σi = −ν∂ωi/∂y, and furthermore decompose the spanwise term into two parts,

Bz
N z =Bz

N 〈z〉 +Bz
N z′, (3.6)

where Bz
N 〈z〉 arises from the mean source σ z = ∂ p/∂x and Bz

N z′ is from the fluctuations
σ ′

z = ∂p′/∂x . The contribution from the mean pressure gradient does have a small positive
net value of approximately 0.12, approximately half of the distribution mean but with a
very small variance (which arises solely from the variance of Ω z

z averaged over target
points). As such, this term does not account for the observed variance of Bz

N and only half
of its mean. We have found instead that Bz

N y , due to the tilting of wall-normal vorticity
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Figure 15. Distribution of boundary contributions to the wall vorticity at the stress maxima, at τ = 30, all
normalised by the target value ω∗

z . (a) Total boundary contribution Bz
N (dotted line); contribution Bz

N 〈z〉 due to
the mean streamwise pressure gradient (dark red) and contribution Bz

N y due to tilting of wall-normal vorticity
injected at the boundary (green). (b) Contributions from Bz

N z′ due to fluctuating streamwise pressure-gradient
(red) and from Bz

N x due to twisting of streamwise vorticity produced at the wall (blue).

injected at the wall, accounts for the distribution of the boundary term, as shown by the
results plotted in figure 15(a).

To understand the last observation, we note from (3.5) that a persistent correlation
between the two fields, Ω z

i and σi , is required to produce a substantial contribution to
the space–time integral for Bz

Ni . As observed already by Lighthill (1963),

σz = ∂p/∂x, σx = −∂p/∂z, (3.7)

whereas σy = −ν∂ωy/∂y is not directly related to pressure. Furthermore, it was discovered
by Kim & Hussain (1993) from numerical simulations that pressure propagates in the
buffer and viscous layers with a phase speed of approximately 13 uτ , which is higher
than the phase speed of the velocity perturbations in this region, which is only 9.5 uτ .
Thus, if the adjoint fields Ω z

i for i = x, y, z all propagate with the phase speed of the
velocity perturbations, then they will become rapidly uncorrelated with σ ′

z and σ ′
x , but

may remain correlated with σ ′
y over long times. Because the fluctuating source terms σ ′

i
have zero means with equal contributions of both signs, the decorrelation will lead to
strongly depleted contributions to Bz

N z′ and Bz
N x compared with Bz

N y at large backward
times. To test this hypothesis, we measured the phase speeds of all of the wall fields,
vorticity source σi (x, t) and wall adjoint vorticityΩ z

Ni (x, t) for i = x, y, z. For the source,
since the field is homogeneous in the streamwise direction and statistically stationary in
time, we used a standard method of space–time correlations. The results are plotted in
figure 16 and show that, as expected, σ ′

x and σ ′
z have phase speeds close to 13 uτ , whereas

σ ′
y has a phase speed of approximately 9 uτ . Since the fields of Ω z

i are not streamwise
homogeneous or statistically stationary, we used a different method. We evaluated the
horizontal shifts that maximise the correlation between fields at successive reverse times,
and thus evaluated the upstream displacement of the adjoint field as a function of τ and
then averaged this quantity over the ensemble of 109 independent samples of local stress
maxima. The results are plotted in figure 17 and show that the phase speeds of the adjoint
are approximately 9.5 uτ , similar to those of the near-wall velocity. Figures 16 and 17,
together, support our proposed explanation why Bz

N y is the dominant part of the wall
vorticity source contribution to the target vorticity.

The present analysis demonstrates that the stress extrema in channel flow are primarily
due to stretching of interior near-wall vorticity for reverse times of the order of τ+ 
 347.
The contribution of the vorticity flux at the wall, or the Lighthill source term, is relatively
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Figure 16. Two-point space–time correlation of the wall-normal flux of (a) streamwise, (b) wall-normal and
(c) spanwise vorticity. The three marked lines correspond to speeds c = {0.8, 0.59, 0.84}, or equivalently
c/uτ = {12.5, 9.2, 13.1}.
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Figure 17. Phase speed for wall adjoint vorticity in its (a) streamwise, (b) wall-normal and (c) spanwise
components. Here, xN = ∑N−1

n=1 �xn , where �xN , �zN = argmax�xN ,�zN
Cov[q(x, z, τN ), q(x +�x, z +

�z, τN +�τ)]. The three marked velocities are c = {0.59, 0.58, 0.54}, or equivalently c/uτ = {9.2, 9.0, 8.4}.

small and does not necessarily have the correct sign for individual events. On average,
this term is small, with half of its mean arising from the externally applied streamwise
pressure gradient. More interestingly, the distribution of the boundary term is essentially
set by the flux of wall-normal vorticity that is subsequently tilted to generate a spanwise
stress. The analysis highlights the incisive utility of the adjoint vorticity equation (2.8)
and its value in tracing back the origin of vorticity in viscous incompressible flows in a
manner as insightful as the original inviscid formulation, but with a rigorous account for
the influence of viscosity.

4. Conclusion
Vorticity and vortex dynamics are central to fluid dynamics as testified by modern
monographs devoted to their study (Saffman 1995; Majda & Bertozzi 2001; Wu et al.
2007). In inviscid flows, a vortex line is transported as a material line. Its advection,
tilting and stretching are represented exactly by the deformation matrix. Vorticity being
an invariant of both the forward or back in time flow maps, we can track it forward in
time to examine its evolution or backward in time to identify its origin. Once viscosity is
present, however, this elegant description is no longer possible. A vortex line is no longer a
material line. Instead, the vorticity of a point influences all other material points in forward
time and is dependent on all other points in the field at earlier time due to viscous diffusion.

The forward evolution of vorticity in a viscous fluid is governed by the well-
established Helmholtz equation. Much more recently, a stochastic Lagrangian approach
was introduced to trace back the origin of vorticity (Constantin & Iyer 2008; Constantin
et al. 2011). In that approach, stochastic particles are released from the points of interest
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and are tracked backward in time. The vorticity at the point and time of release of the
particles can then be evaluated as the expectation of the vorticities of these particles at any
earlier time, each stretched and tilted according to the total deformation that is accumulated
over the associated stochastic trajectory. Since this formula is valid for any earlier time, the
terminal vorticity is considered an invariant of the stochastic backward trajectories (Eyink
et al. 2020a). This approach requires specialised algorithms and has a high computational
cost, since the number of necessary stochastic particles grows with the backward time
horizon of interest and the Reynolds number.

In this work, we introduced an Eulerian adjoint method to determine the backward-
in-time origin of vorticity in viscous incompressible flows. A key assumption was to
freeze the velocity field along which the adjoint is evolved back in time, and the
particular adjoint representation that we present is distinguished by being mathematically
equivalent to the stochastic Lagrangian representation. This equivalence underlies the
physical interpretation of the adjoint as a volume density of mean Lagrangian deformation.
Forward-adjoint duality relates the terminal vorticity to the stretching, tilting and boundary
contributions earlier in time. We considered both Dirichlet and Neumann boundary
conditions at solid boundaries. In the former case, the adjoint samples the forward wall
vorticity itself and does not account for its origin further back in time. In the Neumann
case, the adjoint samples the boundary vorticity flux. While both approaches can be used
to analyse the back-in-time origin of internal vorticity within the fluid, only the Neumann
case can trace back the origin of vorticity directly on a wall, or the wall stress.

To demonstrate the utility of the formulation, we applied it to examine high-stress events
in turbulent channel flow, at Reτ = 180. To compare the Dirichlet and Neumann cases,
we analysed the vorticity at y+ = 5 above the local wall-shear-stress maximum, for an
ensemble of 109 independent events. In the Dirichlet case, the majority of the vorticity
can be attributed to the wall, arising within a time of approximately 50–100 viscous units.
In contrast, the Neumann interpretation shows that the vorticity at this height is due to
stretching of internal spanwise vorticity and that the wall vorticity flux makes a relatively
small contribution, which can be of the opposite sign. These results accord well with
the conjectures of Lighthill (1963) on the origin of strong near-wall vorticity in turbulent
wall-bounded flows.

The high-stress events directly on the wall were also studied, using the Neumann
formulation. The analysis examined the origin of the spanwise vorticity on the wall and
identified its origin in backward time. Even at the wall, the peaks in the spanwise vorticity
are on average 75 % due to stretching of earlier in time interior vorticity, as far back as
τ+ = 347. In comparison, the vorticity flux over this entire duration accounts for only 25 %
of the terminal value, on average. We show that approximately half of this small percentage
is due to the externally applied streamwise pressure gradient. The distribution of the
boundary term is, however, set by the flux of wall-normal vorticity, which is subsequently
tilted. The other two components of the fluctuating vorticity flux, which are associated
with the fluctuating pressure gradient on the wall, make a relatively small contribution due
to their fast phase speed relative to the adjoint field. These components can, however, be
expected to play a role when significant pressure gradient effects are at play, for example,
in bluff-body flows.
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Appendix A. Equivalence with stochastic Lagrangian approach

A.1. Neumann boundary conditions
We here briefly review the stochastic Lagrangian representation of vorticity with Neumann
boundary condition which was introduced by Wang et al. (2022a) and then establish
its equivalence to the adjoint formulation. The representation of Wang et al. (2022a)
employed the backward stochastic Lagrangian flow with reflection at the boundary, which
satisfies the backward Itō SDE (with dt < 0):

d̂ Ã
t
T (x f )= u( Ã

t
T (x f ), t)dt + √

2ν d̂W̃(t)+ νn( Ã
t
T (x f ))d̂
̃t

T (x f ). (A1)

Here, n is the outward-pointing normal as in the main text and 
̃t
T (x f ) is the backward-

in-time boundary local time density which implements the inward reflection and which is
defined formally as


̃t
T (x f )=

∫ t

T
dr

∫
∂D

dS(x) δ3(x − Ã
r
T (x f )), s < t < T . (A2)

We follow here the conventions of Drivas & Eyink (2017), who defined the boundary local
time density to be negative and backward-in-time non-increasing. In fact, this quantity
only decreases (backward in time) when the particle hits the boundary. The backward Itō
equation (A1) with reflection at the boundary can be transformed to a forward Itō equation
by time-reversal (Cattiaux 1988; Petit 1997). The reversed backward flow Ã

t
s(x f ) defined

by Ã
t
s(x f ) := Ã

t
T (x f ) with t = T + s − t, satisfies a forward Itō SDE

d Ã
t
s(x f )= u( Ã

t
s(x f ), t)dt + √

2ν dW̃(t)− νn( Ã
t
s(x f ))d
̃

t
s(x f ) (A3)

with time-reversed velocity field u(x, t) := −u(x, t), time-reversed Brownian motion
W̃(t) := −W̃(t) and boundary local time density, non-negative and non-decreasing:


̃
t
s(x f )=

∫ t

s
dr

∫
∂D

dS( y) δ3( y − Ã
r
s(x f )), s < t < T (A4)

so that �̃
t
T (x f )= �̃

t
s(x f )− �̃

T
s (x f ). This differs from the natural forward stochastic flow

X̃
t
s(a) reflected at the boundary, which is inverted by the backward flow, X̃

t
s ◦ Ã

s
t = Id,

and which satisfies instead the forward Itō equation

dX̃
t
s(a)= u(X̃

t
s(a), t)dt + √

2ν dW̃(t)− νn(X̃
t
s(a))d̂ 
̃

t
s(a) (A5)

with its boundary local time density


̃t
s(a)=

∫ t

s
dr

∫
∂D

dS( y) δ3( y − X̃
r
s(a)), s < t < T . (A6)

The transition probabilities of Ã
t
s and X̃

t
s are related, however, by

p(x′, t ′|x, t)= p(x, t |x′, t ′), (A7)
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as seen by comparing the forward Kolmogorov equation for the process Ã
t
s(x f ) with the

backward Kolmogorov equation for the process X̃
t
s(x). Thus,∫

D
p(x′, t ′|x, t) d3x =

∫
D

p(x, t |x′, t ′) d3x ′ = 1. (A8)

These relations imply therefore the important fact that both the forward and the backward
stochastic flows with reflection at the boundary preserve the fluid volume.

The formula of Wang et al. (2022a) represents vorticity in terms of the backward
stochastic Lagrangian flow and its boundary local time density as

ω(x f , T )=E

[̃
D s

T (x f )ω( Ã
s
T (x f ), s)+

∫ T

s
D̃ r

T (x f )σ ( Ã
r
T (x f ), r)d̂
̃r

T (x f )

]
, (A9)

where σ = νn · ∇ω is the boundary vorticity source of Lighthill (1963), Panton (1984)
andD̃ s

T (x f ) is the ‘deformation matrix’ which satisfies the ODE (2.11) backward in time.
It is an interesting question whether the martingale identified by Wang et al. (2022a) has
geometric meaning, or, more precisely, whether one may formulate their representation
using the geometric deformation matrix defined by D̃ s

t (x f ) := (∇a X̃
t
s(a))

�
∣∣∣
a= Ã

s
t (x f )

. It

has been proved by Andres (2011) that this derivative matrix exists pathwise, but it satisfies
the matrix ODE (2.11) only between collisions and it is projected to have no normal
component after a collision, i.e. ∇a X̃

t+
s (a)= ∇a X̃

t−
s (a)(I − nn) for t any collision time

where d
̃t
s(a) > 0. The reason for this projection is that the particle reaches an extremum

of position in the wall-normal direction at the instant of reflection. Here, we follow Wang
et al. (2022a) in defining D̃ s

t (x f ) as the solution of (2.11) with D̃ t
T (x f )= I, which then

represents cumulative stretching between reflections along the trajectory and which makes
the quantity inside the expectation in (A9) a backward martingale.

With the definitions of Ω in (2.15) and 
̃t
T (x f ) in (A2), we can rewrite the stochastic

Lagrangian representation (A9) as

ω(x f , T )=
∫

D
d3x Ω(x, s)ω(x, s)+

∫ T

s
dr

∫
∂D

dS( y)Ω( y, r)σ ( y, r). (A10)

This agrees with the adjoint formulation. Furthermore, Ω satisfies the adjoint vorticity
equation in the flow interior by the same proof as before and we must only establish
its boundary condition. Here, it is helpful to rewrite the stochastic representation of the
adjoint vorticity field as

Ω(x, t) :=E

[̃
D t

T (x f )δ
3(x f − X̃

T
t (x))

]
(A11)

in terms of the inverse map X̃
T
t , using the fact that the stochastic flow for an

incompressible velocity field preserves volume and that det[∇ X̃
T
t (x))] = 1 for almost

every x ∈ D with probability one. In that case, we obtain by the chain rule

∂

∂n
Ω( y, t)= −E

[̃
D t

T (x f )

(
∂

∂n
X̃

T
t ( y)·∇x f

)
δ3(x f − X̃

T
t ( y))

]
= 0, y ∈ ∂D,

(A12)

since (∂/∂n)X̃
T
t ( y)= 0 almost surely. See Andres (2011), § 3.4.
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A.2. Dirichlet boundary conditions
We next review the stochastic Lagrangian representation of vorticity with Dirichlet
boundary conditions, which was introduced by Constantin et al. (2011) and establish
its equivalence to the adjoint formulation. The representation of Constantin et al. (2011)
employed the backward stochastic Lagrangian flow which is stopped at the boundary. The
flow map for this process satisfies the backward Itō SDE (2.9) that was introduced earlier,
but now the evolution is stopped at the first hitting time (backward in time):

σ̃ (x f , T )= sup{t < T : Ã
t
T (x f ) ∈ ∂V }. (A13)

The representation of Constantin et al. (2011) then takes the form

ω(x f , T )=E

[̃
Dσ̃ (x f ,T )∨s

T (x f )ω( Ã
σ̃ (x f ,T )∨s
T (x f ), σ̃ (x f , T )∨ s)

]
. (A14)

We now show that this representation coincides with the adjoint formulation.
To begin, we must discuss some geometry. It is useful to assume that the domain

D is specified as the set {ϕ < 0} for a smooth function ϕ with ∂D given as the level
set {ϕ = 0}. A simple example would be D a ball of radius R centred at the origin
and ϕ(x, y, z)= log(

√
x2 + y2 + z2/R). Useful coordinates in the domain D are then

chosen as the values ψ of ϕ and arbitrary smooth coordinates y = Σ(x) on the level
sets {ϕ =ψ}. Note that the normal unit vector on level sets is n = ∇ϕ/|∇ϕ| and the
normal distance between infinitesimally separated levels is dn = dψ/|∇ϕ| so that d3x =
dn dS( y)= dψ dS( y)/|∇ϕ|. Locally, we may always solve the equation ϕ(x, y, z)=ψ

to find one of the coordinates as a function of the other two, e.g. if ϕz �= 0, then
z = ζ(x, y;ψ) and in that case, y = (x, y)= Σ(x, y, z). It then follows that dS = (x̂ +
ζx ẑ)dx×( ŷ + ζy ẑ)dy = ∇ϕ

ϕz
dx dy = n |∇ϕ|

|ϕz | dx dy = n dS( y).
With these preliminaries, we introduce into the stochastic representation (A14) the sum

of the two characteristic functions

1{dist( Ãs
T (x f )),∂D)>0} =

∫
D

d3x δ3(x − Ã
s
T (x f )) (A15)

and

1{dist( Ãs
T (x f )),∂D)=0} =

∫ T

s
dr

∫
∂D

dS( y) δ2
S( y,Σ( Ã

r
T (x f )))δ(r − σ̃ (x f , T )), (A16)

where δ2
S( y, y′) is the surface delta function given e.g. by δ2

S( y, y′)= |ϕz |
|∇ϕ|δ(x − x ′)δ(y −

y′). One then obtains the result

ω(x f , T )=
∫

D
d3x Ω(x, s)ω(x, s)+

∫ T

s
dr

∫
∂D

dS( y)Ω′( y, r)ω( y, r), (A17)

where Ω is defined in (2.15) and we have defined also

Ω′( y, r) :=E

[̃
D r

T (x f )δ
2
S( y,Σ( Ã

r
T (x f )))δ(r − σ̃ (x f , T ))

]
. (A18)

Note that Ω= O on ∂D, since the probability density for the stopped/absorbed/killed
process vanishes there. For example, see Sobczyk (1990), § 6.2.2.
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To conclude, we must show that Ω′( y, r)= −ν(∂/∂n)Ω( y, r). We first calculate
(∂/∂n)Ω( y, r). Noting that

δ3(x − Ã
r
T (x f ))= δ2

S( y,Σ( Ã
r
T (x f ))) · |∇ϕ|δ(ψ − ϕ( Ã

r
T (x f )), (A19)

we see from (2.15) that Ω(x, r)=Ω( y, ψ, r) is given by

Ω( y, ψ, r)=E

[̃
D r

T (x f ) |∇ϕ( Ãr
T (x f ))| δ2

S( y,Σ( Ã
r
T (x f )))δ(ψ − ϕ( Ã

r
T (x f ))

]
.

(A20)

Using then (∂/∂n)= |∇ϕ|(∂/∂ψ), we see that at the boundary ∂D where ψ = 0

∂

∂n
Ω( y, r)= −E

[̃
D r

T (x f ) |∇ϕ( Ãr
T (x f ))|2 δ2

S( y,Σ( Ã
r
T (x f )))δ

′(ϕ( Ãr
T (x f ))

]
. (A21)

We next calculate Ω′( y, r). For this purpose, we must use the following basic relation:

1{̃σ(x f ,T )<r} = 1{dist( Ãr
T (x f )),∂D)>0}. (A22)

Thus, we find by differentiation in r that

δ(r − σ̃ (x f , T ))= d

dr
1{dist( Ãr

T (x f )),∂D)>0}. (A23)

We can use also

1{dist( Ãr
T (x f )),∂D)>0} =

∫ 0

−∞
dψ δ(ψ − ϕ( Ã

r
T (x f ))). (A24)

Inserting these results into the definition (A18) of Ω′( y, r), we find that

Ω′( y, r)dr =
∫ 0

−∞
dψ E

[̃
D r

T (x f )δ
2
S( y,Σ( Ã

r
T (x f )))d̂rδ(ψ − ϕ( Ã

r
T (x f )))

]
. (A25)

We now use the backward Itō rule to calculate

d̂rδ(ψ − ϕ( Ã
r
T )) = (d̂r Ã

r
T ·∇a)δ(ψ − ϕ( Ã

r
T ))− ν∇2

aδ(ψ − ϕ( Ã
r
T ))dr

= −δ′(ψ − ϕ( Ã
r
T ))d̂rϕ( Ã

r
T )− νδ′′(ψ − ϕ( Ã

r
T ))|∇ϕ( Ãr

T )|2dr. (A26)

Substituting back into the formula for Ω′( y, r) and performing the integral over ψ yields

Ω′( y, r)dr = −E

[̃
D r

T δ
2
S( y,Σ( Ã

r
T ))δ(ϕ( Ã

r
T ))d̂rϕ( Ã

r
T )

]
+νE

[̃
D r

T |∇ϕ( Ãr
T )|2 δ2

S( y,Σ( Ã
r
T ))δ

′(ϕ( Ãr
T ))

]
dr. (A27)

However, the first term on the right vanishes because d̂rϕ( Ã
r
T )= 0 on the boundary ∂D

for the stopped process. Comparing with the previous expression for (∂/∂n)Ω( y, r), we
see that

Ω′( y, r)= −ν ∂
∂n

Ω( y, r), (A28)

exactly as required. Equations (A18) and (A28) thus demonstrate that the adjoint boundary
term −ν∂Ω/∂n in (2.8) is interpretable as the density of mean deformation for stochastic
Lagrangian particles hitting the wall per unit area and per unit time.
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Appendix B. Statistical contributions to target vorticity at different backward times
for the ensemble of high streamwise wall-shear-stress events
In the main text, we plotted as functions of backward time the two largest fractional
contributions Iz

z and Bz
D/N to the target vorticity for the ensemble of high streamwise wall-

shear-stress events at y+ = 5, with Dirichlet boundary conditions in figure 11 and with
Neumann conditions in figure 12. In this appendix, we provide a more detailed view of
the statistical contributions by plotting their probability distributions at selected backward
times.

For Dirichlet boundary conditions, we plot the histories of the vorticity-stretching
contributions in figure 18(a), identical to those in figure 11(a) of the main text, and
we plot the histories of the boundary contributions in figure 19(a), identical to those
in figure 11(b). In addition to the mean plus or minus the standard deviation, we also
report the 10 % and 90 % percentiles using green dashed lines. The curves for the mean
plus/minus standard deviation and for the percentiles are quite similar, both giving a good
measure of the ensemble variation. Most importantly, we plot in these new figures the
histograms of the fractional vorticity contributions at four selected backward times, for Iz

z
in figure 18(b) and for Bz

D in figure 19(b). The mean fractional contribution from spanwise
stretching Iz

z exhibits a clear decrease from unity to zero in backward time, while the mean
fractional contribution from spanwise wall vorticity Bz

D shows a complementary increase
from zero to unity, consistent with our observations in § 3.2. Meanwhile, the histograms
of both contributions have relatively small variance, roughly constant in time. It is thus
clear that the reconstruction of the vorticity with Dirichlet boundary conditions has rather
low variability, with most histories very similar to the mean history and with very little
differentiation of individual events.

The corresponding results for Neumann boundary conditions are much more revealing
of the distinctive dynamics in individual events. We plot the histories of the vorticity-
stretching contributions in figure 20(a), identical to those in figure 12(a) of the main text,
and we plot the histories of the boundary contributions in figure 21(a), identical to those
in figure 12(b). Just as for the Dirichlet condition, the mean plus or minus the standard
deviation and the 10 % and 90 % percentiles are quite close to each other, although the
standard deviation with Neumann conditions is of the same order as the mean value. We
again plot in panel (b) of both figures the histograms of the two contributions at the
four selected backward times. In contrast to the Dirichlet case, the mean contributions
for Neuman conditions do not change as rapidly in backward time, while the distributions
become much broader especially for the boundary term. Although the mathematical theory
and common wisdom state that the target vorticity must ultimately arise entirely from the
wall vorticity source, the time scale for the boundary contribution to dominate is extremely
long (equal in fact to the time required for the stochastic particles to mix uniformly
over the flow domain). The very large variances of the two contributions from interior
stretching and from the boundary flux are reflective of the highly individual histories of
the different high-stress events. This difference from the Dirichlet case can be understood
with reference to the stochastic Lagrangian interpretation. In the Dirichlet case, particles
that reach the wall sample the vorticity at that instant and stop, whereas in the Neumann
case, particles are reflected from the wall after sampling the vorticity flux, because
even the wall vorticity has history. That history is only accessible using the Neumann
condition, which alone enables the study of the back-in-time origin of the surface
stress.
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Figure 18. Ensemble of 109 target vorticity events, at y+ = 5 above a wall-stress maximum, tracked back in
time using the Dirichlet condition. (a) Grey lines are the interior vorticity stretching Iz

z =Ω z
zωz normalised

by the target values ω∗
z =ωz(x f , T ). ( ) Ensemble-averaged value; ( ) ± the standard deviation; ( )

10 % and 90 % percentiles. (b) Histograms of the interior stretching contribution at (i) τ1 = 1.4, (ii) τ2 = 10,
(iii) τ3 = 20 and (iv) τ4 = 30.
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Figure 19. Same as figure 18, but here for the boundary vorticity contribution Bz
D to the target vorticity with

the Dirichlet condition.
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Figure 20. Ensemble of 109 target vorticity events, at y+ = 5 above a wall-stress maximum, tracked back in
time using the Neumann condition. (a) Pink lines are the interior vorticity stretching Iz

Z =Ω z
zωz normalised

by the target values ω∗
z =ωz(x f , T ). ( ) Ensemble-averaged value; ( ) ± the standard deviation; ( )

10 % and 90 % percentiles. (b) Histograms of the interior stretching contribution at (i) τ1 = 1.4, (ii) τ2 = 10,
(iii) τ3 = 20 and (iv) τ4 = 30.

1.5

(a)

1.0

0.5

0

−0.5

0 50 100 150 200 250 300 350

0 5 10 15 20 25 30

(b-i) (b-ii) (b-iii) (b-iv)
1.5

1.0

0.5

0

−0.5

1.5

1.0

0.5

0

−0.5

1.5

1.0

0.5

0

−0.5

1.5

1.0

0.5

0

−0.5
0

n/N
0.1 0.2 0.3 0

n/N
0.1 0.2 0.3 0

n/N
0.1 0.2 0.3 0

n/N
0.1 0.2 0.3

τ1 τ2

τ+

τ3 τ4τ

B N
 /
ω
z

z
*

B N
 /
ω
z

z
*

Figure 21. Same as figure 20, but here for the boundary vorticity flux contribution Bz
N to the target vorticity

with the Neumann condition.
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