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In this article, we consider diffusive transport of a reactive substance in a saturated porous medium
including variable porosity. Thereby, the evolution of the microstructure is caused by precipitation
of the transported substance. We are particularly interested in analysing the model when the equa-
tions degenerate due to clogging. Introducing an appropriate weighted function space, we are able
to handle the degeneracy and obtain analytical results for the transport equation. Also the decay
behaviour of this solution with respect to the porosity is investigated. There a restriction on the
decay order is assumed, that is, besides low initial concentration also dense precipitation leads to
possible high decay. We obtain nonnegativity and boundedness for the weak solution to the trans-
port equation. Moreover, we study an ordinary differential equation (ODE) describing the change
of porosity. Thereby, the control of an appropriate weighted norm of the gradient of the porosity is
crucial for the analysis of the transport equation. In order to obtain global in time solutions to the
overall coupled system, we apply a fixed point argument. The problem is solved for substantially
degenerating hydrodynamic parameters.

Key words: Evolving porous media, degenerate equation, clogging, weighted spaces, decay
behaviour
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1 Introcuction

Traditionally, a porous medium is characterised by a rigid porous matrix. Recently, the inte-
gration of an evolving porous matrix caused by diverse heterogeneous reactions, e.g., crystal
precipitation or biofilm growth, has attracted increased interest. Such precipitants or biofilms
attach on the surface of the solid matrix and thus occupy pore space. These attachments lead to
a changeable solid–liquid interface and affect significantly the diffusivity of the porous medium;
they also influence the mass transport of dissolved substances within the pores.

A striking feature of the geometrical changes of the solid–liquid interface at the pore scale
is that they have a strong influence on the macroscopic quantities [11]. From a practical point
of view, e.g., for the sake of computational feasibility, an upscaled (averaged) model at the
macroscale is of major importance compared to the pore-scale model. An extension of formal
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two-scale asymptotic expansion to a level set framework to capturing the evolving solid–liquid
interface was introduced in [18]. Besides others, this method was recently applied to locally
periodic porous media [19], drug delivery systems [10], non-isothermal media [3] and biofilm
growth [13, 14].

Let �⊂R
n, n = 2, 3, be an open and bounded domain. In this article, we consider diffu-

sive transport of a reactive substance in a saturated porous medium including variable porosity
described by a system of coupled partial differential equations (PDEs). In [12], an effective,
non-linear diffusion equation with degenerating coefficients coupled to an ODE for the porosity
was derived by two-scale asymptotic expansion in a level set framework. This modelled sys-
tem of PDEs is analysed in the following. We consider the diffusive transport equation [12,
(2.3a)–(2.3b)]

θ∂tc − ∇ ·D(θ )∇c = ( c
ρ

− 1)f (c, θ ) in �× (0, T)

c = 0 on ∂�× (0, T)

c( . , 0) = c0 in �, (1.1a)

with the substrate concentration c, porosity θ ∈ [0, 1), constant density ρ > 0 of the precipitation,
reaction rate f and the diffusivity D (depending on θ ). Here homogeneous boundary condition
and the initial data c0 are assumed. The precipitation reaction rate is given by f (c, θ ) := σ̄ (θ )c+
with c+ := max{0, c} and the function σ̄ = max{0, θσ }, σ ≥ 1. Assuming the reaction f (c, θ )
takes place on the fluid–solid interface (at the microscale), σ̄ (θ ) describes the corresponding
specific surface depending on the porosity θ , cf. e.g., [12, 13, 18].

We aim to have a geometry of the microstructure that may be parametrised by a single param-
eter, which is represented by the porosity. In such a situation, the hyperbolic level set equation
then reduces to an ordinary differential equation (ODE) describing the change of this param-
eter, cf. [12]. Such an assumption is reasonable since the reaction rate f causing the change
of the microstructure occurs uniformly along the fluid–solid interface, i.e., it does not depend
on microscopic values. The evolution of the porosity θ caused by precipitation is given via the
following ODE:

∂tθ = − 1
ρ

f (c, θ ) in �× (0, T)

θ ( . , 0) = θ0 in �. (1.1b)

In terms of homogenisation in non-rigid porous media, the literature offers only a small num-
ber of analytical results: In [9, 19], upscaling of an advection–diffusion(–reaction) system in
a locally periodic medium, including low and high diffusivities, was considered. An effective
model describing biofilm growth in porous media was already derived and analysed (up to pos-
sible clogging) in [13], but it neglects chemotactical effects completely, which were recently
involved in [14, 15]. The upscaled diffusion–precipitation model (1.1) was considered in [12].
In case of non-degenerating coefficients, global existence or existence up to possible closure of
some pores of unique strong solutions was shown. Following up this research, in the current
article, we are particularly interested in analysing the model (1.1) when the equations degenerate
due to clogging.

Thus far, however, little attention has been paid to the investigation of degenerate transport
equations in evolving porous media due to clogging effects, whose analytical investigation is
hardly ever available. In applications, e.g., biofouling, clogging phenomena actually appear and
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thus are of particular interest. In [1], degeneracies arising in linear elliptic equations describing
two-phase mixtures, e.g. partially melted materials, were managed by an appropriate scaling
of the unknowns. There the existence and uniqueness of a solution over the entire domain
were shown using a stabilised variational formulation. First, investigations of the behaviour of
upscaled equations describing saturated evolving porous media close to clogging can be found
in [4]. In [16], the porosity θ :�× (0, T) → [0, 1) was assumed to be a given function, where
the degenerate case θ (x, t) = 0 was of particular interest and thus admissible. The degeneracy
was handled and analytical results were obtained by introducing appropriate weighted function
spaces and including the degenerate parameters as weights. In more detail, the non-vanishing
parts of the hydrodynamic parameters were proposed to belong to the Muckenhoupt class A2.

The current article contributes to this point of degenerate PDEs caused by clogging phenom-
ena in saturated evolving porous media. We will analyse the system (1.1) possible degenerating
for θ = 0. In this respect, the obtained results extend the knowledge on diffusion–precipitation
models presented in or based on [12, 18] and actually allow the investigation of clogging
processes.

Modelling substrate transporting the effective diffusivity D is the essential input since it
contains all the information that is specific for the considered porous medium. However, this
effective tensor is very difficult to characterise in (natural) porous media – even if they are
assumed to be represented by scalars. Consequently, formulae in terms of simple features of
the porous medium, e.g., the porosity, are frequently used [11]. Along this line, porosity–
diffusivity models such as linear relations or power laws are often used, even for more general
situations. In this work, it is essential to focus on this hydrodynamic parameter when the
underlying microstructure clogs and hence the porosity θ degenerates. Thus, the diffusivity
D : [0, 1) → [0, ∞) is assumed to be scalar-valued, monotonously increasing map depending on
the porosity θ . For the sake of simplicity, it is reasonable to assume that the diffusivity satis-
fies D(θ ) = θd for some d ≥ 1. The case d < 1 is usually not of interest for applications since
there exist analytically derived bounds (Voigt–Reiss bound D(θ ) � θ , Hashin–Shtrikman bound
D(θ ) � n−1

n−θ θ ) for the effective diffusion, cf. [6, 11].
In fact, the restriction that the diffusivity D(θ ) degenerates only for θ = 0 is generally not

reasonable for an arbitrary geometric setting. Depending on the underlying geometry of the
medium’s microstructure, the diffusivity may already vanish for a positive critical porosity
θc > 0, cf. [11]. However, assuming θc = 0 avoids technical excesses due to possible post-
clogging precipitation processes. Moreover, this assumption will be crucial for Theorem 2.3
focusing on the decay behaviour of the substrates concentration c.

The objective of this article is the analytical investigation of the coupled PDE–ODE model
(1.1). In this work, it is essential to focus on the effective diffusivity D when the underlying
microstructure clogs and hence the porosity θ vanishes. Finally, in Section 2, we consider a
weak formulation of (1.1a) also in the context of weighted function spaces and obtain by an
adjusted Rothe method a unique, nonnegative and bounded solution. We are particularly inter-
ested in the decay behaviour of this solution with respect to the given porosity, cf. Theorem 2.3.
In Section 3, we investigate the ODE (1.1b) describing the change of porosity due to precipita-
tion. Moreover, the gradient of θ needs to be studied in more detail, cf. Lemma 3.1. Finally, in
Section 4, we apply a fixed point method to solve the overall coupled model (1.1). Therefore,
in contrast to [12], the model (1.1) is solved even for substantially degenerating hydrodynamic
parameters.
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2 Analysis for the transport equation (1.1a)

2.1 Existence of weak solutions to the transport equation

Let � be a bounded Lipschitz domain and �T :=�× (0, T). In the following, the norm of the
Banach space Lq(�), q ∈ [1, ∞] is denoted by ‖ . ‖q. The rest of the norms occurring below
are denoted intuitively. Throughout this paper, C describes positive constants, where the value
may differ across occasions. The indices in the constant C(·, ..., ·) indicate the dependence of
parameters.

Since the main objective of this article is solving the coupled system (1.1), we will apply
a fixed point procedure in Section 4 such that in each iteration step approximative equa-
tions are solved. Therefore, it is useful at this point to modify the equation (1.1a) slightly,
i.e., we replace the right-hand side by ( c̃+

ρ
− 1)f (c, θ ) with c̃+ := max{0, c̃} for a given func-

tion c̃ ∈ L2(0, T ; H1
0 (�)) satisfying supt∈(0,T) ‖c̃(t)‖∞ ≤ ‖c0‖∞. In this section, we analyse this

slightly modified diffusive transport equation for a given porosity function θ . The porosity
θ :�T → [0, 1) is assumed to be decreasing in time, and θ ∈ W 1,∞(0, T ; L∞(�)) with the decay
property of the gradient

θ
d
2 −1∇θ ∈ L∞(0, T ; L2(�)). (2.1)

In order to investigate (1.1a), it is reasonable to define the linear space

VD(�) := {u ∈ L2(�) : D(θ )
1
2 ∇u ∈ (L2(�))n and u = 0 on ∂�}

with the corresponding inner product

(u, v)VD
:= (u, v)2 + (D(θ )

1
2 ∇u , D(θ )

1
2 ∇v)2,

cf. [1]. Here, ( . , . )2 denotes the inner product of L2(�).

Lemma 2.1 Let the condition (2.1) be satisfied. Then, the space VD(�) equipped with the above
inner product is a Hilbert space.

Proof We proceed similarly to the proof of [1, Lemma 3.1]. It suffices to verify completeness
of VD(�). Thus, let (uk)k∈N ⊂ VD(�) be a Cauchy sequence, i.e.,

‖uk − un‖2
VD

= ‖uk − un‖2
2 + ‖D(θ )

1
2 ∇(uk − un)‖2

2
k,n→∞−→ 0.

The completeness of L2(�) implies the convergence of the sequences (uk)k∈N and (D(θ )
1
2 ∇uk)k∈N

in L2(�), i.e., uk → u ∈ L2(�) and D(θ )
1
2 ∇uk →ψ ∈ L2(�) as k → ∞. Testing the

sequence (D(θ )
1
2 ∇uk)k∈N with a smooth function φ ∈ C∞

0 (�) yields

(
D(θ )

1
2 ∇uk , φ

)
2
= −(uk , ∇ · (D(θ )

1
2φ)

)
2

= −(uk , 1
2D(θ )−

1
2 D

′(θ )∇θφ)
2
+ (

uk , D(θ )
1
2 ∇ · φ)

2
,

https://doi.org/10.1017/S0956792519000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000391


1054 R. Schulz

where the condition (2.1) ensures that D(θ )−
1
2 D

′(θ )∇θ belongs to L2(�). Due to L2-convergence
of (uk)k∈N, the right-hand side converges to

− (
u , 1

2D(θ )−
1
2 D

′(θ )∇θφ)
2
+ (

u , D(θ )
1
2 ∇ · φ)

2

= −(u , ∇ · (D(θ )
1
2φ)

)
2
= (

D(θ )
1
2 ∇u , φ

)
2
.

Finally, we have ψ =D(θ )
1
2 ∇u which completes the proof.

In the following, we search for weak solutions

c ∈Xθ := {L2(0, T ; VD(�)) | θ∂tc ∈ L2(0, T ; (VD(�))∗)}, (2.2)

where (VD(�))∗ denotes the dual space of VD(�). That means a function c ∈Xθ solves the slightly
modified transport equation for given c̃ and θ in a weak sense if

〈θ∂tc , ϕ〉V∗
D

,VD
+
∫
�

D(θ )∇c∇ϕ =
∫
�

( c̃+
ρ

− 1)f (c, θ )ϕ, (2.3)

for all test functions ϕ ∈ VD(�). Here 〈 . , . 〉V∗
D

,VD
describes the dual product of (VD(�))∗

and VD(�).
To obtain a weak solution of (2.3) with respect to the underlying Hilbert space VD(�), we

apply an adjusted Rothe method similar to [16] and approximate the time derivative ∂tc in (1.1a)
by the difference quotient. For this, it is helpful to assume besides conditions on θ , as there are
(2.1) and ∂tθ ≤ 0 due to precipitation, also a smallness assumption on the initial data c0.

Theorem 2.2 Let θ ∈ W 1,∞(0, T ; L∞(�)) be given and satisfy besides (2.1) also θ (x, t) ∈ [0, 1),
‖θ (t)‖∞ > 0, and ∂tθ (x, t) ≤ 0 for a.e. (x, t) ∈�T . Morever, we assume 0 ≤ c0 ∈ L∞(�) with
‖c0‖∞ ≤ ρ. Then there exists a nonnegative unique weak solution c ∈Xθ to (2.3).

Proof In the following, the proof is divided into four main steps:

Semidiscretisation by Rothe’s method: Let the interval [0, T] be decomposed in N ∈N

equidistant subintervals [tk , tk+1] with tk = k ·
t,
t = T
N . Then, ck+1 is assumed to be a solution

to the discretised (and slightly modified) equation

θk+1
ck+1−ck

t − ∇ · (D(θk+1)∇ck+1) = ( 1

ρ
c̃k+1,+ − 1)f (ck+1, θk+1) − 1

N ck+1 (2.4)

for given ck ∈ VD(�), c̃k+1,+ := 1

t

∫ tk+1
tk

c̃+ and θk+1 := 1

t

∫ tk+1
tk

θ as the average of the porosity
within the interval [tk , tk+1]. This turns with ck,+ := max{0, ck} to the elliptic equation

−∇ · (D(θk+1)∇ck+1) +
[
θk+1

t + (1 − 1

ρ
c̃k+1,+)θσk+1 + 1

N

]
ck+1

= 1

t θk+1ck .

Besides the discretisation in time compared to (1.1a), we have also incorporated the additional
term 1

N ck+1 to ensure ellipticity of the problem with respect to VD(�). Integration by parts yields
the weak formulation
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ak(ck+1, ϕ) :=
∫
�

(D(θk+1)
1
2 ∇ck+1))(D(θk+1)

1
2 ∇ϕ)

+
∫
�

[
θk+1

t + (1 − 1

ρ
c̃k+1,+)θσk+1ck,+ + 1

N

]
ck+1ϕ

=
∫
�

1

t θk+1ckϕ =: bk(ϕ) (2.5)

for all test functions ϕ ∈ VD(�). In order to obtain ellipticity of the bilinearform ak with respect
to VD(�), it is helpful to assume the following smallness assumption on c̃k+1,+:

0 ≤ 1 − 1
ρ
‖c̃k+1,+‖∞, i.e., ‖c̃k+1,+‖∞ ≤ ρ. (2.6)

This assumption will also be needed in Section 2.2 to prove boundedness of the solution c. Then
the bilinearform ak is VD-elliptic and continuous. i.e.,

ak(ϕ, ϕ) ≥ ‖D(θk+1)
1
2 ∇ϕ‖2

2 + 1
N ‖ϕ‖2

2 ≥ 1
N ‖ϕ‖2

VD
,

|ak(ϕ,ψ)| ≤ ‖D(θk+1)
1
2 ∇ϕ‖2‖D(θk+1)

1
2 ∇ψ‖2

+ [
1

t + 2 + 1

N

] ‖ϕ‖2‖ψ‖2,

and the linearform bk is continuous, i.e.,

|b(ϕ)| ≤ 1

t ‖ck‖2‖ϕ‖2

for all ϕ,ψ ∈ VD(�). Therefore, for all k = 0, ..., N − 1, the theorem of Lax–Milgram yields a
unique solution ck+1 ∈ VD(�) satisfying (2.5).

Boundedness and uniform L2-estimate: Since ∂tθ ≤ 0 and hence θk+1 ≤ θk , we have

‖θ
1
2

k+1ck‖2 ≤ ‖θ
1
2

k ck‖2. Therefore, testing (2.5) with the solution ck+1 leads with Young’s

inequality to the following energy estimate in the weaker seminorm ‖θ
1
2

k+1 . ‖2:

1
2
t

(
‖θ

1
2

k+1ck+1‖2
2 − ‖θ

1
2

k ck‖2
2

)
+ ‖D(θk+1)

1
2 ∇ck+1)‖2

2 + 1
N ‖ck+1‖2

2 ≤ 0.

Summation over all k = 0, ..., N − 1 leads to

1
2‖θ

1
2

N cN‖2
2 +
t

N∑
k=1

‖D(θk)
1
2 ∇ck)‖2

2 + 
t
N

N∑
k=1

‖ck‖2
2 ≤ 1

2‖θ
1
2

0 c0‖2
2. (2.7)

In order to obtain a solution c belonging to Xθ , an estimate of the L2-norm of ck+1 is needed
uniform with respect to 
t and N . Therefore, more generally than above, let us now test (2.5)
with |ck+1|2αck+1, α ∈N0∫

�

D(θk+1)∇ck+1∇(|ck+1|2αck+1) +
∫
�

[
θk+1

t + (1 − 1

ρ
c̃k+1,+)θσk+1 + 1

N

]
c2α+2

k+1

=
∫
�

1

t θk+1ck|ck+1|2αck+1.
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Here, the first summand on the left-hand side satisfies with a := 2α + 2 the equation∫
�

D(θk+1)∇ck+1∇(|ck+1|2αck+1) = (a − 1)‖D(θk+1)
1
2 cαk+1∇ck+1‖2

2.

Since a is an even natural number, the integrand (1 − 1
ρ

c̃k+1,+)θσk+1ca
k+1 is nonnegative because

of (2.6) and thus can be neglected for the further estimates. This leads to the inequality

1

t ‖θ

1
a

k+1ck+1‖a
a + (a − 1)‖D(θk+1)

1
2 cαk+1∇ck+1‖2

2 ≤ 1

t ‖θ

1
a

k+1ck‖a‖θ
1
a

k+1ck+1‖a−1
a

≤ 1

t ‖θ

1
a

k ck‖a‖θ
1
a

k+1ck+1‖a−1
a .

Finally, Young’s inequality

‖θ 1
a

k ck‖a‖θ
1
a

k+1ck+1‖a−1
a ≤ 1

a‖θ 1
a

k ck‖a
a + a−1

a ‖θ 1
a

k+1ck+1‖a
a

implies

1
a‖θ 1

a
k+1ck+1‖a

a + (a − 1)
t‖D(θk+1)
1
2 cαk+1∇ck+1‖2

2 ≤ 1
a‖θ 1

a
k ck‖a

a. (2.8)

In particular, this yields the boundedness of ck+1 with

‖θ 1
a

k+1ck+1‖a ≤ ‖θ 1
a

k ck‖a ≤ ‖θk‖
1
a
1 ‖ck‖∞ (2.9)

if the boundedness of ck is supposed. Let �θ := supp θk+1 denote the support of θk+1. Then there
obviously holds

‖θ 1
a

k+1ck+1‖a,�θ ≤ ‖θ 1
a

k+1ck+1‖a

which yields ck+1 ∈ L∞(�θ ) in the limit a → ∞. We obtain by testing (2.5) with a function
ϕ ∈ VD(�) such that supp ϕ ⊂� \�θ∫

�\�θ

[
(1 − 1

ρ
c̃k+1,+)θσk+1 + 1

N

]
ck+1ϕ = ak(ck+1, ϕ) = bk(ϕ) = 0,

and thus ck+1 = 0 in � \�θ . However, this means ck+1 ∈ L∞(�) with

‖ck+1‖∞ ≤ ‖ck‖∞ ≤ ‖c0‖∞ ≤ ρ
and justifies the assumed boundedness of ck by induction. Moreover, this evidently implies
‖ck+1‖2 ≤ |�| 1

2 ρ for all k = 0, ..., N − 1 and thus together with (2.7) a N-uniform energy estimate
with respect to the Hilbert space VD(�)

‖cN‖2
2 +
t

N∑
k=1

‖D(θk)
1
2 ∇ck‖2

2 ≤ |�|ρ2 + 1
2‖θ

1
2

0 c0‖2
2. (2.10)

Convergence for N → ∞: Let us now define the functions cN and c̄N on the time interval
[0, T] by constant and linear interpolation of c0, c1, ..., cN , respectively, i.e.,

cN (t) := ck+1 for t ∈ (tk , tk+1],

c̄N (t) := (1 −μ)ck +μck+1 for t = (1 −μ)tk +μtk+1, μ ∈ [0, 1].
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In the following, we show that subsequences of these functions converge to the same limit
satisfying (2.5). In particular, for t ∈ (tk , tk+1), there holds ∂t c̄N (t) = ck+1−ck


t . Besides these func-
tions, we define further c̃N+(t) := c̃k+1,+ and θN (t) := θk+1 for t ∈ (tk , tk+1]. Owing to (2.10), the
functions cN , D(θN )∇cN and c̄N are uniformly bounded in the function space L2(0, T ; L2(�)):

∫ T

0

(
‖cN‖2

2 + ‖D(θN )
1
2 ∇cN‖2

2

)
dt =

N∑
k=1

∫ tk

tk−1

(
‖ck‖2

2 + ‖D(θk)
1
2 ∇ck)‖2

2

)
dt

≤ T |�|ρ2 + 1
2‖θ

1
2

0 c0‖2
2, (2.11)

∫ T

0
‖c̄N‖2

2 dt ≤ 2
t
N∑

k=1

∫ 1

0

(
(1 −μ)‖ck−1‖2

2 +μ‖ck‖2
2

)
dμ≤ 2T |�|ρ2,

i.e., there are subsequences denoted again by (cN )N∈N and (c̄N )N∈N which converge weakly to
some limits c, c̄ ∈ L2(0, T ; L2(�)), respectively. Also the weak time derivative of c̄N belongs to
L2(0, T ; L2(�)) since

∫ T

0
‖∂t c̄

N‖2
2 dt ≤ 2 1


t

N∑
k=1

∫ tk

tk−1

(‖ck‖2
2 + ‖ck−1‖2

2

)
dt ≤ 4N |�|ρ2.

In what follows, we verify the identity of the limits c = c̄: Testing c̄N with a smooth function
ζ ∈ C∞

0 (�T ) leads to

∫ T

0
(c̄N (t), ζ (t))2 dt

=
t
N∑

k=1

∫ 1

0

(
(1 −μ)ck−1 +μck , ζ ((1 −μ)tk−1 +μtk)

)
2

dμ

=
t
N∑

k=1

(ck , ζk)2 + 
t
2

(
(c0, ζ0)2 − (cN , ζN )2

)
,

where ζk := ζ (tk) and the term 
t
2

(
(c0, ζ0)2 − (cN , ζN )2

)
is of order O( 1

N ). On the other hand, we
have

∣∣∣ ∫ T

0
(cN (t), ζ (t))2 dt −
t

N∑
k=1

(ck , ζk)2

∣∣∣≤ N∑
k=1

∫ tk

tk−1

|(ck , ζ (t) − ζk)2| dt

≤
t
N∑

k=1

∫ tk

tk−1

|(ck , ζ (t)−ζk
t−tk

)2| dt ≤
t2 C(‖∂tζ‖L∞(�T ))
N∑

k=1

‖ck‖2

≤ 1

N
T2 C(‖∂tζ‖L∞(�T ))|�| 1

2 ρ
N→∞−→ 0,

which implies the identity of the limits c and c̄.
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Limit function solves (2.3): Applying a smooth function ζ ∈ C∞
0 (�T ) to the diffusive term

D(θN )
1
2 ∇cN ∈ L2(0, T ; L2(�)), cf. (2.11), leads to the following convergence in the sense of

distributions, cf. proof of Lemma 2.1:

−〈D(θN )
1
2 ∇cN , ζ

〉= (
cN , ∇ · (D(θN )

1
2 ζ )
)

L2(L2)

N→∞−→ (
c, ∇ · (D(θ )

1
2 ζ )
)

L2(L2)
= −〈D(θ )

1
2 ∇c, ζ

〉
,

where ( . , . )L2(L2) denotes the inner product of L2(0, T ; L2(�)). The additional assumption (2.1)

on the gradient of θ , i.e., ∇(D(θ )
1
2 ) ∈ L∞(0, T ; L2(�)), ensures convergence in L2(L2)-sense.

Moreover, Lebesgue’s differentiation theorem [5, Corollary 2.1.16] yields the convergence
of θN (x, t) to θ (x, t) for a.e. (x, t) ∈�T . Since the sequence (D(θN )

1
2 ∇cN )N∈N is also uni-

formly bounded in L2(0, T ; L2(�)), cf. (2.11), again a subsequence converges weakly and thus
D(θN )

1
2 ∇cN ⇀D(θ )

1
2 ∇c. Therefore, the limit c satisfies D(θ )

1
2 ∇c ∈ L2(0, T ; L2(�)).

Applying the test function ζ ∈ C∞
0 (�T ) above to the term associated with the time derivative

leads to

〈θN∂t c̄
N , ζ 〉 = −(c̄N , ∂t(θ

Nζ ))L2(L2)

N→∞−→ −(c, ∂t(θζ ))L2(L2) = 〈θ∂tc, ζ 〉.

Analogously, we conclude due to the assumptions on f that the remaining term corresponding
to the precipitation rate converges also to its temporal continuation. The auxiliary term − 1

N cN

actually vanishes in the limit as N → ∞.
However, due to the time discretisation (2.4), there holds for a.e. t ∈ (
t, T)

θN∂t c̄
N − ∇ · (D(θN )∇cN

)= ( 1
ρ

c̃N
+ − 1)f (cN , θN ) − 1

N cN .

Finally, since each single summand converges, the limit function c in fact satisfies the weak
formulation (2.3).

It remains to deduce an appropriate inequality corresponding to the time derivative:

‖θ∂tc‖2
L2(V∗

D
) =

∫ T

0

(
sup

‖ϕ‖VD
=1

|〈θ∂tc, ϕ〉V∗
D

,VD
|
)2

≤
∫ T

0

(
sup

‖ϕ‖VD
=1

[
‖c‖VD

+ 2‖c‖2

]
‖ϕ‖VD

)2
, (2.12)

i.e., θ∂tc ∈ L2(0, T ; (VD(�))∗). Moreover, the spatio-temporal distributional equation

〈∂t(θc), ζ 〉 = −(c, θ∂tζ )L2(L2) = −(c, ∂t(θζ ))L2(L2) + (c, (∂tθ )ζ )L2(L2)

= 〈θ∂tc, ζ 〉 + 〈(∂tθ )c, ζ 〉

holds for all ζ ∈ C∞
0 (�T ) and thus ∂t(θc) also belongs to L2(0, T ; (VD(�))∗).
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Finally, the solution c takes the initial value c0 ∈ L∞(�) in the following weak sense: applying
a test function ζ ∈ C∞

0 (�× [0, T)) to θ∂tc ∈ L2(0, T ; (VD(�))∗) yields∫ T

0

(〈
(θ∂tc)(t), ζ (t)

〉
V∗
D

,VD

+ (
c(t), ∂t(θζ )(t)

)
2

)
dt

= lim
N→∞

∫ T

0

(〈
(θN∂t c̄

N )(t), ζ (t)
〉
V∗
D

,VD

+ (
c̄N (t), ∂t(θ

Nζ )(t)
)

2

)
dt

= −(c0, θ0ζ (0)
)

2
,

where the last equality holds owing to the piecewise affine linearity of c̄N (i.e. c̄N (0) = c0).
We have already seen above, c = 0 in � \�θ , i.e., if θ = 0. Testing (2.3) with c− := min{0, c}

leads to

1
2‖θ 1

2 c−(t)‖2
2 ≤

∫ t

0

∫
�

( c̃+
ρ

− 1)f (c, θ )c−

since f (c, θ )c− = 0 and hence supt∈(0,T) ‖θ 1
2 c−(t)‖2 = 0, i.e., c(x, t) ≥ 0 for a.e. (x, t) ∈�T .

The linear structure of (2.3) implies directly the uniqueness of the weak solution c ∈Xθ .

2.2 Decay behaviour of the substrate concentration

In this section, let the conditions of Theorem 2.2 be satisfied. In what follows, we are interested
in boundedness and decay behaviour with respect to θ of the weak solution c ∈Xθ obtained by
the previous theorem.

Theorem 2.3 Let the conditions of Theorem 2.2 be satisfied, where θ is assumed to be a solution
to (3.1) below with θ−μ∇θ ∈ L2(0, T ; L2(�)), μ ∈R. Additionally, let ‖c0‖∞ ≤ ρ

1+p for p ≥ 0 and

‖θ−p
0 c0‖a <∞ for a = 2α + 2, α ∈N0. If the parameters fulfill the condition d ≥ ap + 3 − 2μ,

then the solution c of Theorem 2.2 is bounded and decays of order p with respect to θ in the
L∞(La)-norm, i.e.,

sup
t∈(0,T)

‖c(t)‖∞ ≤ ‖c0‖∞ and sup
t∈(0,T)

‖θ (t)−pc(t)‖a <∞.

Proof Starting point is the application of the test function θ−ν |c|2αc, α ∈N0, ν ≥ 0, to the weak
formulation (2.3), which leads to

〈θ∂tc , θ−ν |c|2αc〉V∗
D

,VD
+
∫
�

D(θ )∇c∇(θ−ν |c|2αc) =
∫
�

( c̃+
ρ

− 1)f (c, θ )θ−ν |c|2αc,

where the both summands on the left-hand side satisfy with a := 2α + 2 the identities

〈θ∂tc , θ−ν |c|2αc〉V∗
D

,VD
= 1

a∂t‖θ (1−ν)/ac‖a
a + 1−ν

a

∫
�

c
ρ

f (c̃, θ )θ−ν |c|2αc,

∫
�

D(θ )∇c∇(θ−ν |c|2αc) =
∫
�

D(θ )∇c∇(θ−ν)|c|2αc +
∫
�

D(θ )∇cθ−ν(a − 1)|c|2α∇c

= (a − 1)‖D(θ )
1
2 θ− ν

2 cα∇c‖2
2 − ν

∫
�

D(θ )∇cθ−ν−1|c|2αc∇θ .
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In the first equation associating with the time derivative of c, we have applied (3.1) below, i.e.,
∂tθ is replaced by − 1

ρ
f (c̃, θ ) with the function c̃. The term cf (c̃, θ ) actually coincides by def-

inition of the function f and the nonnegativity of c with c̃+f (c, θ ). Therefore, we obtain with
Young’s inequality and C(a)> 0 (such that the diffusive term on the left-hand side absorbs the
corresponding term on the right-hand side)

1
a‖θ (t)(1−ν)/ac(t)‖a

a + 1
2 (a − 1)

∫ t

0
‖D(θ )

1
2 θ− ν

2 cα∇c‖2
2 ≤ 1

a‖θ (1−ν)/a
0 c0‖a

a

+ ν2C(a)
∫ t

0
‖D(θ )

1
2 θ− ν

2 −1cα+1∇θ‖2
2

+
∫ t

0

∫
�

[
c̃+
ρ

− 1−ν
a

c̃+
ρ

− 1
]

f (c, θ )θ−ν |c|2αc. (2.13)

Since c̃ is assumed to satisfy supt∈(0,T) ‖c̃(t)‖∞ ≤ ‖c0‖∞ ≤ ρ, the negativity of the term within
the square bracket is ensured as long as

c̃+
(
1 − 1−ν

a

)≤ ρ,

which is fulfilled for ν ≤ 1.
In order to obtain boundedness of c, let us at first choose ν := 0 leading to the following

simplification of (2.13):

1
a‖θ (t)

1
a c(t)‖a

a + (a − 1)
∫ t

0
‖D(θ )

1
2 cα∇c‖2

2 ≤ 1
a‖θ 1

a
0 c0‖a

a.

Thus,

sup
t∈(0,T)

‖θ (t)
1
a c(t)‖a ≤ ‖θ 1

a
0 c0‖a, (2.14)

i.e., c ∈ L∞(0, T ; θ− 1
a La(�)) for all a = 2α + 2 and hence the limit for a → ∞ yields bounded-

ness of c with supt ‖c(t)‖∞ ≤ ‖c0‖∞.
Note that (1 − 1−ν

a ) is larger than 1 for ν > 1, this leads in the following to a stronger restriction
on the initial data c0. Now let ν := ap + 1 with p> 0. This choice of ν is helpful to work out the
decay of c with respect to θ , i.e., p is the order of decay of c. Inequality (2.13) implies

1
a‖θ (t)−pc(t)‖a

a + 1
2 (a − 1)

∫ t

0
‖D(θ )

1
2 θ− ap+1

2 cα∇c‖2
2 ≤ 1

a‖θ−p
0 c0‖a

a

+ (ap + 1)2C(a)
∫ t

0
‖D(θ )

1
2 θ− ap+3

2 cα+1∇θ‖2
2

+
∫ t

0

∫
�

[
(1 + p) c̃+

ρ
− 1

]
f (c, θ )θ−ν |c|2αc,

where the last summand on the right-hand side is negative (and hence negligible) if the smallness
assumption ‖c0‖∞ ≤ ρ

1+p is fulfilled. Finally, this yields with d ≥ ap + 3 − 2μ

1
a‖θ (t)−pc(t)‖a

a + 1
2 (a − 1)

∫ t

0
‖D(θ )

1
2 θ− ap+1

2 cα∇c‖2
2 ≤ 1

a‖θ−p
0 c0‖a

a

+ (ap + 1)2C(a)
∫ t

0
‖D(θ )θ−ap−3+2μ‖∞‖c‖a

∞‖θ−μ∇θ‖2
2, (2.15)
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which actually leads to

sup
t∈(0,T)

‖θ (t)−pc(t)‖a
a ≤ ‖θ−p

0 c0‖a
a + a(ap + 1)2C(a)ρa‖θ−μ∇θ‖2

L2(L2). (2.16)

This inequality is valid for all a ≥ 2 satisfying the parameter condition.

Remark We obtained an interesting condition for the upper bound of the order of decay of c
since the above smallness assumption changes to p ≤ ρ

‖c0‖∞ − 1. That means besides low ini-
tial concentration also dense precipitation leads to possible high decay. Since in such cases,
precipitation causes only small changes in the microstructure and hence in the porosity, the con-
centration decreases with respect to the porosity rather fast. In contrast, small ρ leads to large
changes in the porosity but small changes in the concentration.

3 Analysis for the porosity

3.1 Solvability of the ODE (1.1b)

Let again c̃ ∈ L2(0, T ; H1
0 (�)) be a given function satisfying supt∈(0,T) ‖c̃‖ ≤ ‖c0‖∞ ≤ ρ. We

slightly modify the original ODE (1.1b) in this section by replacing the unknown c of (1.1a)
with c̃, i.e., we consider ∫

�

(∂tθ )ϕ = − 1
ρ

∫
�

f (c̃, θ )ϕ (3.1)

for all ϕ ∈ L2(�). According to the theory of ODEs, there exists a unique absolutely continuous
solution θ ∈Y := H1(0, T ; L2(�)) represented by

θ (t) = θ0 − 1
ρ

∫ t

0
f (c̃, θ ).

The assumed positivity property of f implies directly

θ (x, t) ∈ [0, θ0(x)] for a.e. (x, t) ∈�T , (3.2)

i.e., in particular ∂tθ ≤ 0. Furthermore, we have θ ∈Y ∩ W 1,∞(0, T ; L∞(�)) with

sup
t∈(0,T)

‖θ (t)‖∞ + sup
t∈(0,T)

‖∂tθ (t)‖∞ ≤ ‖θ0‖∞ + 1
ρ

sup
t∈(0,T)

‖f (c̃, θ )(t)‖∞

≤ ‖θ0‖∞ + 1
ρ
‖c0‖∞‖θ0‖σ∞ ≤ 2. (3.3)

3.2 Decay behaviour of the gradient of θ

The regularity of c̃ with respect to x basically carries over to θ since the spatial variable x ∈� is
only a parameter in the ODE (1.1b). Therefore, since c̃ is assumed to belong to L2(0, T ; H1

0 (�)),
it is reasonable that also ∇θ can be estimated in L2(0, T ; L2(�)). For this, we test (3.1) with ∇θ
which leads to

1
2‖∇θ (t)‖2

2 ≤ 1
2‖∇θ0‖2

2 + σ

∫ T

0
‖θ‖σ−1

∞ ‖c̃‖∞‖∇θ‖2
2 +

∫ T

0
‖θσ∇ c̃‖2‖∇θ‖2
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and hence with Gronwall’s Lemma

sup
t∈(0,T)

‖∇θ (t)‖2 ≤
(

‖∇θ0‖2 +
∫ T

0
‖∇ c̃‖2

)
· exp

[
σ

∫ T

0
‖c̃‖∞

]
< ∞.

However, since the property θ
d
2 −1∇θ ∈ L∞(0, T ; L2(�)) (cf. (2.1)) was crucial for the previous

theorems, it is necessary to obtain L∞(L2)-estimates of the gradient of θ including an appropriate
weight θ−μ, μ≥ 1 − d

2 .

Lemma 3.1 Let the function c̃ ∈ L2(0, T ; H1
0 (�)) ∩ L∞(�T ) and the parameter μ≤ σ be given.

The function θ ∈ W 1,∞(0, T ; L∞(�)) denotes the solution to (3.1), where the initial porosity
satisfies θ−μ

0 ∇θ0 ∈ L2(�). Then the weighted gradient θ−μ∇θ belongs to L∞(0, T ; L2(�)).

Proof Let us test (3.1) with −∇ · (θ−2μ∇θ )

1
2∂t‖θ−μ∇θ‖2

2 = −μ
∫
�

θ−2μ−1∂tθ |∇θ |2 +
∫
�

∂t(∇θ )θ−2μ∇θ

= μ

ρ

∫
�

θ−2μ−1f (c̃, θ )|∇θ |2 − 1
ρ

∫
�

∇f (c̃, θ )θ−2μ∇θ .

Therefore, integration over time leads to

1
2‖θ−μ(t)∇θ (t)‖2

2 ≤ 1
2‖θ−μ

0 ∇θ0‖2
2 + μ

ρ

∫ t

0
‖θ−1f (c̃, θ )‖∞‖θ−μ∇θ‖2

2

+ 1
ρ

∫ t

0
‖θ−μ∇f (c̃, θ )‖2‖θ−μ∇θ‖2.

With ∇f (c̃, θ ) = ∇(σ̄ (θ )rc̃+) = σθσ−1(∇θ )c̃+ + σ̄ (θ )∇ c̃+, we obtain

1
2‖θ−μ(t)∇θ (t)‖2

2 ≤ 1
2‖θ−μ

0 ∇θ0‖2
2 + μ

ρ

∫ t

0
‖θ−1σ̄ (θ )c̃+‖∞‖θ−μ∇θ‖2

2

+ σ
ρ

∫ t

0
‖θσ−1c̃+‖∞‖θ−μ∇θ‖2

2 + 1
ρ

∫ t

0
‖σ̄ (θ )(∇ c̃+)θ−μ‖2‖θ−μ∇θ‖2,

and finally a finite norm in L∞(0, T ; L2(�)) by Gronwall’s Lemma

sup
t∈(0,T)

‖θ−μ(t)∇θ (t)‖2
2 ≤

(
‖θ−μ

0 ∇θ0‖2 + 1
ρ

T
1
2 ‖θσ−μ(t)∇ c̃+(t)‖L2(L2)

)2

× exp

[
2 1
ρ

T(μ+ σ ) sup
t∈(0,T)

‖θσ−1(t)c̃+(t)‖∞

]
, (3.4)

where the assumptions σ ≥ 1 and μ≤ σ on the parameters ensure together with the properties of
c̃ the boundedness of the right-hand side.

This result is useful in the context of (2.1), if we choose μ≥ 1 − d
2 .
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4 Fixed point argument for the coupled problem (1.1)

This final section is concerned with the weak solvability of the overall coupled system (1.1). In
Section 2, the problem (2.3) was solved with respect to the θ -weighted linear space Xθ . In the
following, the underlying function space is assumed to be a complete Bochner space. Thus, we
denote the essential solution spaces by

X := L2(0, T ; H1
0 (�)) ∩ H1(0, T ; H−1(�)),

Y := H1(0, T ; L2(�)), and X :=X ×Y .

In general, there hold the following inclusions for a bounded porosity weight θ :

H1
0 (�) ⊂ VD(�) ⊂ L2(�) ⊂ (VD)∗(�) ⊂ H−1(�),

i.e., L2(0, T ; VD(�)) is interpreted as a subspace of the rigid Bochner space L2(0, T ; L2(�)). The
solution c ∈Xθ of Theorem 2.2 belongs also to X if it lies in L2(0, T ; H1

0 (�)). This can be ensured
by an additional condition d ≤ 2p + 1 on the parameters and (2.15). Moreover, we introduce

Ỹ := W 1,∞(0, T ; L∞(�)) ∩ L∞(0, T ; H1
0 (�)) ⊂Y ,

as well as the closed subspace N := {y ∈ Ỹ : θ
d
2 −1∇θ ∈ L∞(0, T ; L2(�))}. The function space Ỹ

is compactly embedded in Lq(0, T ; L∞(�)), q<∞, cf. [2].

Definition 4.1 A tuple (c, θ ) ∈X of functions is called a weak solution to the coupled system of
equations (1.1), if for all test functions (ϕ1, ϕ2) ∈ H1

0 (�) × L2(�) and a. e. t ∈ (0, T) there holds

〈θ∂tc , ϕ1〉H−1,H1
0
= −

∫
�

D(θ )∇c∇ϕ1 +
∫
�

( c
ρ

− 1)f (c, θ )ϕ1, (4.1a)

∫
�

(∂tθ )ϕ2 = − 1
ρ

∫
�

f (c, θ )ϕ2, (4.1b)

and if (c, θ ) takes the initial value (c0, θ0) ∈ L2(�)2 in the sense

|(c(t) − c0, φ)2| + |(θ (t) − θ0, φ)2| t→0−→ 0, (4.1c)

for all φ ∈ L2(�).

Our main result states the existence of a weak solution (c, θ ) ∈X to (1.1) in the sense of Definition
4.1 for any arbitrary interval of time (0, T), T > 0. Besides the assumptions of Theorem 2.3 and
Lemma 3.1 on the involved parameters, additionally d ≤ 2p + 1 is necessary.

Theorem 4.2 Let the parameters σ , d ≥ 1, μ≥ 1 − d
2 , p ≥ 0 and a ∈ 2N satisfy the following

restrictions:

μ≤σ and ap + 3 − 2μ≤d ≤ 2p + 1.

Moreover, the nonnegative initial data c0, θ0 ∈ L∞(�) are assumed to fulfill

‖c0‖∞ ≤ ρ

1+p , ‖θ−p
0 c0‖a <∞, ‖θ0‖∞ < 1 and ‖θ−μ

0 ∇θ0‖2 <∞.
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Then for all T > 0, there exists a nonnegative solution (c, θ ) ∈X ×N to (4.1) with

sup
t∈(0,T)

‖c(t)‖∞ ≤ ‖c0‖∞ and sup
t∈(0,T)

‖θ (t)‖∞ ≤ ‖θ0‖∞.

In particular, the solution c and the gradient of θ are decaying of order p in the L∞(La)-norm
and of order μ in the L∞(L2)-norm, respectively.

Proof Let T > 0 and M > 0, we define the closed and convex subset

M :={c ∈ L2(0, T ; H1
0 (�)) ∩ L∞(�T ) | ‖c‖L2(H1) ≤ M , sup

t∈(0,T)
‖c(t)‖∞ ≤ ‖c0‖∞

and c satisfies the initial condition in (1.1a)3}.
of L2(0, T ; H1

0 (�)) ∩ L∞(�T ). Since L2(0, T ; H1
0 (�)) ∩ L∞(�T ) has a predual space isomporhic

to L2(0, T ; H−1(�)) + L1(�T ), the subset M is in particular weak∗-compact according to
the theorem of Banach–Alaoglu–Bourbaki. Now, let F : M→M be an operator defined as
composition F :=F2 ◦F1 of two operators

F1 : M→N , F2 : N →M .

The operator F1 is defined by F1(c̃) := θ , where θ denotes the solution to the equation (3.1)
for given c̃ ∈M. Moreover, F2(θ ) := c is the solution to (2.3). Then (c, θ ) takes the initial
data (c0, θ0) in the sense of (4.1c).

Well-defined self-map: First, we verify that F is a well-defined self-map on M. Owing to
Section 3.1, the map F1 is well defined on M and (3.3) yields the estimate

sup
t∈(0,T)

‖θ (t)‖∞ + sup
t∈(0,T)

‖∂tθ (t)‖∞ ≤ 2.

Moreover, Lemma 3.2 implies θ ∈N .
Furthermore, Theorem 2.2 guarantees the existence of a solution c ∈Xθ to (2.3) additionally

satisfying the L∞-estimate

sup
t∈(0,T)

‖c(t)‖∞ ≤ ‖c0‖∞.

Theorem 2.3 leads with the assumed restriction d ≤ 2p + 1 on the parameters to c ∈
L2(0, T ; H1

0 (�) since we have in (2.15) for a = 2

‖∇c‖2
L2(L2) ≤ ‖D(θ )

1
2 θ−p− 1

2 ∇c‖2
L2(L2)

≤ ‖θ−p
0 c0‖2

2 + (2p + 1)2‖θ0‖d−2p−3+2μ
∞ ‖c0‖2

∞

∫ T

0
‖θ−μ∇θ‖2

2.

The norm of the weighted gradient of θ can be estimated by (3.4) leading actually to

‖∇c‖L2(L2) ≤ ‖θ−p
0 c0‖2 + (2p + 1)‖θ0‖

1
2 (d−2p−3+2μ)
∞ ‖c0‖∞T

1
2

×
(
‖θ−μ

0 ∇θ0‖2 + 1
ρ

T
1
2 ‖θ0‖σ−μ

∞ M
)

· exp [T(μ+ σ )]
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such that for sufficiently large M and small T , we obtain ‖∇c‖L2(L2) ≤ 1
2 M . Finally, c belongs to

M and hence the operator F maps M into M.

Weak∗-continuity: To prove continuity of the operator F with respect to the weak∗-topology,
we show first weak∗-continuity of F1. Therefore, let (c̃k)k∈N ⊂M be a sequence weak∗-
converging to c̃ ∈M. Then, the sequence (θk)k∈N = (F1(c̃k))k∈N is bounded due to (3.3) and
(3.4). Moreover, a subsequence of (θk)k∈N (denoted again by (θk)k∈N) weak∗-converges to
a limit θ ∈Y ∩ L2(0, T ; H1(�)). The Lemma of Aubin–Lions implies strong convergence in
L2(0, T ; L2(�)). The limit θ actually satisfies (3.1) since

∫ T

0
(∂t(θk − θ ), ϕ)2

k→∞−→ 0 and

∫ T

0
(f (c̃k , θk) − f (c̃, θ ), ϕ)2 =

∫ T

0
(c̃k(θσk − θσ ), ϕ)2 +

∫ T

0
((c̃k − c̃)θσ , ϕ)2

≤ sup
t∈(0,T)

‖c̃k(t)‖∞‖θσk − θσ‖L2(L2)‖ϕ‖L2(L2) +
∫ T

0
((c̃k − c̃)θσ , ϕ)2

k→∞−→ 0

for all ϕ ∈ L2(0, T ; L2(�)). Besides the weak∗-convergence of (c̃k)k∈N and the strong L2(L2)-
convergence of (θk)k∈N, we have applied in the last step the estimate |θσk − θσ | ≤ σ |θk − θ | since
θk , θ ∈ (0, 1).

The sequence (θk)k∈N defines a further sequence (ck)k∈N = (F2(θk))k∈N. The boundedness
of this sequence in L2(0, T ; L2(�)) leads to a weak* convergent subsequence to a limit c ∈
L2(0, T ; L2(�)). The weak∗-continuity of the operator F is verified if c =F(c̃), i.e., if c satis-
fies (2.3) with respect to θ . Since (ck)k∈N ⊂ L2(0, T ; H1

0 (�)), the time derivatives θk∂tck belong
to L2(0, T ; H−1(�)) and are similarly to (2.12) uniformly bounded. Thus, a subsequence (denoted
again by (θk∂tck)k∈N) weakly∗ converges to θ∂tc. Considering the terms associated with the time
derivative, we have for all ϕ ∈ L2(0, T ; H1

0 (�))

∫ T

0
(θk∂tck − θ∂tc, ϕ)2

k→∞−→ 0.

The products θkck , θc belong also to L2(0, T ; H1
0 (�)) and hence the sequence (θkck)k∈N is

bounded in X , i.e., there is a weak∗-convergent subsequence (denoted again by (θkck)k∈N) with
limit θc. In particular, (θkck)k∈N converges strongly in L2(0, T ; L2(�)) to θc. Owing to this strong
L2(L2)-convergence, the convergence of the terms in (2.3) associated with the right-hand side
also holds true

∫ T

0

((
c̃k,+
ρ

− 1
)

f (ck , θk) −
(

c̃+
ρ

− 1
)

f (c, θ ), ϕ
)

2

= 1
ρ

∫ T

0
(c̃k,+(f (ck , θk) − f (c, θ )), ϕ)2 + 1

ρ

∫ T

0
((c̃k,+ − c̃+)f (c, θ ), ϕ)2

+
∫ T

0
(f (c, θ ) − f (ckθk), ϕ)2
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≤
(

1
ρ

sup
t∈(0,T)

‖c̃k,+(t)‖∞ + 1

) (
‖θkck − θc‖L2(L2)‖ϕ‖L2(L2)

+ sup
t∈(0,T)

‖c(t)‖∞‖θσ−1
k − θσ−1‖L2(L2)‖ϕ‖L2(L2)

)

+ 1
ρ

∣∣∣∣
∫ T

0
((c̃k,+ − c̃+)f (c, θ ), ϕ)2

∣∣∣∣ k→∞−→ 0,

for all ϕ ∈ L2(0, T ; H1
0 (�)). Here, it is useful to apply the auxiliary Lemma 4.3 below, ensuring

that

‖θσ−1
k − θσ−1‖L2(L2)

k→∞−→ 0 (4.2)

for all σ ≥ 1.
The sequence of gradients (∇ck)k∈N ⊂ L2(0, T ; L2(�)) is uniformly bounded by 1

2 M and hence
entails a weakly∗ convergent subsequence. Finally, the continuity assumption on D implies∣∣∣∣

∫ T

0
(D(θk)∇ck −D(θ )∇c, ∇ϕ)2

∣∣∣∣≤
∣∣∣∣
∫ T

0
(D(θ )∇(ck − c), ϕ)

∣∣∣∣
+ ‖D(θk) −D(θ )‖L2(L2)‖∇ck‖L2(L2) sup

t∈(0,T)
‖∇ϕ(t)‖∞

k→∞−→ 0,

for all smooth test functions ϕ ∈ C∞
0 (�T ). The density of C∞

0 (�T ) in L2(0, T ; H1
0 (�)) leads for

an arbitrary test function ϕ ∈ L2(0, T ; H1
0 (�)) and a sequence of smooth functions ϕ� ∈ C∞

0 (�T )
converging to ϕ as �→ ∞ to the following result. Let ε > 0. Since ‖∇ck‖L2(L2) ≤ 1

2 M is uni-
formly bounded, choosing � sufficiently large such that ‖∇ck‖L2(L2)‖ϕ − ϕ�‖L2(H1) <

ε
2 and

afterwards choosing k in such a way that

‖D(θk) −D(θ )‖L2(L2)‖∇ck‖L2(L2) sup
t∈(0,T)

‖∇ϕ�(t)‖∞ <
ε

2
,

we obtain ∫ T

0
((D(θk) −D(θ ))∇ck , ∇ϕ)≤ ‖∇ck‖L2(L2)‖ϕ − ϕ�‖L2(H1)

+ ‖D(θk) −D(θ )‖L2(L2)‖∇ck‖L2(L2) sup
t∈(0,T)

‖∇ϕ�(t)‖∞ < ε.

After all, Schauder’s fixed point theorem ensure a solution c ∈X to (4.1a) with the properties
derived in Section 2. This implies a solution θ ∈Y to (4.1b) satisfying the estimates in Section 3.
The proof of the nonnegativity of c follows the same line as in Theorem 2.3.

Global in time solution: Let finally T > 0 be arbitrary. We decompose the time interval
[0, T] into L subintervals 0 =: T0 < T1 < ...< TL := T , where [Ti−1, Ti] has to be chosen small
enough such that the fixed point procedure above yields the existence of weak solutions (ci, θi)
within the i-th subinterval corresponding to the initial data (ci−1(Ti), θi−1(Ti)), i = 1, ..., L. Since
ci, θi ∈X ↪→ C(0, T ; L2(�)), this successive definition of initial data is well defined. Also the
assumptions made on the initial data are satisfied. These solutions are uniformly bounded in X,
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which actually leads to a temporal continuation to a solution (c, θ ) ∈X with respect to the entire
interval [0, T].

The additional assumptions ap + 3 − 2μ≤ d ≤ 2p + 1 on the parameters in the previous
Theorem imply also the following relation

μ≥ 1
2 (a − 2)p + 1,

i.e., in particular μ≥ 1. These several restrictions on the parameters which have to be satisfied
do not intersect in an empty set. For instance, the choice a = 2 and σ = 1 yield μ= 1 and hence
d = 2p + 1.

In contrast to Theorem 2.2, standard arguments do not yield uniqueness of the weak solution
(c, θ ) ∈X. This is besides the strong non-linear structure of (2.3) with respect to (c, θ ) also due
to the unsymmetric θ weights of the time derivative and the diffusion terms, respectively.

The L2(L2)-strong convergence of the sequence (θk)k∈N to θ was crucial in the previous proof.
It is evident that also powers (θa

k )k∈N of this sequence with a ≥ 1 converge strongly to θa. We
conclude this section with the following result stating the L2(L2)-convergence of powers with
exponents a ∈ (0, 1), which can be verified directly by applying Hölder’s inequality.

Lemma 4.3 Let σ ∈ (1, 2) and (θk)k∈N ⊂ L2(0, T ; L2(�)) be a sequence strongly converging
to θ ∈ L2(0, T ; L2(�)). Moreover, we assume θk , θ ∈ [0, 1) for all k ∈N. Then the sequence
(θσ−1

k )k∈N ⊂ L2(0, T ; L2(�)) converges strongly to θσ−1 ∈ L2(0, T ; L2(�)).

Proof First, let σ − 1 ≥ 1
2 . In this situation, we have

‖θσ−1
k − θσ−1‖2

L2(L2) =
∫ T

0

∫
�

|θσ−1
k − θσ−1|2

≤
∫ T

0

∫
�

|θσ−1
k − θσ−1||θσ−1

k + θσ−1| = ‖θ2(σ−1)
k − θ2(σ−1)‖L1(L1)

≤ (T |�|) 1
2 ‖θ2(σ−1)

k − θ2(σ−1)‖L2(L2)
k→∞−→ 0,

since 2(σ − 1) ≥ 1. If σ − 1 ≥ 1
4 , we obtain

‖θσ−1
k − θσ−1‖2

L2(L2) = (T |�|) 1
2 ‖θσ−1

k − θσ−1‖2
L4(L4)

≤ (T |�|) 1
2

(∫ T

0

∫
�

|θσ−1
k − θσ−1|2|θσ−1

k + θσ−1|2
) 1

2

= (T |�|) 1
2 ‖θ2(σ−1)

k − θ2(σ−1)‖L2(L2)
k→∞−→ 0,

since 2(σ − 1) ≥ 1
2 . Finally, let m ∈N such that σ − 1 ≥ 1

2m . Induction over m completes the
proof.
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5 Conclusions

We analysed the diffusion–precipitation model (1.1) including vanishing porosity. Introducing
an appropriate weighted function space, we were able to handle the degeneracy and obtained ana-
lytical results for the transport equation, cf. Theorem 2.2. We investigated the decay behaviour of
this solution with respect to the porosity in Theorem 2.3. There the restriction on the decay order
p ≤ ρ

‖c0‖∞ − 1 was assumed, i.e., besides low initial concentration also dense precipitation leads
to possible high decay. We obtained nonnegativity and boundedness for the weak solution to
the transport equation. Moreover, we studied the ODE describing the change of porosity caused
by precipitation. Thereby, the control of an appropriate θ -weighted norm of the gradient of the
porosity was crucial for the analysis of the transport equation. In order to obtain global in time
solutions to the overall coupled system, we applied a fixed point argument. However, in contrast
to previous works, e.g., [12, 13, 14], we were able to solve (1.1) even in case of substantially
clogging phenomena.

For sake of simplicity, the diffusivity was proposed to be scalar-valued. In fact, this parameter
is a tensor D : [0, 1) →R

(n,n) in anisotropic media [11]. Such a generalisation can be done easily
since the effective tensor is typically bounded, symmetric and uniformly positive definite [6, 13].

Even though this article is a first step towards rigorous analysis for clogging porous media,
a lot of future work needs still to be done in various directions. Since standard arguments do
not yield uniqueness of weak solutions to (1.1) due to non-linearity and unsymmetric θ weights,
another approach is necessary. Also fluid flow and advective transport should be incorporated
for a more comprehensive model.

The main attention in the current article was being directed to solutions with decaying

behaviour. In such a case, i.e., c
θ↘0−→ 0, a constant dissolution rate [7] would dominate the

reactions for small θ , i.e., clogging will never appear. Therefore, we neglected the reaction of
dissolution and focused on clogging effects. However, for sufficiently small density ρ or large
initial concentration c0, it may happen that the concentration does not decay with respect to θ
and hence clogging may occur despite a dissolution rate. However, the property ∂tθ ≤ 0 (i.e., no
dissolution) was crucial in the proof of Theorem 2.2 to derive the discrete energy estimate (2.7)
as well as (2.8). Therefore, including dissolution is a demanding task requiring novel analytical
approaches.

As already mentioned in the introduction, the analytically justified restriction on the critical
porosity θc = 0 is not exhaustive for general geometric settings. In contrast to Theorem 2.3,
the concentration c does not necessarily vanish for θ → θc if θc > 0 is assumed. Thus, also for
θ ≤ θc substrate may still precipitate at the solid matrix leading to a post-clogging ODE system.
Therefore, also analysis for θc > 0 is of importance and should be done in future.

Finally, besides equation (1.1), also generalised non-linear diffusion problems of the form

∂tb(u) − ∇ ·D(x, t, u)∇u = f (x, t, u) in �× (0, T)

are often of relevance for several applications. Thus, it is of interest whether the current results
can be extended to such possibly degenerating parabolic equations and in which sense the decay
behaviour is reflected. For monotone increasing functions b, a L-scheme-type linearisation might
be useful [8].
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