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Abstract We construct an action of the affine Hecke category on the principal block Repy(G1T) of
G1T-modules where G is a connected reductive group over an algebraically closed field of characteristic
p >0, T a maximal torus of G and G the Frobenius kernel of G. To define it, we define a new category
with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-
Soergel.

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field K of char-
acteristic p > 0. One of the most important goals in representation theory is to describe
the characters of irreducible representations. In the case of rational representations of G,
Lusztig gave a conjecture which gives the characters of irreducible representations of G
in terms of Kazhdan-Lusztig polynomials of the affine Weyl group for p > h, where h is
the Coxeter number. Thanks to the works of Kazhdan-Lusztig [K1.93, KL94a, KL94b],
Kashiwara-Tanisaki [KT95, KT96] and Andersen-Jantzen-Soergel [AJS94], this is proved
for p large enough. An explicit bound on p is known by Fiebig [Fiel2].

However, as Williamson [Wil17] showed, Lustzig’s conjecture fails for many p. Therefore,
we need a new approach for such p. Riche-Williamson [RW18] gave such an approach,
and now we explain it. Assume that p > h. Let Repy(G) be the principal block of
the category of rational representations of G. For each affine simple reflection s, we
have the wall-crossing functor 65: Repy(G) — Repy(G). The Grothendieck group of
Repy(G) is isomorphic to the anti-spherical quotient of the group algebra of the affine
Weyl group. Here, the action of the affine Weyl group on a representation is given by
[M](s+1)=[0s(M)] for M € Repy(G) and a simple affine reflection s. Riche-Williamson
[RW18] conjectured the existence of a categorification of this anti-spherical quotient.
More precisely, they conjectured that there is an action of D on Repy(G) where D is
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the diagrammatic Hecke category defined by Elias-Williamson [EW16]. Assuming this
conjecture, they proved that the anti-spherical quotient of D is a graded version of the
category of tilting modules in Repy(G). In particular, one can describe the character of
indecomposable tilting modules in terms of p-Kazhdan-Lusztig polynomials. Recently this
description was proved by Achar-Makisumi-Riche-Williamson [AMRW19] when p > h,
and for any p by Riche-Williamson [RW22]. We note that if p > 2h — 2, then characters
for irreducible modules are described by characters of tilting modules [And98]. We also
remark that Sobaje [Sob20] gave for all p an algorithm to calculate the characters of
irreducible modules by the characters of indecomposable tilting modules.

Achar-Makisumi-Riche-Williamson also proved a big part of the conjecture, but not
a full statement. In the case of G = GL,,, the original conjecture is proved by Riche-
Williamson [RW18]. Recently, the conjecture is proved by Bezrukavnikov-Riche [BR22]
for p > h.

In this paper, we consider the G T-version of this conjecture, where T' C G is a maximal
torus and G, is the Frobenius kernel of G. Namely, we define an action of the category
D on the principal block of G T-modules.

Next, we state our main theorem. We remark that we have an object By € D for any
affine simple reflection s (see the next subsection for the details). Assume that p > h. Let
Repy(G1T) be the principal block of the category of G;T-modules.

Theorem 1.1 (Theorem 3.31). The category D acts on Repy(G1T), where B; € D acts
as the wall-crossing functor for any affine simple reflection s.

Kaneda (private communication) proved this theorem for GL,, using the arguments of
Riche-Williamson [RW18].

Let XV be the cocharacter group of T and set XY = XV ®zK. Let S = Sym(Xy) be the
symmetric algebra of Xy. This is a graded algebra via deg(X}y) = 2. Andersen-Jantzen-
Soergel defined a combinatorial category KCajs. This category is an S-linear category with
a grading. We define a category K ®g K ;5 with the same objects as K4 js; however, the
space of morphisms is defined as Homgg 1 (M,N) =K®gs @;c; Homg ;s (M, N (7)),
where N (i) denotes the grading shift (the upperscript f means forgetting the gradings).
Let Proj(Repy(G1T')) be the category of projective objects in Repy(G17T). Andersen-
Jantzen-Soergel constructed a functor V: Proj(Repy(G17T)) — K ®g K’ ;5 and proved
that it is fully faithful. They also determined the essential image of V, and using this
functor, they proved Lusztig’s conjecture for large p.

In order to obtain an action of D on Repy(G1T), it is sufficient to define an action on
Proj(Repy(G1T)) (see 3.7). Therefore, by the results of Andersen-Jantzen-Soergel, it is
sufficient to construct the action of D on the essential image of V. The main obstructions
to do it are the following.

(1) Elias-Williamson defined D via generators and relations. Since the relations are
very complicated, it is hard to check that the action is well-defined.

(2) The category Kajs p contains only “local” information. Hence, it is difficult to
construct the action directly.
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1.1. The category SBimod

We use the category SBimod [Abe21] instead of the category D. The category SBimod is
equivalent to the category D. We recall the definition of SBimod. Let W,og be the affine
Weyl group attached to G and Frac(S) the field of fractions of S. An object M in SBimod
is a graded S-bimodule and submodules ME*S) c Mg Frac(S) (xr € Wag) with the
property M ®gFrac(S) = @mewa“ Mfrac(s) and mf =%(f)m for f €S and me Mfrac(s).
Here, 7 is the image of x in the finite Weyl group. For M,N € SBimod, we have the
tensor product M ® N = M ®g N with the decomposition (M ® N)®g Frac(S) =

r€Wagr
(M(X)N)gmc(s)7 where (M®N)£rac(s) =®D,.—. M;rac(s) ®Frac(s) NE*elS) A homomor-
phism M — N is a degree zero S-bimodule homomorphism which sends MxFraC(S) to

NErae(S) for any = € Wag.

Let X be the character group of T. An alcove is a connected component of X ®z R\
\U; H:, where ¢ runs through the affine reflections in Wg, and H; is the fixed hyperplane
of t. We fix an alcove Ay and let S,g be the reflections with respect to the walls of Aj.
Then, (Wag, Sag) is a Coxeter system. For each s € Sag, put S*={f € 5| s(f) = f}. Then,
the S-bimodule S ®gs S(1) has, when tensored by Frac(S), a unique decomposition as
described above such that (S ®gs- S(l))E”“(S) # 0 only when w =e,s. Let Bs be this
object. Now SBimod consists of the objects M which are direct summands of direct sums
of objects of the form By, ® ---® Bs,(n) where s1,...,8; € Sag and n € Z. It is proved
in [Abe21] that the category SBimod is equivalent to the diagrammatic Hecke category
defined by Elias-Williamson. As shown in [EW16, Abe21], this gives a categorification
of the Hecke algebra of the affine Weyl group; namely, the split Grothendieck group of
SBimod is isomorphic to the Hecke algebra.

1.2. Another combinatorial category

We also give another realization of the category of Andersen-Jantzen-Soergel KCajg
[AJS94]. As in [Lus80], we use the combinatorics of alcoves to define the category. Let A
be the set of alcoves. We fix a positive system AT of the root system A of G. Then, this
defines an order on A[Lus80]. Recall that we have fixed Ay € A. The action of W,g on
X ®zR induces the action of W,g on A such that the map w— w(Ag) gives a bijection
Weag — A.

Set 5 = S[(a¥)™' | @ € A]. We define the category K’ as follows. An object of K’ is
a graded S-bimodule M with a decomposition S? @g M = Daca Mg, such that mf =
T(f)m for m € Mg, feS? x € W,g such that A= x(Ap) and T is the image of z in the
finite Weyl group. A morphism f: M — N is a degree zero S-bimodule homomorphism,
such that f (Mg) C B >4 NY, . We will also define some subcategories of K'. Particularly,

the category denoted by Kp plays an important role in our construction. Since it is
technical, we do not say anything about its definitions in the Introduction, but instead
refer to Definition 2.16. We only note that, for each A € A, the module M,y = (M N

@A’ZAME&’)/(MH@A’>AM2') is graded free for M € Kp.
We define an action SBimod on K’ as follows. Let B € SBimod and note that we
have a submodule B? ¢ B®g S?, such that B? ®g0 Frac(S) = B Let M e K.
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Then, we define M« B by M *B =M ®g B as a graded S-bimodule and (M*B)?U(AO) =
Docw,, Mgrl(Ao) ®g0 B? for w € Wog. We can prove that the above action of SBimod

on K’ induces a well-defined action also on Kp (Proposition 2.24). Therefore, the split
Grothendieck group [Kp] of Kp has a structure of [SBimod]|-module defined by [M][B] =
[M x B]. Hence, [Kp] is a module of the Hecke algebra. This category satisfies the following.

Theorem 1.2 (Theorem 2.35, 2.40). We have the following.
(1) For each A € A, we have an indecomposable module Q(A) € l%p, such that
Q(A)gay =S and Q(A)ary # 0 implies A’ > A.
(2) Any object in Kp is isomorphic to a direct sum of Q(A)(n) for A€ A and n € Z.

(3) The split Grothendieck group [Kp] is isomorphic to a certain submodule P° of the
periodic Hecke module (the submodule was introduced in [Lus80]).

1.3. A relation with a work of Fiebig-Lanini

Fiebig-Lanini [FL15] had a similar work (earlier than this work) and defined a certain
category. Logically, results in this paper do not depend on their work. However, in the
proofs in this paper, we borrow many ideas from their work. Moreover, in subsection 2.9,
we prove that our category K p is equivalent to the category of Fiebig-Lanini. The author
thinks it is possible to establish the theory on top of the theory of Fiebig-Lanini, but the
existence of a Hecke action does not easily follow from their theory.

1.4. Relations with representation theory

The category K p is not the category we really need. We modify this category as follows.
Objects in Cp are the same as those in K p, and the space of homomorphisms is defined by

Homy,, (M,N) =Homg (M,N)/{g: M — N[ o(M4{) c € N%}.
A'>A

We prove that the action of B € SBimod on Kp is well-defined.
Theorem 1.3 (Proposition 3.3, Theorem 3.9). We have the following.

(1) The object Q(A) is also indecomposable as an object of Kp.
(2) We have [Kp] ~ [Kp]. Hence [Kp] is also isomorphic to P°.

We also define a functor F: Kp — Kajs. Recall that we have a wall-crossing functor
Vs: Kags = Kajs for each s € S,g, see [Fiell, 5.3].

Theorem 1.4 (Proposition 3.14, 3.26). Let M € Kp. We have the following.

(1) We have F(M x Bg) ~94(F(M)) for each s € Sag.
(2) The functor F is fully faithful.

Let Kajs,p be the essential image of 7. We define K®g ICRJS’P and K®g ICED in the
same way as K®g Kk ;5. One of the main results in [AJS94] says that K®g Kf jg p ~
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Proj(Repy(G1T)) (see 3.7). Since the action of SBimod on Kp ~ [Ca g p gives an action
on K®g ICfUS’P, we now get the action of SBimod on Proj(Rep,(G1T")). We can extend
this action to Repy(G1T') (see 3.7).

Let Ap be the alcove containing p/p where p is the half sum of positive roots. We
have an equivalence K®g KL ~ K®g ’CEUS,P ~ Proj(Repy(G1T)) and Q(A) corresponds
to P(Aa), where Ay (a,) = pw(p/p) — p for w € Wog and P(Aa) is the projective cover
of the irreducible representation with highest weight A4. Let Z(u) € Rep(G1T) be the
baby Verma module with highest weight p and (P(\) : Z(u)) the multiplicity of Z(u) in
a Verma flag of P(\). By the constructions, we have the following.

Theorem 1.5 (Corollary 3.36). The multiplicity (P(Aa) : Z(Aar)) is equal to the rank of
Q(A){ary-

In 3.9, we discuss Lusztig’s conjecture on irreducible characters of rational representa-
tions. We give a proof of the conjecture based on the theory developed in this paper.

2. Our combinatorial category

We shall use a different notation than the Introduction. In particular, we do not fix the
alcove Ap. So, we distinguish two actions (from the right and left) of W,g on A as in
[Lus80]. We will also work in a more general situation than in the Introduction. Forget
every notation and the assumptions from the Introduction. Notation used in the main
body of this paper will be explained.

2.1. Notation

Let (X,A, XV AV) be a root datum. Let A the set of alcoves, namely the set of connected
components of Xg \U,ecn nez{ € Xr | (A a”) =n} where Xg = X @z R. Let W} be the
finite Weyl group and W/ = W x ZA the affine Weyl group with the natural surjective
homomorphism W/ — W;. For each o € A and n € Z, let s4,,,: X — X be the reflection
with respect to {\ € Xg | (\, &) =n}. As in [Lus80], let S,g be the set of W/4-orbits
on the set of faces. Then, for each s € S,g and A € A, we denote As as the alcove # A,
which has a common face of type s with A. The subgroup of Aut(A) (permutations of
elements in A) generated by Sag is denoted by Wag. Then, (Wag, Sag) is a Coxeter system
isomorphic to the affine Weyl group. The Bruhat order on Wog is denoted by >. We shall
consider the right action of W, on A.

We give related notation and also some facts. If we fix an alcove Ao, then W/ ~
via w— wAy and W)s acts on A by (w(Ag))z = wx(Ap). This gives an isomorphism
W' ~ Wag. The facts stated below are obvious from this description.

Let A be the set of maps A\: A — X such that A(xA) = TA(A) for any z € W/; and
A€ A, where T € W; is the image of z. We write Aa = A\(A) for A € A and A € A. For
each A€ A, A — A4 gives an isomorphism A = X, and the inverse of this isomorphism
is denoted by v+ v, The group Wag acts on A by (z(\))(A) = M\(Ax).

Let Aug be the set of A € A such that A4 € ZA for any, or equivalently, some A € A.
For A € Ay and A € A, we define AN = A+ As. Then, for A,Ae € Augr, (AN1)A2 =
(A+(A1)a)A2 = A+ (A1) a+(A2) a+(n)4- Since elements in A are constant on ZA-orbits,
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we have (X2) 44 (x,), = (A2)a. Hence, (A1) A2 = A+ (A1 +A2) a; namely, (4,\) — A gives
an action of A, on A. Therefore, we get A.g < Aut(A) and the image is contained in
Wag. Thus, we may regard A,g as a subgroup of Wg.

Let A€ A and A,A’ € A and assume that A A" are in the same A,g-orbit. Namely,
there exists p € Aag such that A= A’y = A’ + par. Since elements in A are constant on
ZA-orbits, we get Aar = A4. Namely, the isomorphism A — A4 only depends on A,g-orbit
in A. Hence, we also write the isomorphism by A +— Aq where Q € A/A,g. The inverse is
denoted by A+ A®. The A,g-orbit through A is equal to {A+\ |\ € ZA}. Let A+ZA
be this set.

The following lemma is obvious from the definitions.

Lemma 2.1. Let \€e A, ve X, 2 € Wag, y € Wiy and A€ A.
(1) z(A)Az)\Ax.

(2) y()‘A) = )‘yA-
(3) vA = z(v4®).
(4) 14 =y,

Fix a positive system AT C A. Let o € A" and n € Z. We say A < s4,,(A) if, for all
a € A, we have {a,aV) < n. The generic Bruhat order < on A is the partial order generated
by the relations A < s4 ,(A). The following lemma is obvious from the definition.

Lemma 2.2. Let A€ A, we W/ and a is in the closure of A. If A <w(A), then
w(a)—a € RygA™T.

Lemma 2.3. Let A, A’ € A such that A+v=A" forveZA. Then, A< A" if and only
ifve ZzoA+.

Proof. We assume v € ZZOA"’ and prove that A < A’. We may assume v =« € AT. Take
n € Z such that n—1 < (a,a¥) < n for any a € A. For a € A, we have (s, (a),a") =
(a — ((a,a") —n)a,a¥) = 2n — (a,a). Hence, n < (sqn(a),a¥) < n+ 1. Therefore,
A < sa,n(A) < 5a,n+15a,n(A) =A+a.

However, assume that A < A’. Take a € A. Then by Lemma 2.2, we have (a+v)—a €
R>oA™. Hence, v € R5gA™. Since v € ZA, we get v € Z>oA™. O

A subset I C A is called open (resp. closed) if A€ I, A’ < A (resp. A’ > A), which
implies A’ € I. This defines a topology on 4. The following lemma is an immediate result
of the previous lemma, and it plays an important role throughout this paper.

Lemma 2.4. For each Q € A/A.g and x € Wag, the map x: Q — Qux preserves the order.

For A,A' € A, set [AJA]={A" € A|A< A" <A'}. Forae AT and A€ A, take n € Z
such that n—1 < (a,a") <n for all a € A and define o t A = s4,,,(A). By the definition,
A<at A We define a ] A as the unique element such that a1 (a ] A) = A.

In this paper, graded module (resp. ring) means Z-graded module (resp. ring). Let
M =@, M be a graded module. For k € Z, we define M (k) by M(k)! = M***. For a
graded ring S, a graded S-module M is called graded free if it is isomorphic to €, S(n;)
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where ny,...,n, € Z (in this paper, graded free means graded free of finite rank). We set
grk(M) =", v™ € Z[v,v™'], where v is an indeterminate.

2.2. The categories

Fix a Noetherian integral domain K (in the Introduction, it was an algebraically closed
field. Since our arguments work with a Noetherian integral domain, we assume K is a
Noetherian integral domain. Later we will add more assumptions). We define AV using
XV exactly in the same way as we defined A using X. As A, W,g acts on AY. We put
A=A @K, XY =XV ®zK and R = Sym(A}). The algebra R is equipped with a
grading such that deg(Ay}) = 2. As for the case of A and X, for f € AV, we put fa = f(A).
Then, f+ fa gives an isomorphism AY — XV and this induces an isomorphism R — S
for which we also write f — fa. The inverse of this map is denoted by g+ g4.

Assumption 2.5. In the rest of this section, we assume the following.

(1) We have 2 € K*, and any o # Y € (AY)™ are linearly independent in Xﬂz/m for
any maximal ideal m C K. This is the GKM-property of the moment graph attached
to the finite Weyl group [Fiell, 9.1].

(2) The torsion primes of the root system (XV,AY, X A) [JMW14, Definition 2.43] are
invertible in K.

Lemma 2.6. The representation Xy of Wy is faithful.

Proof. If w € W; fixes any element in X}/, it fixes any image of & € A. By the assumption,
AY — XY is injective. Therefore, w fixes any coroot. Hence, w is identity. O

The image of ¥ € AY in X} is denoted by the same letter. We also put S = Sym(Xy/).
We give a grading to S via deg(Xy) = 2. Set S? = S[(a¥)™' | € A]. For an S-module
M, set M? =5%@g M. If M is an S-algebra, then MY is an S%-algebra. Let Sy be a flat
commutative graded S-algebra. If M is an Sp-module, then M? ~ Sg ®s, M is an Sg—
module. We consider the category K'(So) consisting of M = (M, {M%} 4c.4) such that

e M is a graded (Sp,R)-bimodule which is finitely generated torsion-free as a left
So-module.
e MY is an (S?, R)-bimodule such that mf = fam for any m € MY and f € R.

o M'=, M.

A morphism M — N in K'(Sp) is an (Sp,R)-bimodule ¢ homomorphism of degree zero
such that

p(MY) < €D Ni
A7>A
for any A € A. We put H(iml%/(so)(M’N) = @iHomﬁ,(SO)(M7N(i)). This is a graded
(S0, R)-bimodule. For M € K'(Sp), we put supp 4 (M) ={Ac A| Mg #0}.

Remark 2.7. Let Q € A/A.g. For any m € @ ,.q Mg and f € R, we have mf = fom.
The action of W/g on A/A.g factors through W/ s — Wy, and Wy acts on A/A.g

https://doi.org/10.1017/51474748023000130 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000130

1132 N. Abe

simply transitively. We have M? = Duew: (DB acwi) M%) and for m € D scwe) MY,

mf = w(fq)m. Therefore, the decomposition of M? into @ Acw(@) MY is determined
by the (Sp, R)-bimodule structure. Hence, any (Sg, R)-bimodule homomorphism M — N
sends @ 4cq MY to Daco NY%. We will often use this fact.

Remark 2.8. Here, we do not assume that a morphism M — N in K'(Sy) sends
MY to NY.

For each closed subset I C A, we define My = Mﬂ@Aeng' Set

o MY (A€,
(MI)A_{O ! (A I).

By the following lemma, M; € K'(Sp) and therefore, M — M is an endofunctor of K'(So).
We have a natural monomorphism M; — M in K'(Sp).

Lemma 2.9. The module My is an (Rp,S)-submodule of M, and we have
(M;)" =P M5
Aerl
We also have My, ~1, = My, N My, for any closed subsets 11,15 C A.

Proof. The first part is obvious, and for the second part, the left-hand side is contained
in the right-hand side. Take m from the right-hand side and let f € S such that fm € M.
Then, we have fm € M, and m is in the left-hand side. The last assertion is obvious. [

If S} is a commutative flat graded Sp-algebra, then for M € K'(Sp), the (S4,R)-
bimodule S} ®g, M has a decomposition (S} ®g, M)? ~ @AeA((S(’))Q ®g0 M%), and this
decomposition gives a structure of an object in K'(S55). It is easy to see that M — S)®g, M
is a functor K'(So) — K/(S}).

For each a € A, set W/, ¢ = {1,580} X Za C W/z. We also put S* = S[(8Y)"" |3 €
A\ {£a}] and M* = S*®g M for any left S-module M. Again, if M is an S-algebra
then M is an S%algebra. If M € K/(Sp), then M® € K'(S§) as mentioned above. Note
that, from our assumption, () ,ca+ S =S [AJS94, 9.1 Lemma]. We say M € K(So) if

M € K'(Sy) and satisfies the following two conditions which are taken from [FL15]. These

are important properties in our arguments.

(S)  Myurn, = My, + Mj, for any two closed subsets Iy, I5.

(LE) For any a € AT, there exist M@ e K'(S%) for all Q € W/, . \A with an injective
morphism M — M in K'(S§) such that supp 4 M c Q and the induced

. (Q) a . . -] o

morphism GBQGW;@H\AM — M® is an isomorphism in K'(S§).

(S) stands for “sheaf” and (LE) stands for “local extension condition” [FL15,
Definition 5.4].

Let M € ’6(50)- If Mo = GBQEW(;JH\A(@AEQ MY N M) for any a € A, M satisfies

(LE). The converse is not true, in general. For example, assume #A > 1. Fix o € A*.
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Take 3 € At\{a} and A € A. Define N € K'(S) by N ={(f,9) | f,g € S,f = g(mod a)},
Ng =5'qo, Nﬂiﬁ =0®S? and Ng, =0 for any A’ € A\ {A,A— 3} (these determine the
. . . o 0
right R-action on N u~n1quely). Then, it is easy to see that N # @QEW;,M\A(@AGQ NiN
N®). Define N® € K/(S) for Q € W, .5\ A as follows: NWe.ard) = go (NWaar ) =
S0 (N(W(;,affA))g/ =0 for A’ € A\ {4}, NWa.aux(A=F) = go (N(W;,aff(A_ﬁ)))giﬁ =9
(NWaare(A=D)0, = 0 for A" € A\{A~ B} and N =0 for Q£ W/, g AW, ¢(A—B).
Then, we have supp 4 N € Q. We define NWaand) _y No (resp. NWeare(A=5)) _y N9%)
by f+ (af,0) (vesp. f+ (f,f)). Then, Pgey ff\AN(Q) — N is an isomorphism. We
can also easily verify that N7 = @Qewé‘aff\A(®A€Q N%NN7) for any v € AT\ {a}.

Hence, N satisfies (LE).
We have the following. M satisfies (LE) if and only if for any a € A, there exists
N € K'(S§) which is isomorphic to M* and satisfies N = @y ff\A(eaAeQ NYNN).

Lemma 2.10. Let M € K'(So), a € A and A € A. Assume that supp 4(M) C W/, A
Then, M satisfies (S). In particular, if M satisfies (LE), then M® satisfies (S).

Proof. Set Q= W&aﬁA and let 1,15 C A be closed subsets. We have Q = {A,a 1 A,a T
(atA),...}u{al Aal (al A),...} and Q is a totally ordered subset of A. Since Q is
totally ordered, 11 N2 C IoNQ or 15N C I; N We may assume 1 N2 C I5 N2 We can
take closed subsets I and I} such that I] C I}, 1 NQ =1 NQ and I;NQ = I, NQ. Then,
we have My, = My, , My, = My, and My, 1, = My, u1,. Hence, we may assume I = I} and

I, = I} In this case, (S) obviously holds. O

Let K C A be a locally closed subset; namely, K is the intersection of a closed subset [
with an open subset J. It is easy to see that, if M € K'(Sy) satisfies (S), then My /M ; ~
My /My naturally for closed subsets I,1” and open subsets .J,.J’ such that K =INJ =

I'nJ'. We define Mg = M;/Mp s for M € IE(SO). By Lemma 2.9, we have

P mh = m

AeK
By putting (MK)IQ1 equal to the image of Mg in M% by this isomorphism, we have an
object Mg of K'(Sp). The following lemma is obvious.

Lemma 2.11. We have supp 4(Mg) = supp (M) N K for any locally closed subset
KcCA.

Lemma 2.12. Let K1, K, C A be locally closed subsets. If M € K(So), then (Mg,)k, ~
MKlﬁKz

Proof. The proof is divided into 4 steps.
(1) Assume that both K1, K5 are closed. Then, the lemma follows from the definitions.
(2) Assume that K; is open and K is closed. Set Iy = A\ K;. Then, we have

(Mx,)k, = M/M, 0 @ (M/M,)Y.
AeK,
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Note that Mg, /(Mg,"M1,) = Mk, /Mr,n1, = Mk, nK,. There is a canonical embedding
from M, /(Mg, N M;,) to (Mg, )k, Let m € M such that m+ My, € @ ¢ ., (M/My,)%.
Then, Mg—component my of mis 0 for A ¢ I, UK. Hence, m € My, uk, = My, + Mk,.
Therefore, the canonical embedding is surjective. We get the lemma.

(3) Assume that K> is closed. Take a closed subset I; and an open subset J; such that
Ky =InJ;. Then, by (2), (Mjl)jl ~ My, . Hence, (MKl)Kg ~ ((MJl)]l)K2 = (MJ1)I1FTK2
by (1). This is isomorphic to M j,~r,nk, = MKk, nk, by (2).

(4) Now we prove the lemma in general. Let I; be a closed subset and J; be an open
subset such that K; = I;NJ; and put Jf = A\ J; for i =1,2. Then,

(Mk,)k, = (MK, ) /(MK ) 1,005 =~ M, nn /M, nnng

by (3). We have Mk, n1, = M1, nr, /M1,n1,n7e and Mg, nrns = M1,nnngs /Mrannssnie.-
Hence,

(Mre,)ry = Mpar, /(M1 nnange + M az,nag)-

Since My nnnsg + Mnnnnsg = Mnnnassuaningg) = Maan)\(nng), we get the
lemma. O

Lemma 2.13. If M € K(So), then Mg € K(So).

Proof. Take a closed subset I and an open subset J such that K =INJ.

We prove My satisfies (S). Let I;,Is be closed subsets. Since (Mg)r, = Mkny, is a
quotient of Mjny,, it is sufficient to prove that Miny, ® Minr, — (Mk)1,ur, is surjective.
The module (Mg )r,ur, = Mgn(1,u1,) is a quotient of My, ur,), and since My ur,) =
Minr, + Minr,, the map is surjective.

We prove M satisfies (LE). We may assume M = @QGWC’MH\A(@AGQ M4 M.
Let m € Mf. Then, for each Q € W/ 5\ A, we have mqg € M*NEP 4cq MY such that
m =Y mgq. Then, for each A € A, we have m4 = (mgq)a, where  is the unique Wé7aﬂ—
orbit containing A. Therefore, since m € M7, we have mq € Mf. Hence, mqo € M7 N
@AGQ(MI)E‘. Namely, M; satisfies (LE). Since Mk is a quotient of M, it also satisfies
(LE). O

2.3. Standard filtration

Note that {A} ={A’ € A| A" > A}n{A" € A| A’ < A} is locally closed. Let Sy be a flat
commutative graded S-algebra. We say that an object M of IE(SO) admits a standard
filtration if M4y is a graded free Sp-module for any A € A. Let Ka(So) be the full
subcategory of IE(SO) consisting of an object M which admits a standard filtration and
for which supp 4(M) is finite. By Lemma 2.12, if M € Ka(So), then My € Ka(Sp) for
any locally closed subset K C A.

Lemma 2.14. Let My,...,M; € IE(SO) and assume that supp 4(My),...,supp 4(M;) are
all finite. Let I C A be a closed subset and A € I such that I\ {A} is closed. Then, there
exist closed subsets Iy C Iy C--- C I, and k € {1,...,r} such that #(I;\I;—1) =1 for any
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Jg=1...r, Iyn(U;supp4(M;)) = IN(U;suppa(M;)), I—1 = I \{A}, (M), =0 and
(M;)1. =M for anyi=1,...,l. In particular, we have (M;)r ~ (M), for alli=1,...,1.

Proof. There exist Ay,Af such that supp 4(M;) C [Ay,Af] for any i =1,...,l by
[Lus80, Proposition 3.7]. Put Iy = {A’ € A| A’ £ AJ} N 1. We enumerate the elements in
(I\N{AY)N[A,AL] (resp. [Ay, AFI\I) as {Aq,...,Ap_1} (vesp. {Ap41,...,A,}) such that
A; > Aj implies i < j. Put Ay = A. Then, it is easy to see that I; = [ U{As,...,4;} is
closed and satisfies the conditions of the lemma. O

Lemma 2.15. Let M € Ka (S0), and let K be a locally closed subset. Then Mk is graded
free as a left Sy-module.

Proof. Since Mg € /EA (So), we may assume K = A. Take closed subsets Iy C I; C--- C I,
such that ;11\ I; = {A;}, M, =0 and My, = M. Then, My, , /M, = My4,; is a graded
free Sp-module. Hence, M, /My, = M is also graded free. O

Finally, we define the category IEP(SO), which plays an important role later. The
definitions are taken from [FL15, Lemma 4.11].

Definition 2.16. We say that a sequence M; — My — M3 in IEA(SO) satisfies (ES) if
the composition My — My — M3 is zero and

0= (M1)gay = (M2)ay = (M3){ay >0

is exact for any A€ A. B B
We define the category ICP(§’0) C Ka(So) as follows: M € Kp(Sp) if and only if for any
sequence My — My — M3 in Ka(Sp) which satisfies (ES), the induced sequence

0— Hom%A(So)(M,Mﬁ — Hom’%A(SO)(M,Mg) — Hom%A(SO)(M,Mg,) —0

is exact.

Lemma 2.17. Assume that My, My, Ms € K(So) satisfy #supp 4(M;) < oo (i =1,2,3),
and the sequence My — My — M3 satisfies (ES). Then, 0 — (M1) kg — (M2)x — (M3)x —
0 is exact for any locally closed subset K.

Proof. Replacing M; with (M;)x for i = 1,2,3, we may assume K = A. We can take
closed subsets Iy C Iy C --- C I, such that (M;);, =0, (M;)r, = M; and #([;41\ ;) =1
for i =1,2,3 and j =0,...,r, as in Lemma 2.14. Then, the exactness of 0 — (My);, —
(Mz)r; = (M3)1, — 0 follows by induction on j and a standard diagram argument. [

Lemma 2.18. Let M € IEA(SO), and Iy D I5 are closed subsets of A. Then, My, — M, —
My, /My, satisfies (ES).

Proof. Note that My, /My, = Mp\1,. The lemma follows from Lemma 2.12. O

_We put K’ :~I€’(S),~l€ = g(S), Ka :gA(S)Nand Kp =Kp(S). We also put (K')* =
K'(S*), K* =K(S*), KA =Ka(S*) and Kj = Kp(S*) for x € AU{0}.

https://doi.org/10.1017/51474748023000130 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000130

1136 N. Abe

2.4. Hecke action

For A € Ax and f € AY, we put (X f) = fa(Aa) for A € A Tt is easy to see
that this does not depend on A and gives an isomorphism Ay ~ Homg(Ag,K). Let
s € Sar, and we define oy € Ax and «) € Ay as follows: let A € A and o € AT
such that s, , = As for some n € Z. Then, we put a; = a? and oY = (aV)A.
These depend on a choice of A and «. For each s € S,g, we fix such A and
a and define ag,a.

Lemma 2.19. The pair (as,a)) does not depend on A,« up to sign.

Proof. Let A’ € A and take 8 € AT and m € Z such that A’s = sg ,, A'. Take x € W/ such
that A’ =xA. Then, A's =xAs = x5, ,A. Since the action of W/ on X preserves the set
{{ e Xr|(\aY)=n}|aeAneZ}, there exists (7,k) € A x Z such that x5, = s+ 2.
Moreover, v € {£Z(a)}, where T € Wy is the image of 2 under W/; — W;. We may assume
v=7(). We have A's = s, yoA=s, A’ Hence, s, 1 = 53, and therefore, f =ey =eT(a)
for e =1 or e = —1. We have 4" = cZ(a)"* = ca? and (8Y)4 =e(a¥)A. O

We have that (Ax,{cs}tses. {0y }ses.e) 1 a realization which satisfies Demazure
surjectivity [EW16, Definition 3.1]. Let SBimod be the category introduced in [Abe21].
We remark that [Abe21, Assumption 3.2] is satisfied in this case by [Abe20a, Theorem
1.2, Proposition 3.7]. Set R® = R[((a¥)?*)~! |a € A] for A € A. It is easy to see that this
does not depend on A. We put B = R @ B for B € SBimod.

Recall that we have an object Bs € SBimod. Set R* = {f € R| s(f) = f}. As an
R-bimodule, By = R®gs R(1) ~{(f,9) € R? | f = g(mod ay)} and we have the decompo-
sition of B? = @weW(BS)gm where

(B)! =R(6,® 1 —1@5(d,)),
(Bs)g = Rw(ds ®1-1 ®5s)7
(Bo)%, =0 (w+#e,s).

Here, 6, € Ay is chosen such that (a,ds) = 1. The decomposition does not depend on our
choice of d;.

Lemma 2.20. Let B € SBimod. Then, there exists a decomposition B® = @xewaff BY

such that Frac(R) @ e BY ~ BEa B Here, BE*) s the Frac(R)-bimodule as in the
definition of SBimod.

Proof. Assume that B; € SBimod is a direct summand of B € SBimod, and let
e € Endspimod(B) be the idempotent such that By = e(B). If B satisfies the lemma,
then by putting (B;)? = e(B?), we see that B; also satisfies the lemma. Therefore, we
may assume B = B, ®---® By, for s; € Sag. Note that for B = B, the lemma holds as
we have seen in the above. Hence, it is sufficient to prove that if By, B satisfy the lemma,
then B = B ® By also satisfies the lemma.

For x € W,g and b € (B;)?, we have bf = z(f)b for f € R. Since {(a¥)? |a € A} is stable
under the action of z, the formula says that (Bl)g is also a right R?-module. Therefore,
B? is also a right R’-module. Hence, R’ @ B @ Bs ~ B? Rpr By ~ B? ®po R @p By ~
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B? Qpo BQ. We put BE = @yz:z(Bl)g QRo (Bz)g- Then, we get BY = @zEW&H Bg and we
have Frac(R) ® o B? ~ pErac(R). -

Let Sp be a flat commutative graded S-algebra. For M € IE'(SO) and B € SBimod, we
define M« B € K'(Sp) by

e Asan (Sp,R)-bimodule, M x B= M ®pg B.

e Weput (Mx*B)" = Docw., ng,l ®po BY.

Let f: M — N be a morphism in K'(Sp). We have f(ng,l) COaecar142a 45401 N%,.
By Lemma 2.3, for A’ € Az~ +ZA, A’ > Az~' if and only if A’z > A. Therefore,
Darcarriza ar>a0-1 NY, = DPacarzaasa Ng,x,l by replacing A’z with A’. Hence,

(feid)(M%, @B c b Ny, @Bl c  (N«B)Y..
A'EA+IAA'>A A'>A

Therefore, (f ®id) gives a morphism in K'(Sp). Similarly, if f: By — By is a morphism
in SBimod, then id®f: M * By — M * By is a morphism in K'(Sp).

For each B € SBimod, BY is free as a left R?-module. We put suppyy, . (B) = {x € Wag |
B #0}. The following lemma follows.

Lemma 2.21. We have supp 4(M x B) = {Ax | A € supp 4(M),x € suppyy, . (B)}.

Consider M ®g By = M ®p: R(1) = M(1)®@1@®M(1)®46,. In (M @5 B,)? = M’(1) ®
1@&M%(1)®6,, we have

(M % B)Y, = {md; @1 —m®s(ds) | me My} @ {mé, @1 —med, |me M4}

(2.1)
~M4a MY,

The isomorphism is given by m® f — (mf,ms(f)). Note that the last isomorphism is an
isomorphism as left Sg—modules. As right R-modules, if m € (M x Bs)g corresponds to
(m1,ms) € MY @ MY, then mf corresponds to (m f,mas(f)).

Proposition 2.22. Let M,N € K/'(Sy). We have Hom%, . .(M,N By) ~ Hom,

K’ (So) (M
Bg,N).

(So)

Proof. Take § € Ay such that (as,d) =1. As (Sp, R)-bimodules, we have N * Bs = N ®gs
R(1) and M« By = M ®ps R(1). For ¢p: M ®gs R(1) = N, define ¢¥: M — N ®@g- R(1)
by ¥(m) =p(mdi®@1)@1—p(m®1)®s(d). We know that if ¢ is an (Sp,R)-bimodule
homomorphism, v is also an (Sp, R)-bimodule homomorphism and it induces a bijection
between the spaces of (Sp, R)-bimodule homomorphisms (ee, for example, [Lib08, Lemma
3.3]). We prove that ¢ is a morphism in l%’(SO) if and only if ¢ is a morphism in E’(So).

Set a(m) =mdé®1—m®s(d) and b(m) =ms(6) @1 —m® s(8) for m € M?. We also
define a’(n),b'(n) € N’ @ps R for n € N? in the same way. Then, we have (M * By)Y =
a(M%) +b(M4,) and the same for N by (2.1) for A€ A.

Let A€ A and m € M%. By the definition, ¥(m) = p(a(m)) @1+ ¥ (p(m® 1
Since a(m) € (M + By)%, pla(m) ® 1 = (as)3 w(a(m))as @ 1 = (a5)3a'(pla(m))
(as) 2"V (p(a(m))). However, we have m ® 1 = (as);'mas ® 1 = (ag); a(m) —

))-
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(as) 2'b(m). Since ¢ and b’ are left Sp-equivariant, we get 1(m) = (as) ;" a’ (p(a(m))) —
(@s) 5"V (p(b(m))).

Assume that  is a morphism in K'(Sp). Then, for any m € M%, ¢(a(m)) D .-a NG
Hence, a/(¢(a(m))) € @ 4» 4 (N * By)Y,. Since b(m) € (M  By)%,,, we have cp(l;(m)) €
@A’ZAS,A’EA3+ZA Ng,. Therefore, V' (p(b(m))) € @A’ZAS,A’EA5+ZA(N*Bs)g’s' If A’ e
As+7ZA satisfies A’ > As, since s: As+ZA — A+ZA preserves the order, we get A’s > A.
Hence, b’ (p(b(m))) € @ 4 4 (N * By)%,. Therefore, ¢ is a morphism in K'(So).

However, assume that wiis a morphism in IE’(SO). Consider the map ¢: N ®ps R —
defined by n® f > nf. Then, ®(a’(n)) = na, and ®(¥' (n)) = 0. Therefore, ®((N * B,)%
d(a’(N%)+b'(NY,)) € NS. Let m € MY. Then applying ® to v(m) = (as) 1 a’ (p(a(m))
(s) 1"V (0(b(m))), we get (as) 1" p(a(m))as € Dareasza,arsa Mhs- Hence, p(a(M})
Dasa Ng,. Similarly, using N ®gs R— N defined by n® f — ns(f), we get ¢(b (ngs)
Dasa NY,. Since (M * B,)% = a(M%) +b(M$,), ¢ is a morphism in K'(Sp).

||2

)
)—
)
)

OnNn N

Lemma 2.23. Let M € K/'(Sp).

1) Forae A, s€ Sag and Qe W! A, set M) = Mn M®. Then, we have
a, aff AeQ A
the following.
(a) If Qs = Q, then (M % B,)) ~ M) « B,.

(b) If Qs # Q, then the right action of oy on M) is invertible and we have
(M*B)Y ~ M @ (5,01 -1905(6,) e M) @ (6,1 —-1®4,)
where {ag,05) = 1.
(2) If M € K'(Sy) satisfies (LE), then M x B also satisfies (LE) for any B € SBimod.
Proof. We have
(M B) = M« B,n @ (M +B,)")

AeQ
— M%%B,N <@ M4 ® (B, @ @Mﬂﬁ(ffs)f) :
A€Q AeQ

If Qs =, then in the second direct sum, we can replace As with A. Therefore,

(M %B,)® = M®«B,n (EB Mie(B)le P Ml (BJS)

Ac AeQ
=M*xB,n P M} (B,)’
AcQ

= MNP MY @B,

AeQ
=M®«B,.

Assume that Qs # Q and take A € Q. Set 3Y = () ) a. Then the assumption Qs # (2 tells
us that 8V # +aV. Hence, 8V is invertible in S. The element s,(3") is also invertible.
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Let § € X/ such that (o,6) = 1. For m € M), there exists m1 € D 4rc 474 M9, and
my € @A’es(a 0 A+Za M9, such that m = my +my. For each f € R, m1f = fam; and
maf = so(fa)ms. By calculations using this, we have

1 a,3Y
<va+ ﬁia(ﬁﬁ\z)(ém - m5A)> al =m.
Hence, the right action of « is invertible.

Therefore, we have (M * B,) = (M % B,[a;'])) where B.[(eY)"'] = B, ®r
R[(ay)™!]. Since By[(ay)™'] = R[(ay) 1](6: ®1—1®5(05)) ® R[(e)) '] (0s ®1 - 1@ )
with R[(aY)™'](0s ®1—1®s5(d,)) C (B,)? and R[(eY) (0, ®1—1®46,) C (B,)?, the
definition of (M * B,)( implies (b).

(2) Fix o € A. By replacing M® with an object which is isomorphic to M%, we
may assume M* = @Qew&aﬂ\A(@AeﬂMgﬂMo‘). Let {Q;} be a complete set of
representatives for {Q € W(’myﬁ\A | Qs #Q}/{e,s}. Then, we have

B M xB)Y = P (M+B)D o @((M*B) ¥ & (M B,) )
QEW/ \A Qs=0Q i

= P MY «B.o@((M*B) ) & (M B,) ™).
Qs=0 7

From the argument of the proof of (1)(b), we have M) @ (5, ®1—-1®5(8,)) M) ®
(6,01 —1®6,) = M) @ By[a;1] = M) @ B,. Therefore, by (1)(b), (M * Bs)®) &
(M % B,)(9)) = M) @ B, @ M(%*) @ B,. Hence,

D (M«B)D = P MO «B o @M@ «Byo M@ 4 B,)
QEW,, \A Qs=0 i

= p MP«B,

QeW(’!,a“\A

= M®x B;,.

Hence, M * Bj satisfies (LE). O

2.5. An example
We give an example of our category. Let (X =Z,A={a=2},X" =7Z AV ={a" =1}) be
the root system of type A;. The Weyl group Wt is {e,54}. Let s1 € Sag (resp. so € Sasr)
be the element corresponding to W/;{0} (resp. W/s{1}). Then, S,z = {so,s1}. The set
of alcoves is given by A={A, ={reR=XzR|n<r<n+1}|neZ}. We have
Apsy = A, if n is even and A, s1 = Ap41 if n is odd. The algebra S = Sym(X}/) is
isomorphic to the polynomial ring K[a¥].

Define Q4, € K' = K'(S) as follows. As an (S, R)-bimodule, we define Q4, = {(f,g) €
52| f = g(mod a¥)}. Here, S acts naturally and r € R acts by (f,g)r = (ra, f,74,,,9)-
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We put (an)An =5q0, (an)An+1 =035 and (an)Am =0 for m#nn+1 (we
denote this object Q 4, « later in 3.5).

We have supp 4(Qa,) = {An,Ant1}. We prove Qa, *Bs, ~ Qa_, ® Qa,. We have
suppA(QAO *le) = {Ao,Al,Aosl,Alsl} = {A_l,Ao,Al,Ag}.

Below, by an isomorphism f — f4,, we identify R~ S =K|a"]. Hence, Qa, = {(a,b) €
K[aY]?| a=b(mod aV)}. Put s = s, which acts on K[a"]. The right actions of R ~ K[a"]
on Q4,,Q4,,Q4_, are given as follows: for (a,b) € Q4,, we have (a,b) f = (af,bs(f)) and
for (C7d) € Q4,,Qa_,, we have (C’d)f = (CS(f),df)

We have By, ~ {(f,9) € K[a"]| f = g(mod ")}, (B?). =K[a"]’®0 and (BY),, =
00 K[aV]? where K[a"]? = K[(a¥)*']. We have

(Qa,*B:,)%_, = (K[a")’ ©0)® (08 K[a"]"),
(Qa,*B5,)%, = Ko ®0) @ (Kla"]’ ©0),
(Qao % Bs))a, = (00K[0"]") @ (K[a"]’ ®0),
(Qa0* By, = (08 K[0']") @ (08 K[a"]").

These correspond to A_; = Agsy, Ag = Age, A1 = Aje and Ay = Ays1, respectively.

We define p1: Qa,*Bs = Qa_, by p1((a,0) ®(f,9)) = (ag,af) and p2: Qa,*Bs = Qa,
by p2((a,0) @ (f,9)) = ((bs(f) —ag)/a",(bs(g) —af)/a"). In the definition of ps, we note
that bs(f) = ag,bs(g) = af(mod aV) since a = b,s(f) = f,s(g9) = g,f = g(mod ). These
are~K[aV]—bimodule homomorphisms, and from the above description, p; is a morphism
in £’. We have p»((1,0)®(0,1)) = (—1/a",0). Hence, p2((Q 4, *le)g_l) C (Qz‘h)gl We
also have p2(<QA0 * BSl)?h) - (Qz‘h)@Al’ p2<(QA0 * le)g0)7p2(<QAo * BSI)%Q) C (Qz‘h)@Az
Therefore, po is also a morphism in K.

We define i1: Qa_, — Qa, * Bs; by i1(a,b) = (b,a) ® (1,1)+ ((a—b)/a¥,(a—b)/a¥)®
(0,0Y). In (Qa, * Bs,)?, i1 is given by i1(a,b) = (ba) @ (1,0) + (a,b) @ (0,1). Tt is
easy to see that i; is a left K[aV]-module homomorphism. For f € K[a"], we have
i1(a,0)f = (b:0) @ (£,0)+ (a,0) @ (0,5(F)) = (b,a) © (1,0) + (a,0)s() @ (0,1) = (bfas(f)) &
(1,0) + (as(f),bf) @ (0,1) =41 (as(f),bf) = i1((a,b) f). Therefore, iy is a K[a"]-bimodule
homomorphism. We can also check that ¢; is a morphism in K. We also define i2: Qa, —
Qa, * Bs, by iz(a,b) = (0,a") ® (s(a),s(b)). Then, it is straightforward to check that iy
is a morphism in K. Finally, straightforward calculations imply p; 04y =id, py oio =id,
i1op1 +izops =id. Hence, Qa,*Bs, ¥Qa_, PQa,.

Note that the decomposition @ 4, * Bs, = Im4; @ Imis is not compatible with respect
to the decomposition over K[a"]? since 4; is not compatible with the decomposition.

2.6. Hecke actions preserve I%A

We assume that K is local. Then, since any direct summand of a graded free S-module
is also graded free, a direct summand of an object in Ka is also in Ka. The aim of this
subsection is to prove the following proposition.

Proposition 2.24. We have IEA x* SBimod C IEA.
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We fix M € /EA and s € S,g in this subsection and prove M x B, € IEA. The most difficult
part is to prove that M x B satisfies (S). First we remark that, since M * By satisfies (LE)
by Lemma 2.23, (M % B,)* satisfies (S) by Lemma 2.10.

Lemma 2.25. If I is a closed s-invariant subset of A, then (M % By)r ~ M| * Bs.

Proof. We have (M * B,)Y = @, M4 ® (B,)? ® @ 4c; M4, ® (B;)?. Since I is s-

invariant, @ ,c; MY, ® (B,)? = @AE[ME ® (B)?. Hence, (M x By)? = Dacr M4 @
((B)e @ (Bs)S) = @aes Mh © BY = M} & BY. 0

Lemma 2.26. Let A€ A such that As < A and I (resp. J) be an s-invariant closed (resp.
open) subset such that INJ ={A,As}. Set N =M % B,. Then, we have

Npgasy/Niga, asy = Mia,asy(=1),  Nr/Npjasy = Mia, as(1).
as left S-modules.

Proof. First we note that I\ {4,As} =T\ J and I\{As} =T \J)U{A' ¢ A| A" > A}
are closed. We have an exact sequence

0 — Npqasy/Niga,asy = Ni/Npa, asy = Ni/Npgasy — 0. (2.2)
We have (NI/NI\{A,AS})V) = Ng @Ngs and we have the following commutative diagram:
0 — (Npqast/Nna,asp)? —— (Nr/Npga asp)® — (N1/Npgas)? —— 0

2 2 2

0 NY NYo N, NY, 0.

Therefore, Np\(as3/Ni(a,asy = (N1/Np 4, 46)) N (N 60).

Set L= Nr/Np\(a as)- By Lemma 2.25, L~ M4 asy ®ps R(1). We have L8 = L% @ LY .
We determine LN (L% @©0).

By (2.1), we have LY ~ M% @ MY, and L%, ~ MY, @ MY. In general, we write ma
for the image of m € M in Mg,, where A’ € A. The image of m @ 1+ma®0 € L =
My, a5y ®rs R(1) in each direct summand is

mi,A +m2,A(5 S Mg C Lg,
M1, As + M2 As5(0) € Mgs - Lg,
mi As +m2,A55 S Mgs C Lgs’
my,a+mg as(6) e MY c LY.
Therefore, mi ®1+ma®4J € L?ﬁl if and only if mq 45 +ma 450 =0, M1, 4 +mg 45() =

0. Note that mg 450 = (s(8))ame, as and mg as(d) = (s(8)) ame,a. Therefore, (mq +
(s(0))amsa)ar =0 for A’ = A, As. Hence, mq + (s(5)) amg = 0. Therefore, we have

LN(LY®0) = {m2®35— (s(8)) am2®1 | ma € Mya, a5y 1(1)
which is isomorphic to M4 a4 (—1).
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The map L~ M4 461 ®rs R(1) 2m® f+ (s(f))am € M4, 45 (1) is surjective and, by
the above argument, the kernel is LN (Lg ®0) ~ Np(as}/Ni\(a, asy- Therefore, by the
exact sequence (2.2), we have N /Ny tasy ~ Mya a5y (1). O

Lemma 2.27. Let A € A such that As < A, I is a closed subset and J is an open subset.
Then, we have the following.

(1) If INJ ={As}, then (M * By)1 /(M * Bs)\ g =~ Mya, as3(1) as left S-modules.
(2) If INJ = {A}, then (M xBg)1/(M*Bg)p g ~ Mga, asy(—1) as left S-modules.

Proof. Set N = M B, € K'.

(1) Put I; = {A’ € A| A’ > As}. This is s-invariant. Since I is closed and contains
As, we have Iy C I. Hence, N1, /Ni\1asy = Nr/Npjasy- By Lemma 2.26, we have
Nll/NIl\{As} ~ M{A As}( ) Hence, we have M{A,As}(fl) — NI/NI\{As}~

Let v € Xy and write S(,) for the localization at the prime ideal (). Set N, =
Sw) ®s N. The algebra S(,) is an S%-algebra for a certain a € A. Therefore, N,
satisfies (S). Hence, the above embedding (M,))a, 4s3(=1) = (Nw))1r/(Nw))nas)
is an isomorphism. Since M admits a standard filtration, Mg 45 is graded
free as an S-module. Therefore, Ma a5)(=1) = ,cx, (Sw) ®@s Ma a5 (1)) =
MNvexye (Nw)) 1/ (Nwy)ngasy) O Ni/Nppasy- We get the lemma.

(2) First, we prove that there exists an embedding (M * Bs);/(M * Bs)pg —
Mia asy(—1). We may assume J = {A" € A| A" < A} since I\ J is not changed.
Then, J is s-invariant. Put Iy = TUIs. Then I; is an s-invariant closed subset and
LnJ=InJ)uIsnJ)=InJ)u(INJ)s={A,As}. We have I \ {As} D I. Hence, we
have an embedding N7 /Np\ ;= Np\(as}/Ni\ga, asy = Mia asy(—1)- We prove that this
embedding is surjective.

First, we assume that K is a field. Take a sequence of closed subsets Iy C --- C I,
such that #(l;41\ ;) =1, N;, =0, Ny, = N, and there exists k = 1,...,r such that
I_1Nsupp 4 (N) = INsupp 4(N) and Iy = I, U{A} (Lemma 2.14). Let A; € A such
that I; = I;_1 U{A;}. Since Ny, is a filtration of N, for each [, the I-th graded piece N'
satisfies dimg N' = >, (Ny, /Ny, ,)". By the existence of an embedding we have proved,
dimg (N7, /Ny, )t < dimK(M{AhAis})l“(Ai), where e(A;) =11if A;s > A; and €(4;) = —1
otherwise. We have

dimK(M{Ai,Ais})HE(Ai)
=) (dimg(Ma,y)" ) 4 dimg (M 4,41) )

. I+1 1+1
Z dimg ( M{:} Z dimg ( M{Z S})

A;s>A; A;s>A;
Y a3 dmefzh)
Ais<A; A;s<A;
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By replacing A; with A;s in the second and fourth sum, we have

> (dimg (M a,y) oA + dimg (M 4,.5) 754

K2

= > dimg(M{)+ D dim(MY))

Ais>A; Ais<A;
+ Y dimg(MN)+ > dimg (M)
Ais<A; Ais>A;

= > (dimg M{}Y +dimg M{Y).

Since {M{ 4,3} are subquotients of a filtration { My, } on M, we have } dimK(M{Ai})l/ =
dimg MY Hence, 3", (dimg Mﬁgi} + dimg Mﬁj}) = dimg M + dimg M~ 1.

However, since N =M «Bs =M Qpr- R(1) = M(1)®1® M (1) ® s where &5 satisfies
(65,aY) =1, we have dimg N! = dimg M+ +dimg M'~!. Therefore, we get

dimg N! = ZdimK(NIi /N7, )< ZdimK(M{ AiArsy) TEAD) = dimg N
i i

Hence, the embedding has to be a bijection.

Now, let K be a general Noetherian integral domain. Assume that we can prove
that (N, /Nr,_,) @k (K/m) ~ (M4, 4,s3((4;))) @k (K/m) for each maximal ideal m
in K. Since Mf A Ass) is finitely generated as a K-module, by Nakayama’s lemma,

(N1, /Ni,_ )L — (M{Ai,Ais})f:[E(Ai) is surjective, where (o), means the localization at
m. Since this is true for any maximal ideal m, the map (Ny,/Ny,_,)! — MfAi’Ais} is
surjective for any [ € Z. Hence, it is an isomorphism. Therefore, it is sufficient to prove
(N1, /N1,_,) @ (K/m) >~ (M4, 4,5 (¢(Ai))) ®x (K/m). In the rest of the proof, we omit
the grading.

To prove this, we need some properties on the base change to K/m. Let L € K.
Then, L ®k (K/m) is an (S/mS,R/mR)-bimodule and we have S®®¢ L @k (K/m) ~
@D ac 4 L% ®x (K/m). Therefore, it defines an object in /El’K/m. Here, the suffix K/m means
that, in the definition of E’, we replace K with K/m. We also have B@g K/m € SBimodg
(the meaning of the suffix K/m is the same as above) and we have (M * B) @ (K/m) ~
(M@ (K/m))*(B®k (K/m)). Let K C A be a closed subset. Then, we have a map Ly ®x
(K/m) — L®k (K/m). Since supp 4(Lx @k (K/m)) C K, the image of this homomorphism
is in (L®g (K/m))k. Hence, we get a map Lig @k (K/m) — (L @k (K/m))g. We
claim:

(a) The map is surjective.

(b) If L/Lk is graded free, then this map is an isomorphism.

We prove (a) first. By the exact sequence 0 — Lxg — L — L/Li — 0, we have an exact
sequence L @ (K/m) — Lok (K/m) = (L/Lk) @k (K/m) — 0. Since supp 4((L/Lk) ®x
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(K/m)) Cc A\ K, the map L®g (K/m) — (L/Lk)®xk (K/m) factors through L®k (K/m) —
(L @k (K/m))/(L®k (K/m))g. Hence, (L®k (K/m))x C Ker(L®x (K/m) = (L/Lk)®Kx
(K/m)) = Im(Lg ®k (K/m) - L ®g (K/m)). Therefore, we get (a). If L/Lk is graded
free, then L/Ly is free as a K-module. Hence, Lk ®k (K/m) — L ®k (K/m) is injective.
Therefore, we have (b).

In particular, if L satisfies (S), then L ®x (K/m) also satisfies (S). Indeed, let K1, K3 be
closed subsets. Then, we have a commutative diagram

L, @k (K/m)® Ly, @k (K/m) — (Lo (K/m))k, ® (Lo (K/m))k,

| |

Ly, uk, ®x (K/m) (L @k (K/m)) Kk Uk, -

Here, the horizontal maps are surjective by (a) in the above, and the left vertical map is
surjective since L satisfies (S). Hence, the right vertical map is surjective and it means
that L ®x (K/m) satisfies (S).

We also have that if L satisfies (LE), then L ®k (K/m) satisfies (LE). Let v € A and
decompose L* as L ~ EBQGW(,’\AL(Q) such that supp LY € Q. Then, (L @ (K/m))® ~
@QeW;\AL(Q) ®k (K/m) and it gives a desired decomposition in (LE).

Let K1 € Ko C A be closed subsets and suppose that L € IEA. Since L € IEA,
L/Lyk, and L/Lg, are both graded free. Hence, Lk, ®x (K/m) ~ (L @k (K/m))g, C
(L ek (K/m))g, ~ Lk, ®k (K/m). By the right exactness of the tensor product, we
have (Lk,/Lk,) @ (K/m) ~ (Lk, @k (K/m))/(Lx, @x (K/m)) ~ (L ok (K/m))x, /(L Ok
(K/m))k,. Therefore, for any locally closed subset K C A, we have Lx ®x (K/m) ~
(L QK (K/m))K In particular, L ®g (K/m) S ICA,K/m~

We return to the proof of the lemma. We have M @k (K/m) € IEA’K/m as we have proved.
We have Ma, 4,51 @K (K/m) ~ (M ®k (K/m))a, 4,s3- Hence, we have the following
commutative diagram:

(Nli/NIi—l ) K (K/m) - M{Ai,Ais} K (K/m)

|

(N @k (K/m))r, /(N @x (K/m))r,_, —— (M ek (K/m))(a; a,s)-

Note that the bottom homomorphism is an isomorphism since the lemma is proved if K
is a field.

We prove that the left vertical map is an isomorphism by backward induction on .
By inductive hypothesis, Ny, /Ny, , ~ M4, 4,5 for any i’ > and, in particular, it is
graded free. Hence, N/Nj, is also graded free. Therefore, we have Ny, @k (K/m) ~ (N ®x
(K/m))y,. Now we get the desired result by applying the five lemmas to the following
commutative diagram with exact columns:
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AN o

Ny, @k (K/m) (N @k (K/m))r,_,
N, @k (K/m) = (N @k (K/m))7,

|

(N1 /N1, ) @x (K/m) —— (N @k (K/m))r,/

% z

—~

N @k (K/m))li—l

S —

O

Lemma 2.28. Set N = M x B;. Then, for any two closed subsets I1,Is with I; D Is,
Ny, /N1, is a graded free S-module.

Proof. Take Ay, A; € A such that supp 4 N C [Ap,A1]. Replacing Iy with I1N{A € A|
A>Ap} and I, with I, U{Ae€ A| AL Ay}, we may assume I \ I5 is finite. We can take
a sequence of closed subsets Ip = I) C I] C --- C I] = I such that #(I/\I]_;) =1. Let A;
such that I = I]_; U{A;}. Then by Lemma 2.27, Ny /Ny, >~ M4, a,5)(e(A;)), where
e(4;) € {£1} is as in the proof of Lemma 2.27. In particular, this is graded free and
therefore, My, /My, = My, /M, is also graded free. O

Proof of Proposition 2.24. Set N = M x B,. We prove that N satisfies (S). Let
I1,I; be closed subsets, and we prove the surjectivity of Ny, /N1, < Npurn/Ni,.
For each v € Xy, let Sy be the localization at the prime ideal (v). Then, Sy is
an S%algebra for some o € AT. Since Ny = Su) ®s N satisfies (LE), N, satisfies
(S) by Lemma 2.10. Hence, this embedding is surjective after applying S(,)®s. Put
Ly = Su)®s L for a left S-module L. Since Np, /N1,nr1, is graded free by Lemma 2.28,
we have NIl/Nflﬂfz = ﬂu(Nfl/NhﬁIz)(V)' Hence, Nfl/NI1ﬂI2 = ﬂu<N11/N11012>(V) =
N, (Nr,ur,/Nr1,)w) O Nryur, /N1, We get the surjectivity.

Now Nyay is well-defined and isomorphic to My as3(e(A)), where e(A) € {£1} is as
in the proof of Lemma 2.27. Hence, Ny, is graded free; namely, N admits a standard
filtration. O

As a consequence of Lemma 2.27, we get the following corollary.
Corollary 2.29. If M € IEA, then we have

Mia asy(—=1) (As < A),

(M xBy)gay = {M{A,As}a) (As> A).
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Therefore, we have

v~ (grk(Myay) +erk(Miagy))  (As < A),

grk((M * Bs)ray) = {v(grk(M{A}) +grk(Mas)) (As > A)

for each A€ A and s € Sug.
The action of SBimod preserves IEP too.
Proposition 2.30. We have IEP x* SBimod C l%p.

Proof. Let M € Kp and s € Satt- We prove M x B, € Kp. We have already proved that
MxBs; € Ka.

Assume that a sequence M; — My — M3 in IEA satisfies (ES). By Lemma 2.17, 0 —
(M1)ga,asy — (Ma)ga, a5y — (M3) 14,453y — 0 s also exact for any A € A. Hence, 0 — (M *
Bg)gay — (Ma* Bs)ay — (M3 * Bs)gay — 0 is exact (i.e., My * By — Mo x By — M3 * By
also satisfies (ES)). Since M € Kp, the sequence 0 — Hom® (M, M;  B,) — Hom® (M, M,
B,) — Hom® (M, Ms % B,) — 0 is exact. By Proposition 2.22, M B, € Kp. O

2.7. Indecomposable objects

Assume that K is complete local Noetherian integral domain. For M, N € K , Homg(M,N)
is finitely generated as an S-module since M, N are finitely generated and S is Noetherian.
Hence, Hom, (M, N) C Homg (M, N) is also finitely generated. Therefore, Homg, (M, N)

is finitely generated K-module. Hence, K’ has Krull-Schmidt property. This is also true
for K p-

Let (RA)ine = {N € RA | (\,AY) C Z} be the set of integral weights. For A € (RA)in,
let II, be the set of alcoves A4 such that (\,aV) —1 < (a,a") < (\,a") for any a € A and
simple root «. The set II, is called a box and each A € A is contained in a box. Each
II\ has the unique maximal element A, . Let W} = Stabwéff()\) be the stabilizer. Then,
A} is the minimal element in WA, . The set W] A is the set of alcoves whose closure
contains .

We define Qy € K as follows. Consider the orbit WA, through Ay. As an (S,R)-
bimodule, it is given by

Qr={(z4) € SWAAN | 24 =25, avyA (mod a”) for o€ A and A € WA} }

where the right action of R is given by (24)f = (faza). We have Q% = (S?)"WA4X. The
module (Q ,\)g is the A-component if A€ WA, and 0 otherwise.

The definition of @y comes from the structure sheaf of the moment graph associated
to W. The structure sheaf is defined by

Z={(2)eew; € SV | 2, = 2,,, (mod a¥)}.
w—w(Ay
The natural map W} — W/ — W5 is an isomorphism. The map Wy >~ Wy o)

WJAj is a bijection which preserves orders and, by this bijection, we have Z ~ Q.
The following are well-known. (See [Abe20b] for example.)
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The map S ®@gw; S — Z defined by f®g~ (x71(f)g)zew, is an isomorphism.
Let K C Wt be a closed subset and w € K such that K\ {w} is closed. Put Zx =
{(22) € 2| 2z, =0for x ¢ K} and the same for Z\ (u}. Then, Zx/Z\ (wy =~
S(—20(wow)) as a left S-module.

Let d: Ax A — Z be the function defined in [Lus80, 1.4]. From the second property,
we get the following.

Lemma 2.31. Let Ac W A, and I C A is a closed subset such that A€ I and I\ {A}
is closed. Then, we have (Qx)1/(Qx)nfay = S(2d(A,AY)).

It is easy to see that Q) satisfies (LE) and the argument of the proof of Proposition
2.24 with the above lemma implies that @, also satisfies (S). Hence, we have Q) € Ka.

Lemma 2.32. Let Sy be a flat commutative graded S-algebra. We have Hom’%,(so)(So ®s
QM) ~ M{A'eA\A'zA;} for M € I%’(SO). Therefore, So ®s Qx € IEP(SO).

Proof. Since Sy is flat, we have
So®sQx={(za) € SgiAO_ | za =25, \ vya (mod oY) for o € A and A € Wi AJ }.

Put I={Ac A|A>A}and q= (1)AveA; € S)®s Q.

Any (So, R)-bimodule is regarded as an Sy ® R-module. Let M € Ka(Sp) and m € M.
According to the decomposition M? = Dica Mg, m can be written as m =3, yma
with m4 € MY%. Consider SV = {f € S | w(f) = f for all w € W;}. Then, we have the
following.

e For Ac Aand feS":, f4 does not depend on A.
e For f€S, wehave fm=>3fma=> maf"

Therefore, we have an embedding S"f < R naturally and any M is an Sy ®gw; R-module.
Then, we have a map S®qw; R — @ defined by f®g— (fgw(A;)), and by the property
of Z we have remarked, this is an isomorphism. Therefore, @5 is a free S ® gw; R-module
of rank one with a basis ¢. We also remark that ¢ € Sp®g Qx = (So ®s Q) 1. Therefore,
v+ p(q) gives an embedding

HOII],%A(SO)(SO ®s Q)\,M) — M.

Let m € My and ¢: Sy ®gs @y — M be an (SQJR)—bimodule homomorphism such that
¢(g) =m. We prove that this is a morphism in K(Sp). Let A € Wi Ay . Then, ¢((Qx)%) C
@A’GAJrZA,A’GI Mg,. Therefore, the lemma follows from the following lemma. O

Lemma 2.33. Let Ac W{A,. Then, (A+ZA)N{A' € A|A' > A} ={A' € A+ZA |
A > A,

Proof. Since A} is the minimal element in WA}, the right-hand side is contained in
the left-hand side. Let A’ be in the left-hand side. Take z € W} and pu € ZA such that
A=x(A))and A'=A+p. Then, A’ =x(A, )+ p. Since A’ > A} and X is in the closure of
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Ay, we have 2(A) +p— A € RypA™ by Lemma 2.2. Since = € W} = Staby_(A), z(A) = A.
Therefore, u € R>oA™*. Hence, A’ = A+pu > A. O
Let A €1l and take w € Wag such that A= A w. As in the proof of [Lus80, Proposition

4.2], for any < w and A" € WAy, we have A’z > AJw. Let w = s;---5; be a reduced
expression. Then, @y * By, *-- - x By, satisfies the following.

Lemma 2.34. We have the following.
(1) (Qx*Bg, %% Bg)(ay ~ S(1) as a left S-module.
(2) supp 4(Qx* By, %---xBy,) C{A' € A| A’ > A}.

Proof. (2) is obvious from what we mentioned before the lemma. We prove (1) by
induction on [. Set M = Qx* B, *---*B,_, and s = s;. By Lemma 2.27, (M * B,) {3 ~
Mya as3(1). By (2), A¢supp4(M). Hence, My a5y >~ M{asy. Therefore, (M x Bs){ay ~
My a43(1) and the inductive hypothesis implies (1). O

Theorem 2.35. We have the following.

(1) For any A € A, there exists an indecomposable object Q(A) € Kp such that
supp 4 (Q(A)) C {A' € A| A" > A} and Q(A)ay = S. Moreover, Q(A) is unique

up to isomorphisms.
(2) Any object in Kp is a direct sum of Q(A)(n), where A€ A and n € Z.

Proof. Fix si,...,s; as in the above. By Lemma 2.34, there is the unique indecomposable
module Q(A) such that Q(A)a; ~ S and Q(A)(I) is a direct summand of Qx * By, *---*
B,,. It is sufficient to prove that any object M € Kp is a direct sum of Q(A)(n)’s. By
induction on the rank of M, it is sufficient to prove that Q(A)(n) is a direct summand of
M for some A€ Aand neZif M #0.

Let M € Kp and let A € supp 4(M) be a minimal element. Then, My 4y # 0. Since
M admits a standard filtration, M4y is graded free. Hence, there exists n such that
S(n) ~ Q(A)(n)gay is a direct summand of Myay. Let i: Q(A)(n)gay — Myay (resp.
p: Mgay — Q(A)(n)¢ay) be the embedding from (resp. projection to) the direct summand.

Let I be a closed subset which contains supp 4(M) such that I'\ {A} is closed. Then,
I>{A e A| A" > A} Dsupp4(Q(A)). Therefore, we have two sequences

M[\{A} — M7y :M—>M{A},
Q(A)(n)ngay = Q(A)(n)r = Q(A)(n) = Q(A)(n)(a},

which satisfy (ES). Consider the homomorphism Q(A)(n) — Q(A)(n){ay — M4y. Since
Q(A)(n) € Kp, there exists a lift 7: Q(A)(n) — M of the above homomorphism. Similarly,
we have a morphism p: M — Q(A)(n) which is a lift of p. The composition poi €
End(Q(A)(n)) induces the identity on Q(A)(n){a}. Therefore, 1—poi is not a unit.
Since Q(A)(n) is indecomposable, the endomorphism ring of Q(A)(n) is local. Therefore,
poi is an isomorphism. Hence, Q(A)(n) is a direct summand of M. O

Corollary 2.36. Any object in Kp is a direct summand of a direct sum of objects of a
form Qx* Bg, x -+ By, (n), where A € (RA)int, n € Z and s1,...,5; € Sagt-
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Proof. This is obvious from Theorem 2.35 and the proof of the theorem. O

Corollary 2.37. Let M,N € Kp. Then, Hom}%P(M,N) is graded free of finite rank as
an S-module.

Proof. We may assume M = Q) % B, % -+ % B, (n) for some A € (RA)int, n € Z
and s1,...,8 € Sag. Hence, by Proposition 2.22, we may assume M = Q. Then,
Hom',EP (M,N) ~ N{A/GA\A/ZA;} and this is graded free since N admits a standard
filtration. O

Corollary 2.38. Let M,N € Kp. Then, for any flat commutative graded S-algebra So,

we have Sy Qg Hom'EP (M,N) ~ Homl%P(SD)(SO ®sM,So®sN).

Proof. As in the proof of the previous corollary, we may assume M = Q. Set [ = {A’ €
A| A" > Ay }. Then, the corollary is equivalent to Sy ®g Ny~ (So®g N);. This is clear. [

2.8. The categorification

Assume that K is a complete local Noetherian integral domain. We follow the notation
of Soergel [Soe97] for the Hecke algebra and the periodic module. The Z[v,v~!]-algebra
H is generated by {H,, | w € Wag} and defined by the following relations.

o (Hy—v Y (Hs+v)=0 for any s € Sag.
o If l(wy)+l(wa) = L(wiws) for wy,we € Wag, we have Hyywy, = Huyy Hup, -

It is well-known that {H,, | w € W,g} is a Z[v,v~1]-basis of H.
Set P =@ 44 Z[v,v" | A and define a right action of H [Soe97, Lemma 4.1] on P by

AL — As (As > A),
As+ (v t—v)A (As< A).

for s € Syg.

For an additive category B, let [B] be the split Grothendieck group of B. We
have [SBimod] ~ H[Abe21, Theorem 4.3] and under this isomorphism, [B;] € [SBimod]
corresponds to Hy+v € H. By [M][B] = [M = B], [Kp] is a right [SBimod]-module. Fix a
length function £: A — 7Z in the sense of [Lus80, 2.11]. Define ch: [Kp] — P by

ch(M) =" 0" grk(May)A.
AcA

Then, by Corollary 2.29, ch is an [SBimod] ~ H-module homomorphism.
For each X € (RA)int, set ey = ZAGW;\A; v A A We put PO = ZAe(RA)m exH CP.

Lemma 2.39. We have ch(Q)) = v#4)e,.

Proof. It follows from Lemma 2.31. O

Theorem 2.40. We have ch: [Kp] = PO,
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Proof. Since ey = v~24x)ch(Q,) € Im(ch), the image of ch is contained in P° and
it surjects to P°. The H-module [Kp| has a Z[v,v~!]-basis [Q(A)] by Theorem 2.35.
Since ch(Q(A)) € vWA+Y" .. 4 Z[v,v7']A’, {ch(Q(A)) | A € A} is linearly independent.
Hence, ch is injective. O

2.9. A relation with a work of Fiebig-Lanini

Assume that K is a complete local Noetherian integral domain. In [FL15], Fiebig and
Lanini constructed a category denoted by C and proved that this is an exact category.
They also constructed a wall-crossing functor €5 for s € Sug on C and proved that
projective objects are preserved by wall-crossing functors. In this subsection, we prove
the following. We identify W/; ~ W,s and S ~ R by using Aar, the maximal element in
WEA, .

Theorem 2.41. The category IEP is equivalent to the category of projective objects in C.
The action of Bs on iép corresponds to 05 for s € Sug.

Let M € ﬁp, and let J C A be an open subset. Then, M is an R-bimodule (as we
identify S ~ R) and the left action of f € R" is equal to the right action of f. Hence, M
is an R®pw; R-module. The algebra R® pw; R is isomorphic to the structure algebra Z
on the moment graph attached to W;. Hence, we get a functor F' from K p to the category
of Z-coefficient presheaves on A.

We prove that F is fully faithful. Since M = F(M)(.A) is an R-module, F' induces an
injective map between the space of morphisms; namely, F' is faithful. Let f: F(M) —
F(N) be a morphism between sheaves. We define ¢: M — N by M = F(M)(A) —
F(N)(A) = N. Then, this is an R-bimodule morphism. Moreover, ¢ induces M/M 4\ ; =
F(M)(J) = F(N)(J) = N/N 4\ for any open subset .J. Hence, (M) C Ny for any closed
subset I C A. Therefore, ¢ is a morphism in K p, and therefore, F' is full.

Next, we prove that F(M % B,) ~ 0,(F(M)) for M € Kp. Let s € Sag, and let €, be
the functor defined in [FL15, 8.1]. Then an argument of the proof in [Abe21, Proposition
5.3] gives €5(M) ~ M ®g B, as Z-modules (here, in the right-hand side, we consider a
Z-module as an R-bimodule via Z ~ R®pw; R). Let J C A be an open subset and .J°
(resp. J*) be the largest (resp. smallest) s-invariant open subset which is contained in
(resp. contains) J. Then, we have morphisms

-4 b
(M % By) j: 2 (M % By) ;2 (M % By) s

such that j%,5° are surjective. We have (M x By) j: ~ M s * By and (M x By) ;o ~ M j, x B
by Lemma 2.25. We have supp 4(Kerj;) C J#\ J and supp 4(Kerjz) C J\ J°. Hence, by
[FL15, Lemma 2.8], (M * B,); satisfies the condition in [FL15, 8.3], and we get F'(M x*
B;)(J) = 05(F(M))(J). Therefore, we get F(M * B;) ~ 05(F(M)). N

Finally, we prove that the image of F' is projective and the functor from Kp to the
category of projective objects in C is essentially surjective. Let KOy be a projective object
in C defined in [FL15, Section 6]. From the definitions, we have F(Qy) =K,. Any M €
Kp is a direct sum of direct summands of objects of the form M % Bg, *---% By, (n) for
S1y.--,81 € Sag and n € Z. Since F(M % By, x---x B, (n)) =0, ---05,KC, is projective in C
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by [FL15, Corollary 8.7], F(M) is projective in C for any M € KCp. Moreover, by the proof
of [FL15, Theorem 8.8], any projective object in C is a direct sum of direct summands
of objects of the form 0,,---0,, /K. Since F is fully faithful, the essential image of F' is
closed under taking a direct summand. Hence, F' is essentially surjective.

3. The category of Andersen-Jantzen-Soergel

3.1. Our combinatorial category

Assume that K is a complete local Noetherian integral domain. In this subsection, we
introduce some categories using the categories introduced in the previous section. The
categories will be related to the combinatorial categories of Andersen-Jantzen-Soergel.
Let Sp be a flat commutative graded S-algebra. Let K'(Sp) be the category whose
objects are the same as those of X'(Sg) and the spaces of morphisms are defined by

Homy(s,) (M, N) = Hompg, g (M,N) /{0 € Homg, ¢, (M,N) | o(M}) C € N4}
A'>A

We also define K(Sy) and Ka(Sp) in the same way.

Lemma 3.1. Let M,N € K'(Sy), p: M — N and B € SBimod. If o(M%) C @ 4~ 4 N%,
for any A€ A, then p®id: M * B — N B satisfies (p®id)((M*B)%) C @A/>A(N*B)9V
for any A€ A.

M?

Proof. Recall that we have (M xB)% = @,y M4, . ® BY. We have o(M} )&
B! ¢ @A,z_leAx_1+ZA)A,1_1>Aw_1 91/90—1 ® BY. Since x: (Az~' 4+ ZA) — (A +ZA)
preserves the order, A’z=1 > Az~! if and only if A’ > A. Therefore, (¢ ®id)(M x B)Y C
@xewaff,A/>AN@ LB = ®A’>A(N*B)A' O

Therefore, (M,B) — M x B defines a bi-functor K'(Sp) x SBimod — K'(Sy) and also
’CA(SO) x SBimod — ’CA(So)

Proposition 3.2. Let M,N € K'(Sy) and s € Sag. Then, Homy/(g,)(M * Bs,N) ~
HomK/(SO)(M,N*BS).

Proof. Let ¢ and ¢ as in the proof of Proposition 2.22. Then, the proof of Proposition
2.22 shows that ¢(M9%) C @ 4. (N *B,)%, for any A € A if and only if 1((M = B)%) C
Din NA, for any A € A. The proposition follows. O

For each morphism ¢: M — N in I%(SO) and A € A, we have a homomorphism
©gay: Myay — Nyay. Note that e(M%) PBasa N9, if and only if ¢ay = 0. Hence,
M +— M 4y defines a functor from KC(Sp) to the category of graded Sp-modules. Using this,
we define as follows. A sequence My — My — M3 in K(Sy) satisfies (ES) if the composition
My — My — M3 is zero in K(Sp) and 0 — (M1)gay — (Ma)gay — (M3)gay — 0 is exact
for any A € A. Note that a sequence M; — My — M; in K may not satisfy (ES) even
when it satisfies (ES) in K since the composition My — My — M3 may be zero only in K.

For the definition of Kp(Sy), we use the same condition to define Kp(Sp). For M €
Ka(So), wesay M € Kp(Sp) if, for any sequence M7 — My — M3 in KCa (Sp) which satisfies
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(ES), the induced homomorphism 0 — Homj, (g,)(M,M1) — Homj, (g, (M,M2) —
Homp, (s,)(M,M3) — 0 is exact. Note that this definition is not the same as that in
the Introduction. We will prove that two definitions coincide with each other later
(Proposition 3.7).

Proposition 3.3. An indecomposable object in K'(So) such that supp 4 (M) is finite and
is also indecomposable as an object of K'(Sp).

Proof. Let M € K'(Sp) and assume that supp 4 (M) is finite. Then, {p € End,g,(so)(M) |

o(M%) c Dasa MY, (A€ A)} is a two-sided ideal of Endg, (M) and, since supp 4 (M)
is finite, this is nilpotent. Therefore, the idempotent lifting property implies the

proposition. O

Lemma 3.4. Let K C A be a locally closed subset such that for any A € K, we have
(A4+ZA)NK = {A}. Then, we have the following.

(1) For a morphism ¢: M — N in K(So) which is zero in K(Sp), the homomorphism
My — Ng is zero in l%(SO).

(2) Let My — My — M3 be a sequence in IE(SO) and assume that the sequence My —
My — M3 satisfies (ES) as a seqeune in K(Sp). Then, (M) — (Ma)k — (M3)k
satisfies (BS) as a sequence in K(So). In particular, 0 — (M) — (M) —
(M3)g — 0 is an ezact sequence of (So,R)-bimodules.

Proof. (1) We have MY = G}AeKMfﬁ)1 and N¥ = @AeKNg. Since ¢ =0 in K, we have
o(MY) Dion NY, for any A € K. We also know that o(M9) C Dacarza NY%,. By
the assumption, there is no A’ € A+ZA such that A’ > A and A’ € K. Hence, p(M%) =0.

(2) By (1), the composition (M;)x — (M) — (M3)k is zero. O

Lemma 3.5. Assume that a sequence My — My — Ms in Ka(So) satisfies (ES). Then,
M« B — M+ B — M3+ B also satisfies (ES).

Proof. We may assume B = B, where s € S,g. We take lifts of M; — Ms and My — M3 in
IZ(SO), and we regard M; — My — M3 also as a sequence in IE(SO). As in Corollary 2.29,
we have (M;* Bs)1ay ~ (M;){a, a5 (€(A)), where £(A) is as in the proof of Lemma 2.27. By
the previous lemma, 0 — (M1) (4, 45} = (M2) 14,45} — (M3){a, 45y — 0 is exact. Therefore,
0 — (M1 Bg)gay — (Ma* Bs)ay — (M3 * Bs)gay — 0 is exact. Hence, a sequence M *
Bs — My Bs — M3 B in Ka(Sp) satisfies (ES). O

Combining Proposition 3.2, we have Kp(Sp) * SBimod C Kp(Sp).

Lemma 3.6. Let A € (RA)iy. The subset WAy is locally closed and we have a natural
isomorphism Homp g, )(So ®s Qx, M) =~ My, a~ for M € Ka(So).

Proof. Set I ={A" € A| A" > A, }. We prove I\ W;A,- is closed. Let A; € W{ A} and
Ay € I satisfies Ay < A;. We prove Ay € WA, . This proves that I\ W A,- is closed.
Take A3 € W{ A, such that Ay € A3+ ZA. Then, by Lemma 2.33, we have Ay > A3. Take
xz € W and p € ZA such that Ay =x(A3) and Ay = A3+ p. Then, A; > Ay > Az implies

https://doi.org/10.1017/51474748023000130 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000130

A Hecke action on G1T-modules 1153

z(A) = (A +p) € R5oAT and (A +p) — A € R>oAT. As z(A) = A, we have p = 0. Hence,
Ay =A3 € WA

We have Hom}%(so)(QA,M) ~ M; where I = {A’ € A| A’ > A[} and, under this
correspondence, {¢ € Hom%(so)(QA,M) | e((Q)%) € Darsn M?%,} exactly corresponds
to {me M;|my =0 for any A € W{A,-}. Since I\ W{A,- is closed, {m € M;|m4 =
0 for any Aec Wi A,-} = M[\W;A;' Hence, Hom,'c(so)(Q,\,M) ~ MW;A;. O

Proposition 3.7. The objects of Kp are the same as those of Kp.

Proof. First, we prove that any M € Kp belongs to Kp. By Theorem 2.35, we may
assume M = Qy * B, * - % Bg,(n) for some A € (RA)int, $1,...,8 € Sagg and n € Z. By
Proposition 3.2 and Lemma 3.5, we may assume M = Q).

We have Homy (Qx,N) ~ Nyraz for N € K. Since W{ A, satisfies the condition of
Lemma 3.4, this implies @ € Kp.

The object Q(A) is indecomposable in K p by Proposition 3.3. Using the argument in the
proof of Theorem 2.35, any object in Kp is a direct sum of Q(A)(n) where A € An € Z.
Hence, the proposition is proved. O

Hence, our Kp is the same as that in the Introduction.

Corollary 3.8. Let M € Kp, N € KA and Sy a flat commutative graded S-algebra.

(1) The natural map So ®s Homy ,(M,N) — Homj (g, (So ®s M,5 ®@s N) is an

isomorphism.

(2) We have So®s M € Kp(So).
Proof. We may assume M = Q% B, %% B, (n) for some A € (RA)int, S1,...,51 € Saft
and n € Z.

(1) By Proposition 3.2, we may assume M = @ . In this case, the corollary is equivalent
to So®s (Nw;A;) ~ (Sy®s N)WgA;. This is clear.

(2) By Lemma 3.5, we may assume M = Q. Then, Sy ®sQx € Kp(Sy) by Lemma 3.4
and 3.6. O

We can define ch: [Kp] — P° by the same formula as ch: [Kp] — P°. By the previous
proposition with Theorem 2.40, we get the following.

Theorem 3.9. We have [Kp] ~ P°.

3.2. A formula on homomorphisms

Assume that K is amcomplete local Noetherian integral domain. Let m — 1 be a map

from PV to P° defined in [Soe97, Theorem 4.3]. For m € P° and m' € P, take ca,da €

Zlv,v™1] such that m =3 4 4cad and m' =3 . 4 daA. Set (mm')p =3 4 4cada.

We define w: H —H by w(d_,cw ta(v)Hy) =3, cw aa(v™1)H, . Then, we have
(mh7m/)77 = (mam/w(h))'P

where m € P°, m’ € P and h € H. This easily follows from the definitions. Let wo € Wt
be the longest element.
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Theorem 3.10. Let P € Kp and M € Ka. Then, Homy., (P,M) is amgraded free left
S-module and the graded rank is given by

grkHomy. (P, M) = v~ (") (ch(P), ch(M))p.

Proof. Since [Kp| is generated by elements of a form [@Qy * Bs, *--- % By,] with X\ €
(RA)int and $1,...,8; € Sag, we may assume P has this form. Moreover, by Lemma 3.2
and the formula before the theorem, we may assume P = Q. In this case, we have
Homg., (P,M) ~ MW; AT and this is graded free by the definition of KA. Moreover, the
graded rank of M, (a; s ZAEw&A; grk(Myay).

Let Sy be the set of reflections in Wy along the walls of A} . Then, this is a generator
of W{, and (W},S,) is a Coxeter system. The length function of this Coxeter system is
denoted by £.

We calculate (ch(Qx),ch(M)). We put (3, c4cad, D 4cadaA) = > cqcada.
Let E) € P be the element defined in [Soc97, 4] and Ay the maximal element
in WjAy. Then, we have E) = ZweWive*(“’)wA; Since l(w(AY)) = ((AT) —
Oa(w), we have ex =37y, vt @Ay (AT) = v UADEy. Therefore, ch(Qy) =
p2A ey = AN —UADE, . Since By = Ey, we get ch(Qy) = v 2ADHAD By =
U*M(A;H%(Ai)@ = p2(wo)e, . Hence,

(ch(Qy), ch(M))p = v (W) (ey, ch(M))’

= y2¢(wo) Z v A 4, Z vt grk(Mgay)A
AeW{ A AeA

= p2t(wo) Z grk(Myay)
AeW] AT

= y2(wo) grkHomy- , (Qx,M).

We get the theorem. O

3.3. The category K%
Assume that K is a complete local Noetherian integral domain. In this subsection, we
analyze K% = Kp(S®). First, we define an object Q4 o where A € A and o € A*. Set
Qa.o ={(a,b) € S? |a=b(mod )} and define a right action of R on Q4. by (z,y)f =
(faz,sa(fa)y) for (z,y) € Qa,o and f € R. We have Qg’a =53 5% and we set

SPe0 (A= A),

(Qao)h =085 (A =atA),
0 (otherwise).

It is easy to see that Qf , = 5% ®sQa,q is indecomposable.

Lemma 3.11. We have Qf , € Kp.
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Proof. It is easy to see that Q% ,, € KX. Let M € K3 and we analyze Homjq (Q% ,,M).
By (LE), M ~ @, M; such that supp4(M;) C W, ,gA; for some A; € A. We have
Homjq (Q% o M;) =0 if A¢ W, ,4A;. Therefore, it is sufficient to prove the following:
if a sequence My — My — M3 in KR satisfies (ES) and supp 4(M;) C W/ A, then
0 — Homjq (QF o, M1) — Homyq (QF o, M2) — Homgq (QF ,,M3) — 0 is exact. We can
apply a similar argument of the proof of Proposition 3.7. O

We can apply the argument in the proof of Theorem 2.35 and get the following
proposition.

Proposition 3.12. Any object in K¢ is a direct sum of Qiya(n) where A€ A andn €Z.

3.4. The combinatorial category of Andersen-Jantzen-Soergel

Assume that K is a complete local Noetherian integral domain. We recall the combina-
torial category of Andersen-Jantzen-Soergel [AJS94]. We use the version introduced by
Fiebig in [Fiell]. We write Kajs for this category.

Let Sy be a flat commutative graded S-algebra and we define the category Kajs(So) as
follows. An object of Kajs(So) is M = ((M(A))aca,(M(A,a))aca,aea+), Where M(A)
is a graded (Sp)?-module and M(A,a) C M(A)@ M (at A)is a graded sub-(Sp)*-module.
A morphism f: M — N in Kays(So) is a collection of degree zero (Sp)%-homomorphisms
fa: M(A) = N(A) which sends M(A4,a) to N(A,«) for any A€ A and a € AT. Put
Kajs= /CAJs(S) and ’CZJS = ICAJS(S*) for x € {@}UA.

For each s € Sug, the translation functor ¥5: Kas(So) — Kags(So) is defined as

Vs (M)(A) = M(A) & M(As)

and
M(A o) @ M(As,a) (As ¢ W/ g A),
V(M) (Ao) =< {(z,y) e M(A,0)? |z —y € a" M(A,0)} (As=at A),
a¥ M(As,a) ®M(at A,q) (As=a ] A).

We define F(Sp): Kp(So) = Kas(So) as follows. First, we put
(F(So)(M))(A) = M.

To define (F(So)(M))(A,a), we take X € IEP(Sg‘) and an isomorphism ¢: X — M“ in
Kp(Sg) such that X = @QEWC;@H\.A(XQ@AGQ X%). Such X exists since M satisfies
(LE). Then we have an isomorphism X4 o (X54/X54)? =~ (M®)>a/(M®)s4)? ~ M%.
In general, for Y € Kp(Sp), y € Y? and A € A, write y4 for the YX—Component of y along
the decomposition Y = @AeAYX. Then, this isomorphism can be written as « — () 4.
Here, we use the same letter ¢ for the induced map X b MO,
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Now let (F(Sp)(M))(A,a) be the image of
Xoa—XhoXx2  ~MioM .

In other words, (F(So)(M))(A,c) is the set of (¢(x4)a,9(Tara)ara) Where z € X> 4. We
may assume x € P 4 ¢y LA Xg/. Of course, we have to prove that this space does not
depend on a choice of X. We use the following lemma.

Lemma 3.13. Let X,Y € ’%P(So), f: X =Y be amorphism, Ac A and o € AT. Assume
that « € XgA satisfies xar =0 for A" ¢ W/ g A.

(1) We have f(x)a = f(ra)a and f(z)ara = f(Tata)ata-

(2) Let g: Y — Z be another morphism in IEP(SO), Then, g(f(x)a)a = g(f(x))ar for
A e {AaT A}

Proof. We prove (1). Let A” € A. Then f(x)ar =3 414 f(war)ar. We have

e x4 =0 unless A’ > A since z € X> 4.
o x4 =0unless A’ € W(/y,aﬂA from the condition on z.

o f(za)ar =0 unless A” > A’ from the definition of morphisms in Kp(Sp).

Therefore, in the sum ), 4 f(z4/) a7, we may assume A’ satisfies A < A’ < A" A’ €
Wi A I A” = A, then A< A" < A", implying A" = A. Hence, f(z)a = f(za)a. If
A" =at A, we have A< A’ <atAand A€ W/ A Thus, we have A'= A or a1 A.
However, by Remark 2.7, we have f(z4)ata =0. Hence, f(2)ata = f(Zara)ara-

We prove (2). We have f(z4/) € @D 4> a0 Y9, Hence, f(xa)—f(za)a € Darsa v,
Therefore, g(f(24/)) — g(f (@4) ') € @ oo g Z- Henee, g(f(war))ar = g(f (w.47)ar)
By (1), the right-hand side is g(f(z)a/)as and the left-hand side is g(f(za/))ar = (go

(@a)ar = (gof)(@)a =g(f(x))ar O

Let ¢': X' — M be another isomorphism which satisfies the condition for X and
set 1 = (¢')top. For A’ € {A,at A}, we have p(za)a = p(x)a = ¢ (Y(z))ar =
¢ (Y(x)ar)ar. Hence, (p(za)a,0(Tara)ara) = (¢'($(2) ) 4, ¢ (P(2)ara)ara). As ¢ is a
morphism, ¢ (z) € X4 4. Hence, the right-hand side is in (F(Sp)(M))(A,«) determined
by X'. Therefore, the space (F(So)(M))(A,a) determined by X is contained in the space
(F(So)(M))(A,a) determined by X'. By swapping X with X', we get the reverse inclusion
and therefore, the space (F(So)(M))(A,«) does not depend on the choice of X.

Let f: M — N be a morphism in Kp(Sy) and take a lift f € Homﬁp(so)(M7N)

of f Then, we have a homomorphism (F(So)(f))(A): M4 — N% defined by MY —
@A,ZAME, ER Dasa N9, — N%. In other words, we put (F(So)(f))(A)(m) = f(m)A.
It is easy to see that this does not depend on a lift f

We prove that the collection ((F(S0)(f))(A))aca preserves (F(So)(M))(A,«). Take
X € Kp(Sg) and ¢: X = M as in the definition of (F(Sp)(M))(A,a). We also take
¢: Y = N® where Y € Kp(S§) satisfies Y = @gepyr . (YND scq YY), Let (x1,22) €
(F(S0)(M))(A,a). There exists x € X>4 such thatmle,:rg) = (e(xa)a,0(TatA)ata)-
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We may assume z € @ 4 ¢y ffAXg,. We put §=1"1o f. Then, (F(So)(fN)(A)(z1) =

fle(za)a)a =1(g(p(za)a))a. By Lemma 3.13 (2) to p(z4)a, we have ¢(g(¢(ra)a))a =
P(g(e(xa)a)a)a and again by Lemma 3.13 (1), (2), this is equal to ¥ (g(p(z))a)a.
Similarly, we have (F(So)(f))(a 1T A)(z2) = ¥(g(v(x))ata)ata. Since the element
(TP )G ple))araora) s the image of Gp(r) € Yo under Yoq
v @YC?T NA@Na 4 it is in (F(So)(N))(A,a). Hence, we have proved that the
collection ((F(So)(f ))(A))AEA defines a morphism F(Sp) (M) — F(So)(N). Hence, F(So)
is a functor.
Put F = F(S) and F* = F(S*) for x € {0} UA.

Proposition 3.14. We have F(M  B,) ~ 94(F(M)).

Proof. Before giving a proof, we give some notation. Fix o € A and M € K(Sp). Put
Q) _ A 0 : a _ o Q)
MO = M ND pcq M for Qe W/, ¢\ A. Then, if M _@Qew’ ff\A(M ND sca My),

then (F(M))(A,) is the image of MWa.aid) in Mb oM sa- As supp M Wa.art4)

LA and W, g N[Aat A= {Aa A}, we have (F(M))(A.a) = My o).
Take d5 € A such that (a,,ds) =1 and put b = (o)1 (ds @1 —1®5(d5)) and by =
(aY)"1(0,®1—1®4d,). Note that this does not depend on a choice of §,. We fix (B,)? ~ R?

and (B,)? ~ R? as

B

Ol

We have (M x B,)% = M4 @ (Bs)? & MY, @ (B,)? =~ MY @& MY, = 9,(F(M))(A). Here,

we use the above fixed isomorphisms. We check F(M * By)(A,a) ~ 34(F(M))(A,a) under
this isomorphism. We may assume M = @y _ff\A(M“ NP sco MY).

First, we assume that As ¢ W/ 4A. Then, we have (M  By)Waar D) = M (Waand)
be ® MWaarA9) @ b by Lemma 2.23. As b, € (B,)? (resp. by € (B,)?) and [A,a 1 AlsN

R'31—b, e(

B
R's1+b,e(B

W/, agAs = [As,a 1 As|n W/, g As, we have
(W5, azeA) (W5, azeA) (W4, ateAs)
(M*By)iy ot =My o) @be® M, aggs] ® bs

Therefore, F(M  B,)(A,a) = F(M)(A,o) ® F(M)(As, o) = 95(F(M))(A, ).

Next, assume that As = o 1T A. Then, we have [A,a 1 A] = [A,As] = {A,As}. Hence,
F(M *Bg)(A,a) = (M * By ){A As)- Since [A, As] = {A, As} is s-invariant, by Lemma 2.25,
we have (M B )y 45~ My 45 @rBs =F(M)(A,a) ®r Bs. Our claim is that the image
of M?, 45 ®r Bs in (Mpa a8y s By)? ~ (Mg oMb )o (MgS @Mg) is equal to {(z,y) €
Mgy agy |z—ye avM{o‘A’AS}}. We write the image of m € M in MY, by m 4 for A’ € A. We
have M2, 1 ®r Bs = MPy 4,y ®ps R and the image of m1 ®1+my®6, € M7y 4, Ore R
in (M4 oM}, 4, oMY is

((ma, 4+ 062 mg a,maas + 02 ma as), (M1, s+ 5(0s) Ao, as,maa +5(55) ma 4)).
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Therefore, we have

(M, A+ 65 ma, a,ma, as+ 05 ma as) — (M1, 4+ 5(6:) Mo, a,ma, s+ 5(55) Mo, as)
= (asv)A(mz,A,mzAs)
which is in oM, 4, since (aY)* € {£1}a". From this formula it is easy to see the
reverse inclusion.

Finally, we assume that As =a | A. Note that As< A<atT A< (at A)s. Put N =
MWaat D) We have F(N * By)(A,0) C F(N*B,)(A)@F(N*By)(atA) = (N, aN}) e
(NSTA ® N(QLM)S). We describe the image of (N * By)i4,a14] in (NS, oNY) o (NETA P
N(maTA)S), or equivalently the image of (N * By); where I = {A" € A| A’ > As}\ {As}.

Set I' ={A’ € A| A’ > As}. Then, I' DI and I’ is s-invariant. Hence, (N * By); =
Ny ® Bs = Np ®gs R by Lemma 2.25. Consider the projection (N % Bg)pr — (N % Bg) a5 ®
(N#Bg)a® (N % By)ara = (NG, ® N§) @ (Nf © NJ,) © (N2, 4 ® N, »,) This is given
by

Ny ®@grs R ———— (N§,@ N o (Njo N ) o (N 0N 4).)

(e}
w w

me® f ——— ((mAvamAs(f))v(mAfvaSS(f))v(maTAf’m(aTA)ss(f)))'

Any element in Ny ®gs R is written as m; ® 1 +mo ® §s for mi,mo € Ny, It is in
(N * Bg)y if and only the projection to (N Bs)gS ~ Ngs <) Ng is zero. This projection is
given by (m1, as + Sa(02)ma, As,m1 A + 50 (02)ma, 4). Hence, it is sufficient to prove that
the image of

{m1@1+my®8s € Np @ps R| (m1 +54(62)ma) ar =0 for A’ = A As}

in (N+By)% @ (N#By)hyy = NY@ NG ONYL L ® Ny, 08 @V Niaga)® Niara,(ar4)s
(note that A=a 1 (A4s) and (a1 A)s=a1 (a1 A)).
The image of m; ® 1 +mo ®J, in NE@NZS @NETA @N&TA)S is given by

(M1, 4+ 062 mo, 4,mi, a5 + 062 M, A5, a4 + S (62)M2, a1 4,m0, (at4)s T Sa (62)Ma, (a14)s)-

Define € € {£1} by a? = ea. Since mq 4+ 54(62)ma 4 =0, we have mi 4 +52mg 4 =
(624 — 54(04))ma a4 = caVmg 4. By the same argument, we have mj as + 62'ma a5 =
eaVma as. Therefore, (m1, 4+ 62" ma a,m1, as +02ma as) =V (ema, 4,6ma as) € avN&AS].
Therefore, the image is in o Njas 4] ® Njata, (at4)s]-

However, let mj € Njas 4] and my € Nigpa, (ata)s]- Take a lift my € Ny (resp. ma €
M;yi) of my (resp. mfy) where I" ={A'c A|A' >at A}. Pt n=ma®1+¢e(m ®@3J, —
(5(85))4m1 @1). Then, since mo € My», mag a4 =0, m2 4s =0. Now it is straightforward
to see n € (M B); and the image of n is ('m) 4, &M 44 014 (41.4)s)- We get
the proposition.
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3.5. Some calculations of homomorphisms

Assume that K is a complete local Noetherian integral domain. In this subsection, we fix
a flat commutative graded S-algebra Sy. We define some morphisms as follows. These
will be used only in this subsection. Let A € A and oo € A™T.

Z.O: QA,a _>QA,04 (fvg)’_> (Ouavg)a
ZS_ QA,Q*)QOLTA,Q (fag) H(gaf)a
Za QA,a — Qa,LA,a (f?g) = (Oaavf)'

It is straightforward to see that these are morphisms in K. We use the same letter for the
images of these morphisms in K.

Lemma 3.15. We have End',c(so)(So ®sQan) = End',%(so)(So ®sQa,a) = Soid®Syig.

Proof. Put M = Sy®sQ 4, Note that supp 4 (M) ={4,at A}. Let p € Endg(so)(so ®s
Qa.a). We have p(MY) C Dacarza M9, = MY. By the same argument, we also have
@(META) C MgTA' Therefore, ¢ preserves MY, for any A’ € A. Hence, we get the first
equality of the lemma.

We prove ¢ € Spid+Spig. Since ¢ preserves MY, we have o(f,9) = (¢1(f),2(g)) for
some @1,p2: S§ — S, Restricting to {(f,g) € M | g =0} =aVSy@®0, ¢; sends oSy to
aV Sp. Therefore, it is given by ¢1(f) = c¢f for some ¢ € Sy. Replacing ¢ with ¢ — cid,
we may assume ¢ = 0. The image of ¢ is contained in {(f,g) € M | f =0} =0 " So.
Hence, p2(g) = a¥dg for some d € Sy and we have ¢ = dig. O

Lemma 3.16. We have Homp(s,)(So ®5 Q4,0,50 @5 Qata,a) = Soig -

Proof. Let ¢: So ®s Qa,a = S0 ®s Qata,a be a morphism in E(So). By a similar
argument of the proof of Lemma 3.15, ¢ is given by o(f,9) = (#1(g),2(f)) for ¢;: S§ —

SY such that o;(¥Sp) C aVSy for i =1,2. Hence, ¢, (f) = cf for some ¢ € Sp. It is clear

that o — cig is zero as a morphism in K(Sp). Hence, we get the lemma. O

Lemma 3.17. We have Hom'K(SO)(So ®5 QA0S0 Q5 Qaia,a) = Soig -

Proof. Set M =Sy ®5Qa,o and N = Sy R5Qaya,o and let ¢: M — N be a morphism in
K(Sp). We have go(MgTA) CDasara NY%, =0and p(MY%) C Dacarza N% = N%. Hence

o(f,9) = (0,01 (f)) for some ¢ : Sg — Sg. For any f € Sy we have o(f, f) = (0,1(f)) € N.
Hence, ¢1(f) € a¥Sy. Therefore, ¢1(f) = ca” f for some ¢ € Sy. Hence, ¢ = cij . O

Lemma 3.18. If Ay # a | A, As,a T Ay, then Homy(s,)(QA,,0,Q4,,0) =0.

Proof. It follows from supp 4(Qa4,,o) Nsupp4(Qa,.a) = 0. O

Next, we calculate homomorphisms in Kajs. Set Q4 o = F(Q4,0)-
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Lemma 3.19. The object Q4,4 is given by

N8P (A =AatA),
Qaald) = {0 (otherwise),
SP a0 (A=At A B+#a),
0®S» (BTA =Aat A B#a),
, aVS*@0 (A =ati B=a),
Q4 A, =
Al 0] {(f.9)€(54)?|f=g (moda’)} (A=A f=a)
0o S (A'=alA B=a)
0 (otherwise).

Proof. The formula of Q4 ,(A) is obvious. If 8 # a, then S® ®5Qa o = S° ®S?. Hence,
the formula of Q4 (A4’,3) with 8 # a follows. The other formulas follow from a direct
calculation. O

Set 1o = F(io), tf = F(if), tg = F(ig ). These morphisms are described as follows.

Lo QA,a — QA,oz (LO)A = Ov(LO)ozTA = Oéid,
15 Qaa = Qarda (19)a= 0,10 )ara =1d,
La: QA,a — Qa,LA,a (La)A = aida(ba)aTA =0.
Lemma 3.20. We have End,'CAJS(SO)(So ®s Qa,q) = Soid®Soto.

Proof. Set M = Sy ®s Qa,, and let ¢: M — M be a morphism. Since M(A") =0 for
A # Ajat A, we have p 4- =0 for such A’. The morphism ¢ preserves M(5 ] A,3) = 0€BS§
for any 8 € AT. Hence, @A(Sg) C Sg. Therefore, @ 4(Sy) C Sp and hence, p4 = cid for
some c € Sy. We also have o414 = did for some d € S.

We prove ¢ € Syid+Sptg. By replacing ¢ with ¢ —cid, we may assume @4 = 0. We
have (pa(f),paralg)) € M(A,a) for any (f,g) € M(A,a). Since pa(f) =0, we have
Yatalg) € ¥ S§. Therefore, d € oY S§ NSy = a¥Sy. We have ¢ = (d/a" ). O

Lemma 3.21. We have Homg., | (s,)(S0 ®s5 QA 0,5 @5 Qata,a) = Sotg -

Proof. Set M = Sy ®s Qa4 and N = Sy @5 Qura,a- Let p: M — N be a morphism.
Then, o4 =0 for A’ # a1 A. For §€ At\{a}, since ¢ sends M(at A,8) =S5 &0 to
N(atApB) = 55@0, we have <pa¢A(Sg) C S’g. Since ¢ sends M(A,a) to N (4,a) =06 S,
Para(S*) C S Hence, para € Spid and we get the lemma. O

Lemma 3.22. We have Homg,  (s,)(S0 ®s Qa,a,50 @5 Qala,a) = Soig -

Proof. Set M = Sy ®s Qa4 and N = Sy ®Rg5 Qnja,a- Let p: M — N be a morphism.
Then, @4 =0 for A’ # A. For B € AT\ {a}, ¢ sends M(A,3) =0 5) to N'(A4,8) = S5 &0.
Hence, ©4(S5) € S2. The morphism ¢ sends M(A,a) to N(A,a) = a¥S*@®0. Hence,
©a(S§) C ¥ S§. Therefore, pa € a¥ Spid and we get the lemma. O

Lemma 3.23. If Ay # a ] As,As,a 1 As, then Homy, 1 (5,)(QA,,0:Qas,a) = 0.
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Proof. It follows from there is no A such that Qa, o(A) #0 and Qa, (A4) #0. O

Summarizing the calculations in this subsection, we get the following.
Lemma 3.24. The functor F* = F(S®) induces an isomorphism Homgg,)(So ®s
Q41,0:50 @5 Qay,0) — Homg, (5,)(S0 @5 F*(Qa,,a):5 @5 F*(Qasa))-
3.6. Equivalence
Assume that K is a complete local Noetherian integral domain.
Lemma 3.25. The functor F*: K& — K% 15 is fully faithful for o€ A.

Proof. By Corollary 3.8 and Proposition 3.12, we may assume M =Q%, ,and N=Q%, .
where A1,A5 € A. Hence, the lemma follows from Lemma 3.24.

Proposition 3.26. The functor F: Kp — Kags s fully faithful.

Proof. Let M,N € Kp and we prove that 7: Homy ,(M,N) — Homg.,  (F(M),F(N))
is an isomorphism. By the diagram

Homy.,(M,N) A Homy., . (M,N)

\ /

[T4c.4Homgo (ME,NE"),

F is injective (the injectivity of two morphisms in the above diagram follows from the
definitions).

We prove that F is surjective. For v € Xk, let S) be the localization at
the prime ideal (v) C S. Since Homy ,(M,N) is graded free, we have Im(F) =
MNyex, Sw) ®s Im(F). By Corollary 3.8, we have S() ®s Im(F) = Im(F(S))).
Since any S(,) is an S%-algebra for some a € A, by Proposition 3.26, we have
Im(F(Swy)) = Hom).cAJs(S(,,))(]:(S(u))(S(V) ®s M), F(Sw))(Sw) ®s N)). Therefore, F
is surjective since ﬂueXKHom,'CAJS(S(V))(.F(S(,,))(S’(D) ®s M), F(Su))(Sw) ®s N)) D
Hom.’CAJs (]:(M)’]:(N» |

Set Qx = F(Qxr). Let Kays p be the full subcategory of Kajs consisting of direct
summands of direct sums of objects of a form (J,, o---09s,)(Qx)(n) for si,...,s51 € Sas,
A € (RA)jy and n € Z. By Proposition 3.14 and 3.26, we get the following theorem.

Theorem 3.27. We have Kp ~ Kajs, p. In particular, the category SBimod acts on
Kass,p.

3.7. Representation Theory

In this subsection, we assume that K is an algebraically closed field of p > h, where h is the
Coxeter number. Let G be a connected reductive group over K and T a maximal torus of
G with the root datum (X,A, XV, AV). The Lie algebra g of G has a structure of a p-Lie
algebra. Let U] (g) be the restricted enveloping algebra. Let S be the completion of S at
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the augmentation ideal. For Sy = S or K, let Cs, be the category defined in [AJS94]. The
category Cx is equivalent to the category of G1T-modules, where G is the kernel of the
Frobenius morphism. Let Zg,(\) € Cg, be the baby Verma module with highest weight
A and Pg,(X) € Cg, the indecomposable projective module such that K®g, Pg, () is the
projective cover of the irreducible module with highest weight A. Such objects exist by
[AJS94, 4.19 Theorem| when Sy = s.

We fix an alcove Ag € A and Ag € X N(pAp — p), where p is the half sum of positive
roots and pAg = {pa|a € Ap}. For Sy = S or K, let Cg,,0 be the full subcategory of
Cs, consisting of quotients of modules of a form Gawewgff Pg, (w-p Ao)™ where w-, \g =
pw((Xo +p)/p) — p and ny, € Z>g. Then, the cateogory Cs, o is a direct summand of Cg, .
Let Proj(Cs,,0) = {P €Cs,,0 | P is projective}.

Let Sy be a flat commutative S-algebra which is not necessary graded. We consider
the following object: M = ((M(A)) aca,(M(A,@)) acA.aca+), where M(A) is an (So)?-
module and M(4,a) C M(A)® M(a T A) is a sub-(Sp)*-module (we consider usual
modules, not graded ones). Let K' ;5(So) be the category of such objects. Starting
from this, we can define the functor ¥, and the category ICEUS, p(S0) in a similar way.
Andersen-Jantzen-Soergel proved the following (see [AJS94, 9.4. Proposition] for the full
faithfulness. For the essential surjectivity, see the discussion in [AJS94, 16.5]). We modified
the functor using [Fiell, Theorem 6.1].

Theorem 3.28. There is an equivalence of the categories V: Proj(Cg ) = ICfUS’P(S'\).

Note that the functor V is defined explicitly.
Let K@gProj(Cg ) be the category defined as follows. The objects of K®gProj(Cz )
are the same as those of Proj(Cg ), and the space of homomorphism is defined by

HOInK@gProj(Cg,o) (MaN) = K®§H0mProj(CA’0)(M7N)'

s

Lemma 3.29. We have K®gProj(Cg ) =~ Proj(Cx,o)-

Proof. We consider the functor K®gProj(Cg ,) — Proj(Ck o) defined by P — K®g P.
This is essentially surjective by [AJS94, 4.19 Theorem] and fully faithful by [AJS94, 3.3
Proposition]. O

We also define K®g KgJS7P(§) and K®g ICfAJS,P(S) in the same way.

Lemma 3.30. We have the following.

(1) The category ICEUSVP(S) is equivalent to the category defined as follows: the objects
are the same as KCajs p, and the space of homomorphisms is defined by Hom,cfus .=

Homg, /o .-
(2) We have K®§IC2JS7P(S) ~K®g K 15 p(5).

Proof. (1) is obvious. N
For (2), define S®g ICfUS,P in the obvious way. It is sufficient to prove ICEUS’P(S) o~

S®s ICfUS’P. The functor F: S®g IC&IS’P — ICQJS7P(§) is defined in an obvious way and it
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is fully faithful by [AJS94, 14.8 Lemma)l. In particular, F' sends an indecomposable object
to an indecomposable object. We define the category ICED as in (1). Namely, the objects
of KL, are the same as those of KL, and we define Homyc: = Homgy .. The indecomposable
objects in Kf jq p ~ K}, and ICRJS’P(g) ~Proj(Cg ,) are both parametrized by A, and it is
easy to see that F gives a bijection between the set of indecomposable objects. Therefore,
F is essentially surjective. O

Therefore, we get
Proj(Ci,0) ~ K®gProj(Cg o) ~ K®gKh s p(S) » K@s Kl js p ~ K@s K.

Since the action of SBimod on Kp is S-linear, it gives an action on K®g IC;. Hence,
SBimod acts on Proj(Ck,¢). With respect to this action, B acts as the wall-crossing
functor. We write this action as (M,B) — M x B.

Now we prove the following theorem.

Theorem 3.31. There is an action of SBimod on Cx o such that B, acts as the wall-
crossing functor for s € Sug.

Let L(p\) € Cx be the irreducible module with highest weight pA for A € ZA. The
category Cg o has the structure of ZA-category via M — M @ L(pA) for A € ZA. Fix a
projective ZA-generator P of Ck o and set & = @, 5, Home, ,(P,P® L(p))). This is a
ZA-graded algebra, and Cx o > M — @, cyn Hom(P,M ® L(p))) gives an equivalence of
categories between Ck o and the category of finitely generated ZA-graded right £-modules
[AJS94, E.4 Proposition]. Let Modza (€) be the the category of finitely generated ZA-
graded right £-modules and Proj;a (£) the category of projective objects in Modza (€).

Lemma 3.32. We have (Q* B)® L(pA\) ~ (Q ® L(p\)) * B for Q € Proj(Ck,0), B €
SBimod and A € ZA.

Proof. Let A € ZA. Then, we have a functor Ty (resp. Tays ) on Kp (resp. Kays p)
defined as follows.

o For M €Kp, T\(M) =M and Tx(M)% = MY ,.
e For M € Kajs, TAJS’A(M)(A) = M(A+ ) and TAJSQ\(M)(A,O[) = M(A+\a).

Since these functors are S-linear, they give functors on K®gKp and K®g Kajs p,
respectively. These functors give structures of ZA-category on each category. It is easy to
see that equivalences K®gKp ~K®gKays p ~ Proj(Ck,o) are ZA-functor. Therefore, it
is sufficient to prove T\(M x B) ~T\(M)* B for M € Kp and B € SBimod. This follows
from the definition. O

Therefore, the action of B € SBimod on Proj(Ck o) is compatible with the ZA-category
structure, and it gives an action on Proj; (£). We write this action again by M — M  B.
For each B € SBimod, we define £(B) by £(B) = @, cyn Hom(P,(P* B)® L(pA)). This
is a ZA-graded &-bimodule.

Lemma 3.33. Let Q be a projective finitely generated ZA-graded £-module. Then, Q ®¢
E(B)~Qx*B.
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Proof. Let @, be the v-th graded piece of @), where v € ZA. Let p € @, and let ¢, be
the corresponding element in Homyyoq,, (£)(€,Q(v)). Here (v) is the shift of the grading.
Then, ¢, * B gives £* B — Q(v) * B. By the definition, £« B = £(B). Therefore, for
m € E(B), we have ¢,(m) € Q(v)* B ~ (Q=*B)(v). Hence, we get QR¢E(B) = Q*B by
p&m +— @,(m). This is an isomorphism if @ = &. Hence, it is an isomorphism for any
Q € Proj A (E). O

Now for ZA-graded right £-module M, put M x B = M ®¢ £(B). By the above lemma,
E(B1)®gE(By) ~E*By* By =E%(B1®Bs) ~E(B1®Bs). Hence, (M x By)* By = (M ®¢
E(B1))Re&(B2) 2 M ®¢ (E(B1)®e E(Bs)) ~ M ®¢ E(B1®By) = M x(B1® Bs). It is easy
to see that this gives an action of SBimod on Modza () and therefore, on Ck .

3.8. Characters

Assume that K is an algebraically closed field of p > h, where h is the Coxeter number. Any
object P € Proj(Cg,0) has a baby Verma flag. Let (P : Zs(w-, Ag)) be the the multiplicity
of Zg(w-p Ag) in P. The following lemma is obvious from the constructions.

Lemma 3.34. Let P € Proj(Cs,0) and M € Kp such that V(P) ~F(M). Then, we have
(P:Zs(w-p o)) =rank(Myy,a,y) for we Wig.
The projective module Ps(A) is characterized by

e Ps()) is indecomposable.

o (Ps(A):Zs(N)=1.

o (Ps(\):Zs(p)) =0 unless u—\ € Z>oA™.
The module V™! (F(Q(wAy))) satisfies these conditions with A = w -, A\g by the above
lemma. We get the following.

Proposition 3.35. Let w € W.;. Then V(Ps(w-p o)) ~ F(Q(wAy)).
The following corollary is obvious from the above proposition.

Corollary 3.36. We have [Px(w-p Xo) : Zk(v-p Ao)] = rank(Q(wAo){y4,1})-

3.9. Lusztig’s conjecture

For B € SBimod and w € W,g, let B” be the image of B < B R? = Dcw., BY -
B?. Put ch(B) = unewaff”%(w) grk(B™). Then, [B] — ch(B) induces an isomorphism
[SBimod] ~ H. For each w € W,g, there exists an indecomposable object B(w) € SBimod
unique up to isomorphism such that ch(B(w)) € Hy, + Y, _,, Zlv,v™'|H,. We say that
B(w) satisfies the Soergel conjecture if ch(B(w)) is a Kazhdan-Lusztig basis; namely,
ch(B(w)) € Hy+ ), ., vVZ[v]H,. It is known that the Soergel conjecture is satisfied by
any B(w) over a characteristic zero field. Therefore, for a fixed w, if p is sufficiently large,
B(w) satisfies the Soergel conjecture (cf. [EW14]). We fix A € (RA)int and w € W such
that Aj\rw € II,\. Here, Aj\r is the maximal element in W{A} .

Lemma 3.37. Let wy € Wag such that A;\”'w)\ = A . Then, we have SAi * B(wy) ~

Qx(l(wo)).
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Proof. By the translation as in the proof of Lemma 2.31, we may assume A = 0. Then,
W)’\ = Wt and it is generated by S,g N W;. Moreover, the element w), is equal to the longest
element wg.

It is sufficient to prove: B(wg) =~ {(24) € R" | 2t = 24 (mod a;) }(€(wy)), where ¢ runs
through the set of reflections in Wt and «; the corresponding element in Ag [Abe21, 2.1].
Let (G¢, B¢, TY) be the reductive group over C, the Borel subgroup and the maximal torus
with the root datum (XV,AY, X,A) and the positive system AT C A. Then, the category
of K-coefficient parity B-equivariant sheaves on G¢ /B¢ is equivalent to the category
of Soergel bimodules attached to (W, Xy) [RW18]. The object B(wg) corresponds to
the indecomposable parity sheaf such that the restriction to the big cell BlwoB /By
is Kpyuw,ny /By [((wo)]. It is obvious that the constant sheaf Kgy /gy [((wo)] satisfies this
condition, and therefore, the constant sheaf corresponds to B(wp). By the main theorem
of [FW14], the corresponding Soergel bimodule is given as above. O

Recall that we took w € W,g and A € (R®yy,) such that Aj\rw € II,. Define SA? IS IE’(S)
as follows: SA? =S as a left S-module and R acts through f+ f4. We have (SAi)ng =99
A

and (SAT)QA, =0 for A’ € A\{A]}.
Theorem 3.38. If B(w) satisfies the Soergel conjecture, then SAf * B(w) ~ Q(Afw).

Proof. First, we prove that SA;r * B(w) € Kp. By the translation as in Lemma 2.31,
we may assume A = 0. Then, W] = W}, and this is isomorphic to the subgroup of
Wag generated by s € S,g which contains a hyperplance through 0. We identify Wi —
Wag. We have sw < w for any s € Wy N Sag. Therefore, Hych(B(w)) = v~!ch(B(w))
by [JW17, Lemma 4.3]. Hence, H,ch(B(w)) = v~*®) ch(B(w)) for any x € W;. Take
Ay = D ez ynV™ € Lxg[v,o™!] such that ch(B(wp)) = > yew; ayHy (one can write
ay explicitly, but we do not do this here because we will not use this). Then, we
have ch(B(wo) ® B(w)) = >, cw, a, v~ W ch(B(w)). Hence, we get B(wp) ® B(w) ~
D, cw, nez B(w)®»(n—£(y)). Therefore, up to shift, SAg * B(w) is a direct summand of
S * (B(wg) ® B(w)) =~ Qo(¢(wo)) * B(w) € Kp. Hence, Sax * B(w) € Kp.

We return to the proof of the theorem. By [Lus80, Theorem 5.2], Ch(SAj * B(w)) =
A;f ch(B(w)) is described by periodic Kazhdan-Lusztig polynomials; namely, we have
Al ch(B(w)) =v™"P,, for some Ay € A and n € Z. Here, P, € P° is the element
given in [Soe97, Proposition 4.16]. We know A ch(B(w)) € A;\rw+2A,>Ain[u7y*1]A/.
Comparing with [Soe97, Lemma 4.21], we have n = £(wp) and ch(SA;r *B(w)) € Afw+
darsAtw v~ 'Z[v~1]A’. By the self-duality of P, , we have ch(S 4 x B(w)) = v!wolp, e
v26(wo) Aty + ZA'>A;rwU%(wO)_IZ[U_l]AI- Therefore, by Theorem 3.10, we have

grkHom',C(AS’lL‘;r * B(w),SA;r *B(w)) € 1+v2Z[v™ Y.

Hence, Endk (S At % B(w)) is one-dimensional, and therefore, 1 and 0 are only its
idempotents. Therefore, S+ * B(w) is indecomposable. Since Q(Afw) is a direct
summand of SA;r * B(w), we get the theorem. O
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From the above theorem and Corollary 3.36, the multiplicity of the baby Verma modules
in the projective cover of an irreducible module is given by the value at 1 of the Kazhdan-
Lusztig polynomial. Hence, the Lusztig’s conjecture holds for sufficiently large p.
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