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Abstract We construct an action of the affine Hecke category on the principal block Rep0(G1T ) of
G1T -modules where G is a connected reductive group over an algebraically closed field of characteristic
p > 0, T a maximal torus of G and G1 the Frobenius kernel of G. To define it, we define a new category
with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-
Soergel.

1. Introduction

LetG be a connected reductive algebraic group over an algebraically closed fieldK of char-

acteristic p > 0. One of the most important goals in representation theory is to describe

the characters of irreducible representations. In the case of rational representations of G,
Lusztig gave a conjecture which gives the characters of irreducible representations of G

in terms of Kazhdan-Lusztig polynomials of the affine Weyl group for p > h, where h is

the Coxeter number. Thanks to the works of Kazhdan-Lusztig [KL93, KL94a, KL94b],

Kashiwara-Tanisaki [KT95, KT96] and Andersen-Jantzen-Soergel [AJS94], this is proved
for p large enough. An explicit bound on p is known by Fiebig [Fie12].

However, as Williamson [Wil17] showed, Lustzig’s conjecture fails for many p. Therefore,

we need a new approach for such p. Riche-Williamson [RW18] gave such an approach,
and now we explain it. Assume that p > h. Let Rep0(G) be the principal block of

the category of rational representations of G. For each affine simple reflection s, we

have the wall-crossing functor θs : Rep0(G) → Rep0(G). The Grothendieck group of
Rep0(G) is isomorphic to the anti-spherical quotient of the group algebra of the affine

Weyl group. Here, the action of the affine Weyl group on a representation is given by

[M ](s+1) = [θs(M)] for M ∈Rep0(G) and a simple affine reflection s. Riche-Williamson

[RW18] conjectured the existence of a categorification of this anti-spherical quotient.
More precisely, they conjectured that there is an action of D on Rep0(G) where D is
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the diagrammatic Hecke category defined by Elias-Williamson [EW16]. Assuming this

conjecture, they proved that the anti-spherical quotient of D is a graded version of the

category of tilting modules in Rep0(G). In particular, one can describe the character of
indecomposable tilting modules in terms of p-Kazhdan-Lusztig polynomials. Recently this

description was proved by Achar-Makisumi-Riche-Williamson [AMRW19] when p > h,

and for any p by Riche-Williamson [RW22]. We note that if p ≥ 2h−2, then characters
for irreducible modules are described by characters of tilting modules [And98]. We also

remark that Sobaje [Sob20] gave for all p an algorithm to calculate the characters of

irreducible modules by the characters of indecomposable tilting modules.
Achar-Makisumi-Riche-Williamson also proved a big part of the conjecture, but not

a full statement. In the case of G = GLn, the original conjecture is proved by Riche-

Williamson [RW18]. Recently, the conjecture is proved by Bezrukavnikov-Riche [BR22]

for p > h.
In this paper, we consider the G1T -version of this conjecture, where T ⊂G is a maximal

torus and G1 is the Frobenius kernel of G. Namely, we define an action of the category

D on the principal block of G1T -modules.
Next, we state our main theorem. We remark that we have an object Bs ∈ D for any

affine simple reflection s (see the next subsection for the details). Assume that p > h. Let

Rep0(G1T ) be the principal block of the category of G1T -modules.

Theorem 1.1 (Theorem 3.31). The category D acts on Rep0(G1T ), where Bs ∈ D acts

as the wall-crossing functor for any affine simple reflection s.

Kaneda (private communication) proved this theorem for GLn using the arguments of

Riche-Williamson [RW18].
Let X∨ be the cocharacter group of T and set X∨

K
=X∨⊗ZK. Let S =Sym(X∨

K
) be the

symmetric algebra of X∨
K
. This is a graded algebra via deg(X∨

K
) = 2. Andersen-Jantzen-

Soergel defined a combinatorial category KAJS. This category is an S -linear category with
a grading. We define a category K⊗S Kf

AJS with the same objects as KAJS; however, the

space of morphisms is defined as HomK⊗SKf
AJS

(M,N) = K⊗S

⊕
i∈Z

HomKAJS
(M,N(i)),

where N(i) denotes the grading shift (the upperscript f means forgetting the gradings).
Let Proj(Rep0(G1T )) be the category of projective objects in Rep0(G1T ). Andersen-

Jantzen-Soergel constructed a functor V : Proj(Rep0(G1T )) → K⊗S Kf
AJS and proved

that it is fully faithful. They also determined the essential image of V, and using this

functor, they proved Lusztig’s conjecture for large p.
In order to obtain an action of D on Rep0(G1T ), it is sufficient to define an action on

Proj(Rep0(G1T )) (see 3.7). Therefore, by the results of Andersen-Jantzen-Soergel, it is

sufficient to construct the action of D on the essential image of V. The main obstructions
to do it are the following.

(1) Elias-Williamson defined D via generators and relations. Since the relations are
very complicated, it is hard to check that the action is well-defined.

(2) The category KAJS,P contains only “local” information. Hence, it is difficult to

construct the action directly.
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1.1. The category SBimod

We use the category SBimod [Abe21] instead of the category D. The category SBimod is

equivalent to the category D. We recall the definition of SBimod. Let Waff be the affine

Weyl group attached to G and Frac(S) the field of fractions of S. An object M in SBimod

is a graded S -bimodule and submodules M
Frac(S)
x ⊂ M ⊗S Frac(S) (x ∈ Waff) with the

property M⊗SFrac(S) =
⊕

x∈Waff
M

Frac(S)
x and mf = x(f)m for f ∈ S and m∈M

Frac(S)
x .

Here, x is the image of x in the finite Weyl group. For M,N ∈ SBimod, we have the
tensor product M⊗N =M⊗SN with the decomposition (M⊗N)⊗SFrac(S) =

⊕
x∈Waff

(M ⊗N)
Frac(S)
x , where (M ⊗N)

Frac(S)
x =

⊕
yz=xM

Frac(S)
y ⊗Frac(S)N

Frac(S)
z . A homomor-

phism M → N is a degree zero S -bimodule homomorphism which sends M
Frac(S)
x to

N
Frac(S)
x for any x ∈Waff .

Let X be the character group of T. An alcove is a connected component of X⊗ZR \⋃
tHt, where t runs through the affine reflections in Waff , and Ht is the fixed hyperplane

of t. We fix an alcove A0 and let Saff be the reflections with respect to the walls of A0.

Then, (Waff,Saff) is a Coxeter system. For each s∈Saff , put S
s = {f ∈S | s(f) = f}. Then,

the S -bimodule S⊗Ss S(1) has, when tensored by Frac(S), a unique decomposition as

described above such that (S ⊗Ss S(1))
Frac(S)
w �= 0 only when w = e,s. Let Bs be this

object. Now SBimod consists of the objects M which are direct summands of direct sums

of objects of the form Bs1 ⊗ ·· · ⊗Bsl(n) where s1, . . . ,sl ∈ Saff and n ∈ Z. It is proved
in [Abe21] that the category SBimod is equivalent to the diagrammatic Hecke category

defined by Elias-Williamson. As shown in [EW16, Abe21], this gives a categorification

of the Hecke algebra of the affine Weyl group; namely, the split Grothendieck group of
SBimod is isomorphic to the Hecke algebra.

1.2. Another combinatorial category

We also give another realization of the category of Andersen-Jantzen-Soergel KAJS

[AJS94]. As in [Lus80], we use the combinatorics of alcoves to define the category. Let A
be the set of alcoves. We fix a positive system Δ+ of the root system Δ of G. Then, this

defines an order on A[Lus80]. Recall that we have fixed A0 ∈ A. The action of Waff on
X⊗ZR induces the action of Waff on A such that the map w �→ w(A0) gives a bijection

Waff →A.

Set S∅ = S[(α∨)−1 | α ∈ Δ]. We define the category K̃′ as follows. An object of K̃′ is
a graded S -bimodule M with a decomposition S∅⊗S M =

⊕
A∈AM∅

A, such that mf =

x(f)m for m ∈M∅
A, f ∈ S∅, x ∈Waff such that A= x(A0) and x is the image of x in the

finite Weyl group. A morphism f : M →N is a degree zero S -bimodule homomorphism,

such that f(M∅
A)⊂

⊕
A′≥AN∅

A′ . We will also define some subcategories of K̃′. Particularly,

the category denoted by K̃P plays an important role in our construction. Since it is

technical, we do not say anything about its definitions in the Introduction, but instead

refer to Definition 2.16. We only note that, for each A ∈ A, the module M{A} = (M ∩⊕
A′≥AM∅

A′)/(M ∩
⊕

A′>AM∅
A′) is graded free for M ∈ K̃P .

We define an action SBimod on K̃′ as follows. Let B ∈ SBimod and note that we

have a submodule B∅
x ⊂ B ⊗S S∅, such that B∅

x ⊗S∅ Frac(S) = B
Frac(S)
x . Let M ∈ K̃′.
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Then, we define M ∗B by M ∗B =M ⊗S B as a graded S -bimodule and (M ∗B)∅w(A0)
=⊕

x∈Waff
M∅

wx−1(A0)
⊗S∅ B∅

x for w ∈Waff . We can prove that the above action of SBimod

on K̃′ induces a well-defined action also on K̃P (Proposition 2.24). Therefore, the split

Grothendieck group [K̃P ] of K̃P has a structure of [SBimod]-module defined by [M ][B] =

[M ∗B]. Hence, [K̃P ] is a module of the Hecke algebra. This category satisfies the following.

Theorem 1.2 (Theorem 2.35, 2.40). We have the following.

(1) For each A ∈ A, we have an indecomposable module Q(A) ∈ K̃P , such that

Q(A){A} � S and Q(A){A′} �= 0 implies A′ ≥A.

(2) Any object in K̃P is isomorphic to a direct sum of Q(A)(n) for A ∈ A and n ∈ Z.

(3) The split Grothendieck group [K̃P ] is isomorphic to a certain submodule P0 of the

periodic Hecke module (the submodule was introduced in [Lus80]).

1.3. A relation with a work of Fiebig-Lanini

Fiebig-Lanini [FL15] had a similar work (earlier than this work) and defined a certain

category. Logically, results in this paper do not depend on their work. However, in the

proofs in this paper, we borrow many ideas from their work. Moreover, in subsection 2.9,

we prove that our category K̃P is equivalent to the category of Fiebig-Lanini. The author
thinks it is possible to establish the theory on top of the theory of Fiebig-Lanini, but the

existence of a Hecke action does not easily follow from their theory.

1.4. Relations with representation theory

The category K̃P is not the category we really need. We modify this category as follows.
Objects in KP are the same as those in K̃P , and the space of homomorphisms is defined by

HomKP
(M,N) = Hom

˜KP
(M,N)/{ϕ : M →N | ϕ(M∅

A)⊂
⊕
A′>A

N∅
A′}.

We prove that the action of B ∈ SBimod on KP is well-defined.

Theorem 1.3 (Proposition 3.3, Theorem 3.9). We have the following.

(1) The object Q(A) is also indecomposable as an object of KP .

(2) We have [KP ]� [K̃P ]. Hence [KP ] is also isomorphic to P0.

We also define a functor F : KP →KAJS. Recall that we have a wall-crossing functor

ϑs : KAJS →KAJS for each s ∈ Saff , see [Fie11, 5.3].

Theorem 1.4 (Proposition 3.14, 3.26). Let M ∈ KP . We have the following.

(1) We have F(M ∗Bs)� ϑs(F(M)) for each s ∈ Saff .

(2) The functor F is fully faithful.

Let KAJS,P be the essential image of F . We define K⊗S Kf
AJS,P and K⊗S Kf

P in the

same way as K⊗S Kf
AJS. One of the main results in [AJS94] says that K⊗S Kf

AJS,P �
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Proj(Rep0(G1T )) (see 3.7). Since the action of SBimod on KP �KAJS,P gives an action

on K⊗S Kf
AJS,P , we now get the action of SBimod on Proj(Rep0(G1T )). We can extend

this action to Rep0(G1T ) (see 3.7).
Let A0 be the alcove containing ρ/p where ρ is the half sum of positive roots. We

have an equivalence K⊗S Kf
P �K⊗S Kf

AJS,P � Proj(Rep0(G1T )) and Q(A) corresponds

to P (λA), where λw(A0) = pw(ρ/p)− ρ for w ∈ Waff and P (λA) is the projective cover
of the irreducible representation with highest weight λA. Let Z(μ) ∈ Rep(G1T ) be the

baby Verma module with highest weight μ and (P (λ) : Z(μ)) the multiplicity of Z(μ) in

a Verma flag of P (λ). By the constructions, we have the following.

Theorem 1.5 (Corollary 3.36). The multiplicity (P (λA) :Z(λA′)) is equal to the rank of

Q(A){A′}.

In 3.9, we discuss Lusztig’s conjecture on irreducible characters of rational representa-

tions. We give a proof of the conjecture based on the theory developed in this paper.

2. Our combinatorial category

We shall use a different notation than the Introduction. In particular, we do not fix the

alcove A0. So, we distinguish two actions (from the right and left) of Waff on A as in
[Lus80]. We will also work in a more general situation than in the Introduction. Forget

every notation and the assumptions from the Introduction. Notation used in the main

body of this paper will be explained.

2.1. Notation

Let (X,Δ,X∨,Δ∨) be a root datum. Let A the set of alcoves, namely the set of connected
components of XR \

⋃
α∈Δ,n∈Z

{λ ∈XR | 〈λ,α∨〉= n} where XR =X⊗ZR. Let Wf be the

finite Weyl group and W ′
aff =Wf �ZΔ the affine Weyl group with the natural surjective

homomorphism W ′
aff →Wf . For each α ∈Δ and n ∈ Z, let sα,n : X →X be the reflection

with respect to {λ ∈ XR | 〈λ,α∨〉 = n}. As in [Lus80], let Saff be the set of W ′
aff -orbits

on the set of faces. Then, for each s ∈ Saff and A ∈ A, we denote As as the alcove �= A,

which has a common face of type s with A. The subgroup of Aut(A) (permutations of
elements in A) generated by Saff is denoted by Waff . Then, (Waff,Saff) is a Coxeter system

isomorphic to the affine Weyl group. The Bruhat order on Waff is denoted by ≥. We shall

consider the right action of Waff on A.

We give related notation and also some facts. If we fix an alcove A0, then W ′
aff � A

via w �→ wA0 and W ′
aff acts on A by (w(A0))x = wx(A0). This gives an isomorphism

W ′
aff �Waff . The facts stated below are obvious from this description.

Let Λ be the set of maps λ : A → X such that λ(xA) = xλ(A) for any x ∈ W ′
aff and

A ∈ A, where x ∈ Wf is the image of x. We write λA = λ(A) for λ ∈ Λ and A ∈ A. For

each A ∈ A, λ �→ λA gives an isomorphism Λ
∼−→X, and the inverse of this isomorphism

is denoted by ν �→ νA. The group Waff acts on Λ by (x(λ))(A) = λ(Ax).
Let Λaff be the set of λ ∈ Λ such that λA ∈ ZΔ for any, or equivalently, some A ∈ A.

For λ ∈ Λaff and A ∈ A, we define Aλ = A+ λA. Then, for λ1,λ2 ∈ Λaff , (Aλ1)λ2 =

(A+(λ1)A)λ2 =A+(λ1)A+(λ2)A+(λ1)A . Since elements in Λ are constant on ZΔ-orbits,
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we have (λ2)A+(λ1)A = (λ2)A. Hence, (Aλ1)λ2 =A+(λ1+λ2)A; namely, (A,λ) �→Aλ gives

an action of Λaff on A. Therefore, we get Λaff ↪→ Aut(A) and the image is contained in

Waff . Thus, we may regard Λaff as a subgroup of Waff .
Let λ ∈ Λ and A,A′ ∈ A and assume that A,A′ are in the same Λaff -orbit. Namely,

there exists μ ∈ Λaff such that A = A′μ = A′+μA′ . Since elements in Λ are constant on

ZΔ-orbits, we get λA′ = λA. Namely, the isomorphism λ �→ λA only depends on Λaff -orbit
in A. Hence, we also write the isomorphism by λ �→ λΩ where Ω ∈A/Λaff . The inverse is

denoted by λ �→ λΩ. The Λaff -orbit through A is equal to {A+λ | λ ∈ ZΔ}. Let A+ZΔ

be this set.
The following lemma is obvious from the definitions.

Lemma 2.1. Let λ ∈ Λ, ν ∈X, x ∈Waff , y ∈W ′
aff and A ∈ A.

(1) x(λ)A = λAx.

(2) y(λA) = λyA.

(3) νA = x(νAx).

(4) νA = y(ν)yA.

Fix a positive system Δ+ ⊂Δ. Let α ∈Δ+ and n ∈ Z. We say A ≤ sα,n(A) if, for all

a∈A, we have 〈a,α∨〉<n. The generic Bruhat order ≤ on A is the partial order generated

by the relations A≤ sα,n(A). The following lemma is obvious from the definition.

Lemma 2.2. Let A ∈ A, w ∈ W ′
aff and a is in the closure of A. If A ≤ w(A), then

w(a)−a ∈ R≥0Δ
+.

Lemma 2.3. Let A,A′ ∈ A such that A+ ν = A′ for ν ∈ ZΔ. Then, A ≤ A′ if and only
if ν ∈ Z≥0Δ

+.

Proof. We assume ν ∈Z≥0Δ
+ and prove that A≤A′. We may assume ν = α ∈Δ+. Take

n ∈ Z such that n− 1 < 〈a,α∨〉 < n for any a ∈ A. For a ∈ A, we have 〈sα,n(a),α∨〉 =
〈a − (〈a,α∨〉 − n)α,α∨〉 = 2n − 〈a,α∨〉. Hence, n < 〈sα,n(a),α∨〉 < n + 1. Therefore,
A≤ sα,n(A)≤ sα,n+1sα,n(A) =A+α.

However, assume that A≤ A′. Take a ∈ A. Then by Lemma 2.2, we have (a+ν)−a ∈
R≥0Δ

+. Hence, ν ∈ R≥0Δ
+. Since ν ∈ ZΔ, we get ν ∈ Z≥0Δ

+.

A subset I ⊂ A is called open (resp. closed) if A ∈ I, A′ ≤ A (resp. A′ ≥ A), which

implies A′ ∈ I. This defines a topology on A. The following lemma is an immediate result
of the previous lemma, and it plays an important role throughout this paper.

Lemma 2.4. For each Ω∈A/Λaff and x∈Waff , the map x : Ω→Ωx preserves the order.

For A,A′ ∈A, set [A,A′] = {A′′ ∈A |A≤A′′ ≤A′}. For α ∈Δ+ and A ∈A, take n ∈ Z

such that n−1< 〈a,α∨〉< n for all a ∈ A and define α ↑ A= sα,n(A). By the definition,

A≤ α ↑A. We define α ↓A as the unique element such that α ↑ (α ↓A) =A.
In this paper, graded module (resp. ring) means Z-graded module (resp. ring). Let

M =
⊕

iM
i be a graded module. For k ∈ Z, we define M(k) by M(k)i = M i+k. For a

graded ring S, a graded S -module M is called graded free if it is isomorphic to
⊕

iS(ni)
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where n1, . . . ,nr ∈ Z (in this paper, graded free means graded free of finite rank). We set

grk(M) =
∑

i v
ni ∈ Z[v,v−1], where v is an indeterminate.

2.2. The categories

Fix a Noetherian integral domain K (in the Introduction, it was an algebraically closed
field. Since our arguments work with a Noetherian integral domain, we assume K is a

Noetherian integral domain. Later we will add more assumptions). We define Λ∨ using

X∨ exactly in the same way as we defined Λ using X. As Λ, Waff acts on Λ∨. We put

Λ∨
K
= Λ∨ ⊗Z K, X∨

K
= X∨ ⊗Z K and R = Sym(Λ∨

K
). The algebra R is equipped with a

grading such that deg(Λ∨
K
) = 2. As for the case of Λ and X, for f ∈Λ∨, we put fA = f(A).

Then, f �→ fA gives an isomorphism Λ∨ →X∨ and this induces an isomorphism R→ S

for which we also write f �→ fA. The inverse of this map is denoted by g �→ gA.

Assumption 2.5. In the rest of this section, we assume the following.

(1) We have 2 ∈ K×, and any α∨ �= β∨ ∈ (Δ∨)+ are linearly independent in X∨
K/m for

any maximal ideal m⊂K. This is the GKM-property of the moment graph attached
to the finite Weyl group [Fie11, 9.1].

(2) The torsion primes of the root system (X∨,Δ∨,X,Δ) [JMW14, Definition 2.43] are

invertible in K.

Lemma 2.6. The representation X∨
K

of Wf is faithful.

Proof. If w ∈Wf fixes any element in X∨
K
, it fixes any image of α∈Δ. By the assumption,

Δ∨ →X∨
K

is injective. Therefore, w fixes any coroot. Hence, w is identity.

The image of α∨ ∈Δ∨ in X∨
K
is denoted by the same letter. We also put S = Sym(X∨

K
).

We give a grading to S via deg(X∨
K
) = 2. Set S∅ = S[(α∨)−1 | α ∈Δ]. For an S -module

M, set M∅ = S∅⊗S M . If M is an S -algebra, then M∅ is an S∅-algebra. Let S0 be a flat

commutative graded S -algebra. If M is an S0-module, then M∅ � S∅
0 ⊗S0

M is an S∅
0 -

module. We consider the category K̃′(S0) consisting of M = (M,{M∅
A}A∈A) such that

• M is a graded (S0,R)-bimodule which is finitely generated torsion-free as a left
S0-module.

• M∅
A is an (S∅

0,R)-bimodule such that mf = fAm for any m ∈M∅
A and f ∈R.

• M∅ =
⊕

A∈AM∅
A.

A morphism M → N in K̃′(S0) is an (S0,R)-bimodule ϕ homomorphism of degree zero
such that

ϕ(M∅
A)⊂

⊕
A′≥A

N∅
A′

for any A ∈ A. We put Hom•
˜K′(S0)

(M,N) =
⊕

iHom˜K′(S0)
(M,N(i)). This is a graded

(S0,R)-bimodule. For M ∈ K̃′(S0), we put suppA(M) = {A ∈ A |M∅
A �= 0}.

Remark 2.7. Let Ω ∈ A/Λaff . For any m ∈
⊕

A∈ΩM∅
A and f ∈ R, we have mf = fΩm.

The action of W ′
aff on A/Λaff factors through W ′

aff → Wf , and Wf acts on A/Λaff
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simply transitively. We have M∅ =
⊕

w∈Wf
(
⊕

A∈w(Ω)M
∅
A) and for m ∈

⊕
A∈w(Ω)M

∅
A,

mf = w(fΩ)m. Therefore, the decomposition of M∅ into
⊕

A∈w(Ω)M
∅
A is determined

by the (S0,R)-bimodule structure. Hence, any (S0,R)-bimodule homomorphism M →N

sends
⊕

A∈ΩM∅
A to

⊕
A∈ΩN∅

A. We will often use this fact.

Remark 2.8. Here, we do not assume that a morphism M → N in K̃′(S0) sends

M∅
A to N∅

A.

For each closed subset I ⊂A, we define MI =M ∩
⊕

A∈I M
∅
A. Set

(MI)
∅
A =

{
M∅

A (A ∈ I),

0 (A /∈ I).

By the following lemma, MI ∈ K̃′(S0) and therefore, M �→MI is an endofunctor of K̃′(S0).
We have a natural monomorphism MI →M in K̃′(S0).

Lemma 2.9. The module MI is an (R0,S)-submodule of M, and we have

(MI)
∅ =

⊕
A∈I

M∅
A.

We also have MI1∩I2 =MI1 ∩MI2 for any closed subsets I1,I2 ⊂A.

Proof. The first part is obvious, and for the second part, the left-hand side is contained
in the right-hand side. Take m from the right-hand side and let f ∈ S such that fm ∈M .

Then, we have fm∈MI , and m is in the left-hand side. The last assertion is obvious.

If S′
0 is a commutative flat graded S0-algebra, then for M ∈ K̃′(S0), the (S′

0,R)-

bimodule S′
0⊗S0

M has a decomposition (S′
0⊗S0

M)∅ �
⊕

A∈A((S
′
0)

∅⊗S∅
0
M∅

A), and this

decomposition gives a structure of an object in K̃′(S′
0). It is easy to see thatM �→S′

0⊗S0
M

is a functor K̃′(S0)→ K̃′(S′
0).

For each α ∈ Δ, set W ′
α,aff = {1,sα}�Zα ⊂ W ′

aff . We also put Sα = S[(β∨)−1 | β ∈
Δ \ {±α}] and Mα = Sα ⊗S M for any left S -module M. Again, if M is an S -algebra

then Mα is an Sα-algebra. If M ∈ K̃′(S0), then Mα ∈ K̃′(Sα
0 ) as mentioned above. Note

that, from our assumption,
⋂

α∈Δ+ Sα = S [AJS94, 9.1 Lemma]. We say M ∈ K̃(S0) if

M ∈ K̃′(S0) and satisfies the following two conditions which are taken from [FL15]. These
are important properties in our arguments.

(S) MI1∪I2 =MI1 +MI2 for any two closed subsets I1,I2.

(LE) For any α ∈Δ+, there exist M (Ω) ∈ K̃′(Sα
0 ) for all Ω ∈W ′

α,aff\A with an injective

morphism M (Ω) ↪→ Mα in K̃′(Sα
0 ) such that suppAM (Ω) ⊂ Ω and the induced

morphism
⊕

Ω∈W ′
α,aff\A

M (Ω) →Mα is an isomorphism in K̃′(Sα
0 ).

(S) stands for “sheaf” and (LE) stands for “local extension condition” [FL15,

Definition 5.4].

Let M ∈ K̃′(S0). If M
α =

⊕
Ω∈W ′

α,aff\A
(
⊕

A∈ΩM∅
A ∩Mα) for any α ∈ Δ, M satisfies

(LE). The converse is not true, in general. For example, assume #Δ > 1. Fix α ∈ Δ+.
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Take β ∈Δ+ \{α} and A ∈A. Define N ∈ K̃′(S) by N = {(f,g) | f,g ∈ S,f ≡ g(mod α)},
N∅

A = S∅⊕0, N∅
A−β = 0⊕S∅ and N∅

A′ = 0 for any A′ ∈A\{A,A−β} (these determine the

right R-action on N uniquely). Then, it is easy to see thatNα �=
⊕

Ω∈W ′
α,aff\A

(
⊕

A∈ΩN∅
A∩

Nα). Define N (Ω) ∈ K̃′(S) for Ω ∈W ′
α,aff\A as follows: N (W ′

α,affA) = Sα, (N (W ′
α,affA))∅A =

S∅, (N (W ′
α,affA))∅A′ = 0 for A′ ∈ A\{A}, N (W ′

α,aff(A−β)) = Sα, (N (W ′
α,aff(A−β)))∅A−β = S∅,

(N (W ′
α,aff(A−β)))∅A′ = S∅ for A′ ∈A\{A−β} and N (Ω) = 0 for Ω �=W ′

α,affA,W
′
α,aff(A−β).

Then, we have suppAN (Ω) ⊂Ω. We define N (W ′
α,affA) →Nα (resp. N (W ′

α,aff(A−β)) →Nα)

by f �→ (αf,0) (resp. f �→ (f,f)). Then,
⊕

Ω∈W ′
α,aff\A

N (Ω) →Nα is an isomorphism. We

can also easily verify that Nγ =
⊕

Ω∈W ′
γ,aff\A

(
⊕

A∈ΩN∅
A ∩Nγ) for any γ ∈ Δ+ \ {α}.

Hence, N satisfies (LE).

We have the following. M satisfies (LE) if and only if for any α ∈ Δ, there exists

N ∈ K̃′(Sα
0 ) which is isomorphic to Mα and satisfies N =

⊕
Ω∈W ′

α,aff\A
(
⊕

A∈ΩN∅
A∩N).

Lemma 2.10. Let M ∈ K̃′(S0), α ∈Δ and A ∈ A. Assume that suppA(M) ⊂W ′
α,affA.

Then, M satisfies (S). In particular, if M satisfies (LE), then Mα satisfies (S).

Proof. Set Ω =W ′
α,affA and let I1,I2 ⊂A be closed subsets. We have Ω = {A,α ↑ A,α ↑

(α ↑ A), . . . }∪{α ↓ A,α ↓ (α ↓ A), . . . } and Ω is a totally ordered subset of A. Since Ω is
totally ordered, I1∩Ω⊂ I2∩Ω or I2∩Ω⊂ I1∩Ω. We may assume I1∩Ω⊂ I2∩Ω. We can

take closed subsets I ′1 and I ′2 such that I ′1 ⊂ I ′2, I
′
1∩Ω= I1∩Ω and I ′2∩Ω= I2∩Ω. Then,

we have MI′
1
=MI1 , MI′

2
=MI2 and MI′

1∪I′
2
=MI1∪I2 . Hence, we may assume I1 = I ′1 and

I2 = I ′2. In this case, (S) obviously holds.

Let K ⊂A be a locally closed subset; namely, K is the intersection of a closed subset I

with an open subset J. It is easy to see that, if M ∈ K̃′(S0) satisfies (S), then MI/MI\J �
MI′/MI′\J ′ naturally for closed subsets I,I ′ and open subsets J,J ′ such that K = I∩J =

I ′∩J ′. We define MK =MI/MI\J for M ∈ K̃(S0). By Lemma 2.9, we have⊕
A∈K

M∅
A

∼−→M∅
K .

By putting (MK)∅A equal to the image of M∅
A in M∅

K by this isomorphism, we have an

object MK of K̃′(S0). The following lemma is obvious.

Lemma 2.11. We have suppA(MK) = suppA(M) ∩K for any locally closed subset
K ⊂A.

Lemma 2.12. Let K1,K2 ⊂A be locally closed subsets. If M ∈ K̃(S0), then (MK1
)K2

�
MK1∩K2

Proof. The proof is divided into 4 steps.
(1) Assume that both K1,K2 are closed. Then, the lemma follows from the definitions.

(2) Assume that K1 is open and K2 is closed. Set I1 =A\K1. Then, we have

(MK1
)K2

=M/MI1 ∩
⊕
A∈K2

(M/MI1)
∅
A.
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Note that MK2
/(MK2

∩MI1) =MK2
/MK2∩I1 =MK1∩K2

. There is a canonical embedding

from MK2
/(MK2

∩MI1) to (MK1
)K2

. Let m∈M such that m+MI1 ∈
⊕

A∈K2
(M/MI1)

∅
A.

Then, M∅
A-component mA of m is 0 for A /∈ I1∪K2. Hence, m ∈MI1∪K2

=MI1 +MK2
.

Therefore, the canonical embedding is surjective. We get the lemma.
(3) Assume that K2 is closed. Take a closed subset I1 and an open subset J1 such that

K1 = I1∩J1. Then, by (2), (MJ1
)I1 �MK1

. Hence, (MK1
)K2

� ((MJ1
)I1)K2

= (MJ1
)I1∩K2

by (1). This is isomorphic to MJ1∩I1∩K2
=MK1∩K2

by (2).
(4) Now we prove the lemma in general. Let Ii be a closed subset and Ji be an open

subset such that Ki = Ii∩Ji and put Jc
i =A\Ji for i= 1,2. Then,

(MK1
)K2

= (MK1
)I2/(MK1

)I2∩Jc
2
�MK1∩I2/MK1∩I2∩Jc

2

by (3). We have MK1∩I2 =MI1∩I2/MI1∩I2∩Jc
1
and MK1∩I2∩Jc

2
=MI1∩I2∩Jc

2
/MI1∩I2∩Jc

2∩Jc
1
.

Hence,

(MK1
)K2

�MI1∩I2/(MI1∩I2∩Jc
1
+MI1∩I2∩Jc

2
).

Since MI1∩I2∩Jc
1
+MI1∩I2∩Jc

2
= M(I1∩I2∩Jc

1 )∪(I2∩I2∩Jc
2 )

= M(I1∩I2)\(J1∩J2), we get the
lemma.

Lemma 2.13. If M ∈ K̃(S0), then MK ∈ K̃(S0).

Proof. Take a closed subset I and an open subset J such that K = I ∩J .

We prove MK satisfies (S). Let I1,I2 be closed subsets. Since (MK)Ii = MK∩Ii is a

quotient of MI∩Ii , it is sufficient to prove that MI∩I1 ⊕MI∩I2 → (MK)I1∪I2 is surjective.

The module (MK)I1∪I2 =MK∩(I1∪I2) is a quotient of MI∩(I1∪I2), and since MI∩(I1∪I2) =
MI∩I1 +MI∩I2 , the map is surjective.

We prove MK satisfies (LE). We may assume M =
⊕

Ω∈W ′
α,aff\A

(
⊕

A∈ΩM∅
A ∩Mα).

Let m ∈ Mα
I . Then, for each Ω ∈ W ′

α,aff\A, we have mΩ ∈ Mα ∩
⊕

A∈ΩM∅
A such that

m=
∑

mΩ. Then, for each A ∈ A, we have mA = (mΩ)A, where Ω is the unique W ′
α,aff -

orbit containing A. Therefore, since m ∈ Mα
I , we have mΩ ∈ Mα

I . Hence, mΩ ∈ Mα
I ∩⊕

A∈Ω(MI)
∅
A. Namely, MI satisfies (LE). Since MK is a quotient of MI , it also satisfies

(LE).

2.3. Standard filtration

Note that {A}= {A′ ∈ A | A′ ≥ A}∩{A′ ∈ A | A′ ≤ A} is locally closed. Let S0 be a flat

commutative graded S -algebra. We say that an object M of K̃(S0) admits a standard
filtration if M{A} is a graded free S0-module for any A ∈ A. Let K̃Δ(S0) be the full

subcategory of K̃(S0) consisting of an object M which admits a standard filtration and

for which suppA(M) is finite. By Lemma 2.12, if M ∈ K̃Δ(S0), then MK ∈ K̃Δ(S0) for
any locally closed subset K ⊂A.

Lemma 2.14. Let M1, . . . ,Ml ∈ K̃(S0) and assume that suppA(M1), . . . , suppA(Ml) are

all finite. Let I ⊂A be a closed subset and A ∈ I such that I \{A} is closed. Then, there

exist closed subsets I0 ⊂ I1 ⊂ ·· · ⊂ Ir and k ∈ {1, . . . ,r} such that #(Ij \Ij−1) = 1 for any
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j = 1, . . . ,r, Ik ∩ (
⋃

i suppA(Mi)) = I ∩ (
⋃

i suppA(Mi)), Ik−1 = Ik \ {A}, (Mi)I0 = 0 and

(Mi)Ir =M for any i= 1, . . . ,l. In particular, we have (Mi)I � (Mi)Ik for all i= 1, . . . ,l.

Proof. There exist A−
0 ,A

+
0 such that suppA(Mi) ⊂ [A−

0 ,A
+
0 ] for any i = 1, . . . ,l by

[Lus80, Proposition 3.7]. Put I0 = {A′ ∈A |A′ ≮A+
0 }∩ I. We enumerate the elements in

(I \{A})∩ [A−
0 ,A

+
0 ] (resp. [A

−
0 ,A

+
0 ]\I) as {A1, . . . ,Ak−1} (resp. {Ak+1, . . . ,Ar}) such that

Ai ≥ Aj implies i ≤ j. Put Ak = A. Then, it is easy to see that Ii = I0 ∪{A1, . . . ,Ai} is
closed and satisfies the conditions of the lemma.

Lemma 2.15. Let M ∈ K̃Δ(S0), and let K be a locally closed subset. Then MK is graded

free as a left S0-module.

Proof. Since MK ∈ K̃Δ(S0), we may assume K =A. Take closed subsets I0 ⊂ I1 ⊂ ·· · ⊂ Ir
such that Ii+1 \Ii = {Ai}, MI0 = 0 and MIr =M . Then, MIi+1

/MIi =M{Ai} is a graded

free S0-module. Hence, MIr/MI0 =M is also graded free.

Finally, we define the category K̃P (S0), which plays an important role later. The

definitions are taken from [FL15, Lemma 4.11].

Definition 2.16. We say that a sequence M1 → M2 → M3 in K̃Δ(S0) satisfies (ES) if
the composition M1 →M2 →M3 is zero and

0→ (M1){A} → (M2){A} → (M3){A} → 0

is exact for any A ∈ A.

We define the category K̃P (S0)⊂ K̃Δ(S0) as follows: M ∈ K̃P (S0) if and only if for any

sequence M1 →M2 →M3 in K̃Δ(S0) which satisfies (ES), the induced sequence

0→Hom•
˜KΔ(S0)

(M,M1)→Hom•
˜KΔ(S0)

(M,M2)→Hom•
˜KΔ(S0)

(M,M3)→ 0

is exact.

Lemma 2.17. Assume that M1,M2,M3 ∈ K̃(S0) satisfy #suppA(Mi) < ∞ (i = 1,2,3),

and the sequence M1 →M2 →M3 satisfies (ES). Then, 0→ (M1)K → (M2)K → (M3)K →
0 is exact for any locally closed subset K.

Proof. Replacing Mi with (Mi)K for i = 1,2,3, we may assume K = A. We can take

closed subsets I0 ⊂ I1 ⊂ ·· · ⊂ Ir such that (Mi)I0 = 0, (Mi)Ir =Mi and #(Ij+1 \ Ij) = 1

for i = 1,2,3 and j = 0, . . . ,r, as in Lemma 2.14. Then, the exactness of 0 → (M1)Ij →
(M2)Ij → (M3)Ij → 0 follows by induction on j and a standard diagram argument.

Lemma 2.18. Let M ∈ K̃Δ(S0), and I1 ⊃ I2 are closed subsets of A. Then, MI2 →MI1 →
MI1/MI2 satisfies (ES).

Proof. Note that MI1/MI2 =MI1\I2 . The lemma follows from Lemma 2.12.

We put K̃′ = K̃′(S), K̃ = K̃(S), K̃Δ = K̃Δ(S) and K̃P = K̃P (S). We also put (K̃′)∗ =

K̃′(S∗), K̃∗ = K̃(S∗), K̃∗
Δ = K̃Δ(S

∗) and K̃∗
P = K̃P (S

∗) for ∗ ∈Δ∪{∅}.
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2.4. Hecke action

For λ ∈ ΛK and f ∈ Λ∨
K
, we put 〈λ,f〉 = fA(λA) for A ∈ A. It is easy to see

that this does not depend on A and gives an isomorphism Λ∨
K
� HomK(ΛK,K). Let

s ∈ Saff , and we define αs ∈ ΛK and α∨
s ∈ Λ∨

K
as follows: let A ∈ A and α ∈ Δ+

such that sα,n = As for some n ∈ Z. Then, we put αs = αA and α∨
s = (α∨)A.

These depend on a choice of A and α. For each s ∈ Saff , we fix such A and

α and define αs,α
∨
s .

Lemma 2.19. The pair (αs,α
∨
s ) does not depend on A,α up to sign.

Proof. Let A′ ∈A and take β ∈Δ+ andm∈Z such that A′s= sβ,mA′. Take x∈W ′
aff such

that A′ = xA. Then, A′s= xAs= xsα,nA. Since the action of W ′
aff on XR preserves the set

{{λ ∈XR | 〈λ,α∨〉= n} | α ∈Δ,n ∈ Z}, there exists (γ,k) ∈Δ×Z such that xsα,n = sγ,kx.

Moreover, γ ∈ {±x(α)}, where x∈Wf is the image of x under W ′
aff →Wf . We may assume

γ=x(α). We have A′s= sγ,kxA= sγ,kA
′. Hence, sγ,k = sβ,m and therefore, β= εγ= εx(α)

for ε= 1 or ε=−1. We have βA′
= εx(α)xA = εαA and (β∨)A

′
= ε(α∨)A.

We have that (ΛK,{αs}s∈Saff
,{α∨

s }s∈Saff
) is a realization which satisfies Demazure

surjectivity [EW16, Definition 3.1]. Let SBimod be the category introduced in [Abe21].

We remark that [Abe21, Assumption 3.2] is satisfied in this case by [Abe20a, Theorem

1.2, Proposition 3.7]. Set R∅ =R[((α∨)A)−1 | α ∈Δ] for A ∈A. It is easy to see that this

does not depend on A. We put B∅ =R∅⊗RB for B ∈ SBimod.
Recall that we have an object Bs ∈ SBimod. Set Rs = {f ∈ R | s(f) = f}. As an

R-bimodule, Bs =R⊗Rs R(1)� {(f,g) ∈R2 | f ≡ g(mod αs)} and we have the decompo-

sition of B∅
s =

⊕
w∈W (Bs)

∅
w, where

(Bs)
∅
e =R∅(δs⊗1−1⊗s(δs)),

(Bs)
∅
s =R∅(δs⊗1−1⊗ δs),

(Bs)
∅
w = 0 (w �= e,s).

Here, δs ∈Λ∨
K
is chosen such that 〈αs,δs〉= 1. The decomposition does not depend on our

choice of δs.

Lemma 2.20. Let B ∈ SBimod. Then, there exists a decomposition B∅ =
⊕

x∈Waff
B∅

x

such that Frac(R)⊗R∅ B∅
x � B

Frac(R)
x . Here, B

Frac(R)
x is the Frac(R)-bimodule as in the

definition of SBimod.

Proof. Assume that B1 ∈ SBimod is a direct summand of B ∈ SBimod, and let

e ∈ EndSBimod(B) be the idempotent such that B1 = e(B). If B satisfies the lemma,

then by putting (B1)
∅
x = e(B∅

x), we see that B1 also satisfies the lemma. Therefore, we
may assume B = Bs1 ⊗·· ·⊗Bsl for si ∈ Saff . Note that for B = Bs, the lemma holds as

we have seen in the above. Hence, it is sufficient to prove that if B1,B2 satisfy the lemma,

then B =B1⊗B2 also satisfies the lemma.
For x∈Waff and b∈ (B1)

∅
x, we have bf = x(f)b for f ∈R. Since {(α∨)A |α∈Δ} is stable

under the action of x, the formula says that (B1)
∅
x is also a right R∅-module. Therefore,

B∅
1 is also a right R∅-module. Hence, R∅⊗RB1⊗RB2 �B∅

1 ⊗RB2 �B∅
1 ⊗R∅ R∅⊗RB2 �

https://doi.org/10.1017/S1474748023000130 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000130


A Hecke action on G1T -modules 1137

B∅
1 ⊗R∅ B∅

2 . We put B∅
x =

⊕
yz=x(B1)

∅
y⊗R∅ (B2)

∅
z. Then, we get B

∅ =
⊕

x∈Waff
B∅

x and we

have Frac(R)⊗R∅ B∅
x �B

Frac(R)
x .

Let S0 be a flat commutative graded S -algebra. For M ∈ K̃′(S0) and B ∈ SBimod, we

define M ∗B ∈ K̃′(S0) by

• As an (S0,R)-bimodule, M ∗B =M ⊗RB.
• We put (M ∗B)∅A =

⊕
x∈Waff

M∅
Ax−1 ⊗R∅ B∅

x.

Let f : M →N be a morphism in K̃′(S0). We have f(M∅
Ax−1)⊂

⊕
A′∈Ax−1+ZΔ,A′≥Ax−1 N∅

A′ .

By Lemma 2.3, for A′ ∈ Ax−1 + ZΔ, A′ ≥ Ax−1 if and only if A′x ≥ A. Therefore,⊕
A′∈Ax−1+ZΔ,A′≥Ax−1 N∅

A′ =
⊕

A′∈A+ZΔ,A′≥AN∅
A′x−1 by replacing A′x with A′. Hence,

(f ⊗ id)(M∅
Ax−1 ⊗B∅

x)⊂
⊕

A′∈A+ZΔ,A′≥A

N∅
A′x−1 ⊗B∅

x ⊂
⊕
A′≥A

(N ∗B)∅A′ .

Therefore, (f ⊗ id) gives a morphism in K̃′(S0). Similarly, if f : B1 → B2 is a morphism
in SBimod, then id⊗f : M ∗B1 →M ∗B2 is a morphism in K′(S0).

For each B ∈ SBimod, B∅
x is free as a left R∅-module. We put suppWaff

(B) = {x∈Waff |
B∅

x �= 0}. The following lemma follows.

Lemma 2.21. We have suppA(M ∗B) = {Ax |A ∈ suppA(M),x ∈ suppWaff
(B)}.

Consider M ⊗R Bs = M ⊗Rs R(1) = M(1)⊗ 1⊕M(1)⊗ δs. In (M ⊗R Bs)
∅ = M∅(1)⊗

1⊕M∅(1)⊗ δs, we have

(M ∗Bs)
∅
A = {mδs⊗1−m⊗s(δs) |m ∈M∅

A}⊕{mδs⊗1−m⊗ δs |m ∈M∅
As}

�M∅
A⊕M∅

As.
(2.1)

The isomorphism is given by m⊗f �→ (mf,ms(f)). Note that the last isomorphism is an

isomorphism as left S∅
0 -modules. As right R-modules, if m ∈ (M ∗Bs)

∅
A corresponds to

(m1,m2) ∈M∅
A⊕M∅

As, then mf corresponds to (m1f,m2s(f)).

Proposition 2.22. Let M,N ∈ K̃′(S0). We have Hom•
˜K′(S0)

(M,N ∗Bs)�Hom•
˜K′(S0)

(M ∗
Bs,N).

Proof. Take δ ∈ Λ∨
K
such that 〈αs,δ〉= 1. As (S0,R)-bimodules, we have N ∗Bs =N ⊗Rs

R(1) and M ∗Bs = M ⊗Rs R(1). For ϕ : M ⊗Rs R(1) → N , define ψ : M → N ⊗Rs R(1)

by ψ(m) = ϕ(mδ⊗ 1)⊗ 1−ϕ(m⊗ 1)⊗ s(δ). We know that if ϕ is an (S0,R)-bimodule
homomorphism, ψ is also an (S0,R)-bimodule homomorphism and it induces a bijection

between the spaces of (S0,R)-bimodule homomorphisms (ee, for example, [Lib08, Lemma

3.3]). We prove that ϕ is a morphism in K̃′(S0) if and only if ψ is a morphism in K̃′(S0).
Set a(m) = mδ⊗ 1−m⊗ s(δ) and b(m) = ms(δ)⊗ 1−m⊗ s(δ) for m ∈ M∅. We also

define a′(n),b′(n) ∈ N∅⊗Rs R for n ∈ N∅ in the same way. Then, we have (M ∗Bs)
∅
A =

a(M∅
A)+ b(M∅

As) and the same for N by (2.1) for A ∈ A.
Let A ∈ A and m ∈ M∅

A. By the definition, ψ(m) = ϕ(a(m)) ⊗ 1 + b′(ϕ(m ⊗ 1)).

Since a(m) ∈ (M ∗Bs)
∅
A, ϕ(a(m))⊗ 1 = (αs)

−1
A ϕ(a(m))αs ⊗ 1 = (αs)

−1
A a′(ϕ(a(m)))−

(αs)
−1
A b′(ϕ(a(m))). However, we have m ⊗ 1 = (αs)

−1
A mαs ⊗ 1 = (αs)

−1
A a(m) −
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(αs)
−1
A b(m). Since ϕ and b′ are left S0-equivariant, we get ψ(m) = (αs)

−1
A a′(ϕ(a(m)))−

(αs)
−1
A b′(ϕ(b(m))).

Assume that ϕ is a morphism in K̃′(S0). Then, for any m∈M∅
A, ϕ(a(m))∈

⊕
A′≥AN∅

A′ .

Hence, a′(ϕ(a(m))) ∈
⊕

A′≥A(N ∗Bs)
∅
A′ . Since b(m) ∈ (M ∗Bs)

∅
As, we have ϕ(b(m)) ∈⊕

A′≥As,A′∈As+ZΔN∅
A′ . Therefore, b′(ϕ(b(m))) ∈

⊕
A′≥As,A′∈As+ZΔ(N ∗Bs)

∅
A′s. If A′ ∈

As+ZΔ satisfies A′ ≥As, since s : As+ZΔ→A+ZΔ preserves the order, we get A′s≥A.
Hence, b′(ϕ(b(m))) ∈

⊕
A′≥A(N ∗Bs)

∅
A′ . Therefore, ψ is a morphism in K̃′(S0).

However, assume that ψ is a morphism in K̃′(S0). Consider the map Φ: N ⊗Rs R→N

defined by n⊗f �→ nf . Then, Φ(a′(n)) = nαs and Φ(b′(n)) = 0. Therefore, Φ((N ∗Bs)
∅
A) =

Φ(a′(N∅
A)+b′(N∅

As))⊂N∅
A. Letm∈M∅

A. Then applying Φ to ψ(m)= (αs)
−1
A a′(ϕ(a(m)))−

(αs)
−1
A b′(ϕ(b(m))), we get (αs)

−1
A ϕ(a(m))αs ∈

⊕
A′∈A+ZΔ,A′≥AM∅

A′ . Hence, ϕ(a(M∅
A))⊂⊕

A′≥AN∅
A′ . Similarly, using N⊗Rs R→N defined by n⊗f �→ ns(f), we get ϕ(b(M∅

As))⊂⊕
A′≥AN∅

A′ . Since (M ∗Bs)
∅
A = a(M∅

A)+ b(M∅
As), ϕ is a morphism in K̃′(S0).

Lemma 2.23. Let M ∈ K̃′(S0).

(1) For α ∈Δ, s ∈ Saff and Ω ∈W ′
α,aff\A, set M (Ω) =Mα∩

⊕
A∈ΩM∅

A. Then, we have

the following.
(a) If Ωs=Ω, then (M ∗Bs)

(Ω) �M (Ω) ∗Bs.

(b) If Ωs �=Ω, then the right action of αs on M (Ω) is invertible and we have

(M ∗Bs)
(Ω) �M (Ω)⊗ (δs⊗1−1⊗s(δs))⊕M (Ωs)⊗ (δs⊗1−1⊗ δs)

where 〈αs,δs〉= 1.

(2) If M ∈ K̃′(S0) satisfies (LE), then M ∗B also satisfies (LE) for any B ∈ SBimod.

Proof. We have

(M ∗Bs)
(Ω) =Mα ∗Bs∩

⊕
A∈Ω

(M ∗Bs)
∅
A

=Mα ∗Bs∩
(⊕

A∈Ω

M∅
A⊗ (Bs)

∅
e ⊕

⊕
A∈Ω

M∅
As⊗ (Bs)

∅
s

)
.

If Ωs=Ω, then in the second direct sum, we can replace As with A. Therefore,

(M ∗Bs)
(Ω) =Mα ∗Bs∩

(⊕
A∈Ω

M∅
A⊗ (Bs)

∅
e ⊕

⊕
A∈Ω

M∅
A⊗ (Bs)

∅
s

)
=Mα ∗Bs∩

⊕
A∈Ω

M∅
A⊗ (Bs)

∅

= (Mα∩
⊕
A∈Ω

M∅
A)⊗Bs

=M (Ω) ∗Bs.

Assume that Ωs �=Ω and take A∈Ω. Set β∨ = (α∨
s )A. Then the assumption Ωs �=Ω tells

us that β∨ �=±α∨. Hence, β∨ is invertible in Sα. The element sα(β
∨) is also invertible.
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Let δ ∈X∨
K

such that 〈α,δ〉 = 1. For m ∈M (Ω), there exists m1 ∈
⊕

A′∈A+ZαM
∅
A′ and

m2 ∈
⊕

A′∈s(α,0)A+ZαM
∅
A′ such that m = m1 +m2. For each f ∈ R, m1f = fAm1 and

m2f = sα(fA)m2. By calculations using this, we have(
1

β∨m+
〈α,β∨〉
βsα(β∨)

(δm−mδA)

)
α∨
s =m.

Hence, the right action of α∨
s is invertible.

Therefore, we have (M ∗ Bs)
(Ω) = (M ∗ Bs[α

−1
s ])(Ω) where Bs[(α

∨
s )

−1] = Bs ⊗R

R[(α∨
s )

−1]. Since Bs[(α
∨
s )

−1] = R[(α∨
s )

−1](δs⊗ 1− 1⊗ s(δs))⊕R[(α∨
s )

−1](δs⊗ 1− 1⊗ δs)

with R[(α∨
s )

−1](δs ⊗ 1− 1⊗ s(δs)) ⊂ (Bs)
∅
e and R[(α∨

s )
−1](δs ⊗ 1− 1⊗ δs) ⊂ (Bs)

∅
s, the

definition of (M ∗Bs)
(Ω) implies (b).

(2) Fix α ∈ Δ. By replacing Mα with an object which is isomorphic to Mα, we

may assume Mα =
⊕

Ω∈W ′
α,aff\A

(
⊕

A∈ΩM∅
A ∩Mα). Let {Ωi} be a complete set of

representatives for {Ω ∈W ′
α,aff\A | Ωs �=Ω}/{e,s}. Then, we have⊕

Ω∈W ′
α,aff\A

(Mα ∗Bs)
(Ω) =

⊕
Ωs=Ω

(M ∗Bs)
(Ω)⊕

⊕
i

((M ∗Bs)
(Ωi)⊕ (M ∗Bs)

(Ωis))

=
⊕
Ωs=Ω

M (Ω) ∗Bs⊕
⊕
i

((M ∗Bs)
(Ωi)⊕ (M ∗Bs)

(Ωis)).

From the argument of the proof of (1)(b), we have M (Ωi)⊗ (δs⊗1−1⊗s(δs))⊕M (Ωi)⊗
(δs ⊗ 1− 1⊗ δs) = M (Ωi)⊗Bs[α

−1
s ] = M (Ωi)⊗Bs. Therefore, by (1)(b), ((M ∗Bs)

(Ωi)⊕
(M ∗Bs)

(Ωis)) =M (Ωi)⊗Bs⊕M (Ωis)⊗Bs. Hence,⊕
Ω∈W ′

α,aff\A
(M ∗Bs)

(Ω) =
⊕
Ωs=Ω

M (Ω) ∗Bs⊕
⊕
i

(M (Ωi) ∗Bs⊕M (Ωis) ∗Bs)

=
⊕

Ω∈W ′
α,aff\A

M (Ω) ∗Bs

=Mα ∗Bs.

Hence, M ∗Bs satisfies (LE).

2.5. An example

We give an example of our category. Let (X = Z,Δ= {α= 2},X∨ = Z,Δ∨ = {α∨ = 1}) be
the root system of type A1. The Weyl group Wf is {e,sα}. Let s1 ∈ Saff (resp. s0 ∈ Saff)
be the element corresponding to W ′

aff{0} (resp. W ′
aff{1}). Then, Saff = {s0,s1}. The set

of alcoves is given by A = {An = {r ∈ R = X ⊗Z R | n < r < n+1} | n ∈ Z}. We have

Ans1 = An−1 if n is even and Ans1 = An+1 if n is odd. The algebra S = Sym(X∨
K
) is

isomorphic to the polynomial ring K[α∨].
Define QAn

∈ K̃′ = K̃′(S) as follows. As an (S,R)-bimodule, we define QAn
= {(f,g) ∈

S2 | f ≡ g(mod α∨)}. Here, S acts naturally and r ∈ R acts by (f,g)r = (rAn
f,rAn+1

g).
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We put (Q∅
An

)An
= S∅ ⊕ 0, (Q∅

An
)An+1

= 0⊕S∅ and (Q∅
An

)Am
= 0 for m �= n,n+1 (we

denote this object QAn,α later in 3.5).

We have suppA(QAn
) = {An,An+1}. We prove QA0

∗Bs1 � QA−1
⊕QA1

. We have

suppA(QA0
∗Bs1) = {A0,A1,A0s1,A1s1}= {A−1,A0,A1,A2}.

Below, by an isomorphism f �→ fA0
, we identify R� S =K[α∨]. Hence, QAn

= {(a,b) ∈
K[α∨]2 | a≡ b(mod α∨)}. Put s= sα which acts on K[α∨]. The right actions of R�K[α∨]
on QA0

,QA1
,QA−1

are given as follows: for (a,b) ∈QA0
, we have (a,b)f = (af,bs(f)) and

for (c,d) ∈QA1
,QA−1

, we have (c,d)f = (cs(f),df).

We have Bs1 � {(f,g) ∈ K[α∨] | f ≡ g(mod α∨)}, (B∅
s1)e = K[α∨]∅ ⊕ 0 and (B∅

s1)s1 =

0⊕K[α∨]∅ where K[α∨]∅ =K[(α∨)±1]. We have

(QA0
∗Bs1)

∅
A−1

= (K[α∨]∅⊕0)⊗ (0⊕K[α∨]∅),

(QA0
∗Bs1)

∅
A0

= (K[α∨]∅⊕0)⊗ (K[α∨]∅⊕0),

(QA0
∗Bs1)

∅
A1

= (0⊕K[α∨]∅)⊗ (K[α∨]∅⊕0),

(QA0
∗Bs1)

∅
A2

= (0⊕K[α∨]∅)⊗ (0⊕K[α∨]∅).

These correspond to A−1 =A0s1, A0 =A0e, A1 =A1e and A2 =A1s1, respectively.

We define p1 : QA0
∗Bs →QA−1

by p1((a,b)⊗ (f,g)) = (ag,af) and p2 : QA0
∗Bs →QA1

by p2((a,b)⊗ (f,g)) = ((bs(f)−ag)/α∨,(bs(g)−af)/α∨). In the definition of p2, we note

that bs(f)≡ ag,bs(g)≡ af(mod α∨) since a≡ b,s(f)≡ f,s(g)≡ g,f ≡ g(mod α∨). These
are K[α∨]-bimodule homomorphisms, and from the above description, p1 is a morphism
in K̃′. We have p2((1,0)⊗ (0,1)) = (−1/α∨,0). Hence, p2((QA0

∗Bs1)
∅
A−1

)⊂ (QA1
)∅A1

. We

also have p2((QA0
∗Bs1)

∅
A1

) ⊂ (QA1
)∅A1

, p2((QA0
∗Bs1)

∅
A0

),p2((QA0
∗Bs1)

∅
A2

) ⊂ (QA1
)∅A2

.

Therefore, p2 is also a morphism in K̃′.
We define i1 : QA−1

→ QA0
∗Bs1 by i1(a,b) = (b,a)⊗ (1,1)+ ((a− b)/α∨,(a− b)/α∨)⊗

(0,α∨). In (QA0
∗ Bs1)

∅, i1 is given by i1(a,b) = (b,a) ⊗ (1,0) + (a,b) ⊗ (0,1). It is

easy to see that i1 is a left K[α∨]-module homomorphism. For f ∈ K[α∨], we have

i1(a,b)f = (b,a)⊗(f,0)+(a,b)⊗(0,s(f)) = (b,a)f⊗(1,0)+(a,b)s(f)⊗(0,1) = (bf,as(f))⊗
(1,0)+ (as(f),bf)⊗ (0,1) = i1(as(f),bf) = i1((a,b)f). Therefore, i1 is a K[α∨]-bimodule

homomorphism. We can also check that i1 is a morphism in K̃′. We also define i2 : QA1
→

QA0
∗Bs1 by i2(a,b) = (0,α∨)⊗ (s(a),s(b)). Then, it is straightforward to check that i2

is a morphism in K̃′. Finally, straightforward calculations imply p1 ◦ i1 = id, p2 ◦ i2 = id,

i1 ◦p1+ i2 ◦p2 = id. Hence, QA0
∗Bs1 �QA−1

⊕QA1
.

Note that the decomposition QA0
∗Bs1 = Im i1⊕ Im i2 is not compatible with respect

to the decomposition over K[α∨]∅ since i1 is not compatible with the decomposition.

2.6. Hecke actions preserve K̃Δ

We assume that K is local. Then, since any direct summand of a graded free S -module

is also graded free, a direct summand of an object in K̃Δ is also in K̃Δ. The aim of this

subsection is to prove the following proposition.

Proposition 2.24. We have K̃Δ ∗SBimod⊂ K̃Δ.
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We fixM ∈ K̃Δ and s∈Saff in this subsection and proveM ∗Bs ∈ K̃Δ. The most difficult

part is to prove that M ∗Bs satisfies (S). First we remark that, since M ∗Bs satisfies (LE)

by Lemma 2.23, (M ∗Bs)
α satisfies (S) by Lemma 2.10.

Lemma 2.25. If I is a closed s-invariant subset of A, then (M ∗Bs)I �MI ∗Bs.

Proof. We have (M ∗Bs)
∅
I =

⊕
A∈I M

∅
A ⊗ (Bs)

∅
e ⊕

⊕
A∈I M

∅
As ⊗ (Bs)

∅
s. Since I is s-

invariant,
⊕

A∈I M
∅
As ⊗ (Bs)

∅
s =

⊕
A∈I M

∅
A ⊗ (Bs)

∅
s. Hence, (M ∗Bs)

∅
I =

⊕
A∈I M

∅
A ⊗

((Bs)
∅
e ⊕ (Bs)

∅
s) =

⊕
A∈I M

∅
A⊗B∅

s =M∅
I ⊗B∅

s .

Lemma 2.26. Let A∈A such that As<A and I (resp. J) be an s-invariant closed (resp.

open) subset such that I ∩J = {A,As}. Set N =M ∗Bs. Then, we have

NI\{As}/NI\{A,As} �M{A,As}(−1), NI/NI\{As} �M{A,As}(1).

as left S-modules.

Proof. First we note that I \ {A,As} = I \J and I \ {As} = (I \J)∪{A′ ∈ A | A′ ≥ A}
are closed. We have an exact sequence

0→NI\{As}/NI\{A,As} →NI/NI\{A,As} →NI/NI\{As} → 0. (2.2)

We have (NI/NI\{A,As})
∅ =N∅

A⊕N∅
As and we have the following commutative diagram:

0 (NI\{As}/NI\{A,As})
∅ (NI/NI\{A,As})

∅ (NI/NI\{As})
∅ 0

0 N∅
A N∅

A⊕N∅
As N∅

As 0.

∼ ∼ ∼

Therefore, NI\{As}/NI\{A,As} = (NI/NI\{A,As})∩ (N∅
A⊕0).

Set L=NI/NI\{A,As}. By Lemma 2.25, L�M{A,As}⊗Rs R(1). We have L∅ =L∅
A⊕L∅

As.

We determine L∩ (L∅
A⊕0).

By (2.1), we have L∅
A � M∅

A ⊕M∅
As and L∅

As � M∅
As ⊕M∅

A. In general, we write mA′

for the image of m ∈ M in M∅
A′ , where A′ ∈ A. The image of m1 ⊗ 1+m2 ⊗ δ ∈ L =

M{A,As}⊗Rs R(1) in each direct summand is

m1,A+m2,Aδ ∈M∅
A ⊂ L∅

A,

m1,As+m2,Ass(δ) ∈M∅
As ⊂ L∅

A,

m1,As+m2,Asδ ∈M∅
As ⊂ L∅

As,

m1,A+m2,As(δ) ∈M∅
A ⊂ L∅

As.

Therefore, m1 ⊗ 1+m2 ⊗ δ ∈ L∅
A if and only if m1,As +m2,Asδ = 0, m1,A +m2,As(δ) =

0. Note that m2,Asδ = (s(δ))Am2,As and m2,As(δ) = (s(δ))Am2,A. Therefore, (m1 +

(s(δ))Am2)A′ = 0 for A′ =A,As. Hence, m1+(s(δ))Am2 = 0. Therefore, we have

L∩ (L∅
A⊕0) = {m2⊗ δ− (s(δ))Am2⊗1 |m2 ∈M{A,As}}(1)

which is isomorphic to M{A,As}(−1).
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The map L�M{A,As}⊗Rs R(1)�m⊗f �→ (s(f))Am∈M{A,As}(1) is surjective and, by

the above argument, the kernel is L∩ (L∅
A⊕ 0) � NI\{As}/NI\{A,As}. Therefore, by the

exact sequence (2.2), we have NI/NI\{As} �M{A,As}(1).

Lemma 2.27. Let A ∈A such that As <A, I is a closed subset and J is an open subset.
Then, we have the following.

(1) If I ∩J = {As}, then (M ∗Bs)I/(M ∗Bs)I\J �M{A,As}(1) as left S-modules.

(2) If I ∩J = {A}, then (M ∗Bs)I/(M ∗Bs)I\J �M{A,As}(−1) as left S-modules.

Proof. Set N =M ∗Bs ∈ K̃′.
(1) Put I1 = {A′ ∈ A | A′ ≥ As}. This is s-invariant. Since I is closed and contains

As, we have I1 ⊂ I. Hence, NI1/NI1\{As} ↪→ NI/NI\{As}. By Lemma 2.26, we have
NI1/NI1\{As} �M{A,As}(−1). Hence, we have M{A,As}(−1) ↪→NI/NI\{As}.
Let ν ∈ X∨

K
and write S(ν) for the localization at the prime ideal (ν). Set N(ν) =

S(ν) ⊗S N . The algebra S(ν) is an Sα-algebra for a certain α ∈ Δ. Therefore, N(ν)

satisfies (S). Hence, the above embedding (M(ν)){A,As}(−1) ↪→ (N(ν))I/(N(ν))I\{As}
is an isomorphism. Since M admits a standard filtration, M{A,As} is graded

free as an S -module. Therefore, M{A,As}(−1) =
⋂

ν∈XK
(S(ν) ⊗S M{A,As}(−1)) =⋂

ν∈XK
((N(ν))I/(N(ν))I\{As})⊃NI/NI\{As}. We get the lemma.

(2) First, we prove that there exists an embedding (M ∗ Bs)I/(M ∗ Bs)I\J ↪→
M{A,As}(−1). We may assume J = {A′ ∈ A | A′ ≤ A} since I \ J is not changed.

Then, J is s-invariant. Put I1 = I ∪ Is. Then I1 is an s-invariant closed subset and
I1∩J = (I ∩J)∪ (Is∩J) = (I ∩J)∪ (I ∩J)s= {A,As}. We have I1 \{As} ⊃ I. Hence, we

have an embedding NI/NI\J ↪→NI1\{As}/NI1\{A,As} �M{A,As}(−1). We prove that this

embedding is surjective.
First, we assume that K is a field. Take a sequence of closed subsets I0 ⊂ ·· · ⊂ Ir

such that #(Ii+1 \ Ii) = 1, NI0 = 0, NIr = N , and there exists k = 1, . . . ,r such that

Ik−1 ∩ suppA(N) = I ∩ suppA(N) and Ik = Ik−1 ∪{A} (Lemma 2.14). Let Ai ∈ A such
that Ii = Ii−1 ∪{Ai}. Since NIi is a filtration of N, for each l, the l -th graded piece N l

satisfies dimKN
l =

∑
i(NIi/NIi−1

)l. By the existence of an embedding we have proved,

dimK(NIi/NIi−1
)l ≤ dimK(M{Ai,Ais})

l+ε(Ai), where ε(Ai) = 1 if Ais > Ai and ε(Ai) =−1

otherwise. We have

dimK(M{Ai,Ais})
l+ε(Ai)

=
∑
i

(dimK(M{Ai})
l+ε(Ai)+dimK(M{Ais})

l+ε(Ai))

=
∑

Ais>Ai

dimK(M
l+1
{Ai})+

∑
Ais>Ai

dimK(M
l+1
{Ais})

+
∑

Ais<Ai

dimK(M
l−1
{Ai})+

∑
Ais<Ai

dimK(M
l−1
{Ais}).
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By replacing Ai with Ais in the second and fourth sum, we have∑
i

(dimK(M{Ai})
l+ε(Ai)+dimK(M{Ais})

l+ε(Ai))

=
∑

Ais>Ai

dimK(M
l+1
{Ai})+

∑
Ais<Ai

dimK(M
l+1
{Ai}))

+
∑

Ais<Ai

dimK(M
l−1
{Ai})+

∑
Ais>Ai

dimK(M
l−1
{Ai})

=
∑
i

(dimKM
l+1
{Ai}+dimKM

l−1
{Ai}).

Since {M{Ai}} are subquotients of a filtration {MIi} on M, we have
∑

idimK(M{Ai})
l′ =

dimKM
l′ . Hence,

∑
i(dimKM

l+1
{Ai}+dimKM

l−1
{Ai}) = dimKM

l+1+dimKM
l−1.

However, since N = M ∗Bs = M ⊗Rs R(1) = M(1)⊗ 1⊕M(1)⊗ δs where δs satisfies
〈δs,α∨

s 〉= 1, we have dimKN
l = dimKM

l+1+dimKM
l−1. Therefore, we get

dimKN
l =

∑
i

dimK(NIi/NIi−1
)l ≤

∑
i

dimK(M{Ai,Ais})
l+ε(Ai) = dimKN

l.

Hence, the embedding has to be a bijection.
Now, let K be a general Noetherian integral domain. Assume that we can prove

that (NIi/NIi−1
)⊗K (K/m) � (M{Ai,Ais}(ε(Ai)))⊗K (K/m) for each maximal ideal m

in K. Since M l
{Ai,Ais} is finitely generated as a K-module, by Nakayama’s lemma,

(NIi/NIi−1
)lm → (M{Ai,Ais})

l+ε(Ai)
m is surjective, where (•)m means the localization at

m. Since this is true for any maximal ideal m, the map (NIi/NIi−1
)l → M l

{Ai,Ais} is
surjective for any l ∈ Z. Hence, it is an isomorphism. Therefore, it is sufficient to prove

(NIi/NIi−1
)⊗K (K/m) � (M{Ai,Ais}(ε(Ai)))⊗K (K/m). In the rest of the proof, we omit

the grading.
To prove this, we need some properties on the base change to K/m. Let L ∈ K̃′.

Then, L⊗K (K/m) is an (S/mS,R/mR)-bimodule and we have S∅ ⊗S L⊗K (K/m) �⊕
A∈AL∅

A⊗K (K/m). Therefore, it defines an object in K̃′
K/m. Here, the suffix K/m means

that, in the definition of K̃′, we replaceK withK/m. We also haveB⊗KK/m∈SBimodK/m

(the meaning of the suffix K/m is the same as above) and we have (M ∗B)⊗K (K/m)�
(M⊗K (K/m))∗(B⊗K (K/m)). LetK ⊂A be a closed subset. Then, we have a map LK⊗K

(K/m)→L⊗K (K/m). Since suppA(LK⊗K (K/m))⊂K, the image of this homomorphism

is in (L ⊗K (K/m))K . Hence, we get a map LK ⊗K (K/m) → (L ⊗K (K/m))K . We
claim:

(a) The map is surjective.

(b) If L/LK is graded free, then this map is an isomorphism.

We prove (a) first. By the exact sequence 0→ LK → L→ L/LK → 0, we have an exact

sequence LK⊗K (K/m)→L⊗K (K/m)→ (L/LK)⊗K (K/m)→ 0. Since suppA((L/LK)⊗K
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(K/m))⊂A\K, the map L⊗K (K/m)→ (L/LK)⊗K (K/m) factors through L⊗K (K/m)→
(L⊗K (K/m))/(L⊗K (K/m))K . Hence, (L⊗K (K/m))K ⊂ Ker(L⊗K (K/m)→ (L/LK)⊗K

(K/m)) = Im(LK ⊗K (K/m) → L⊗K (K/m)). Therefore, we get (a). If L/LK is graded
free, then L/LK is free as a K-module. Hence, LK ⊗K (K/m)→ L⊗K (K/m) is injective.

Therefore, we have (b).

In particular, if L satisfies (S), then L⊗K (K/m) also satisfies (S). Indeed, let K1,K2 be
closed subsets. Then, we have a commutative diagram

LK1
⊗K (K/m)⊕LK2

⊗K (K/m) (L⊗K (K/m))K1
⊕ (L⊗K (K/m))K2

LK1∪K2
⊗K (K/m) (L⊗K (K/m))K1∪K2

.

Here, the horizontal maps are surjective by (a) in the above, and the left vertical map is

surjective since L satisfies (S). Hence, the right vertical map is surjective and it means
that L⊗K (K/m) satisfies (S).

We also have that if L satisfies (LE), then L⊗K (K/m) satisfies (LE). Let α ∈Δ and

decompose Lα as Lα �
⊕

Ω∈W ′
α\AL(Ω) such that suppL(Ω) ⊂ Ω. Then, (L⊗K (K/m))α �⊕

Ω∈W ′
α\AL(Ω)⊗K (K/m) and it gives a desired decomposition in (LE).

Let K1 ⊂ K2 ⊂ A be closed subsets and suppose that L ∈ K̃Δ. Since L ∈ K̃Δ,

L/LK1
and L/LK2

are both graded free. Hence, LK1
⊗K (K/m) � (L⊗K (K/m))K1

⊂
(L⊗K (K/m))K2

� LK2
⊗K (K/m). By the right exactness of the tensor product, we

have (LK2
/LK1

)⊗K (K/m)� (LK2
⊗K (K/m))/(LK1

⊗K (K/m))� (L⊗K (K/m))K2
/(L⊗K

(K/m))K1
. Therefore, for any locally closed subset K ⊂ A, we have LK ⊗K (K/m) �

(L⊗K (K/m))K . In particular, L⊗K (K/m) ∈ K̃Δ,K/m.

We return to the proof of the lemma. We haveM⊗K (K/m)∈ K̃Δ,K/m as we have proved.

We have M{Ai,Ais} ⊗K (K/m) � (M ⊗K (K/m)){Ai,Ais}. Hence, we have the following

commutative diagram:

(NIi/NIi−1
)⊗K (K/m) M{Ai,Ais}⊗K (K/m)

(N ⊗K (K/m))Ii/(N ⊗K (K/m))Ii−1
(M ⊗K (K/m)){Ai,Ais}.

∼

∼

Note that the bottom homomorphism is an isomorphism since the lemma is proved if K
is a field.

We prove that the left vertical map is an isomorphism by backward induction on i.

By inductive hypothesis, NIi′ /NIi′−1
�M{Ai′,Ai′s} for any i′ > i and, in particular, it is

graded free. Hence, N/NIi is also graded free. Therefore, we have NIi ⊗K (K/m)� (N ⊗K

(K/m))Ii . Now we get the desired result by applying the five lemmas to the following

commutative diagram with exact columns:
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0

NIi−1
⊗K (K/m) (N ⊗K (K/m))Ii−1

NIi ⊗K (K/m) (N ⊗K (K/m))Ii

(NIi/NIi−1
)⊗K (K/m) (N ⊗K (K/m))Ii/(N ⊗K (K/m))Ii−1

0 0.

∼

Lemma 2.28. Set N = M ∗Bs. Then, for any two closed subsets I1,I2 with I1 ⊃ I2,

NI1/NI2 is a graded free S-module.

Proof. Take A0,A1 ∈ A such that suppAN ⊂ [A0,A1]. Replacing I1 with I1 ∩{A ∈ A |
A≥A0} and I2 with I2∪{A ∈ A |A �≤A1}, we may assume I1 \ I2 is finite. We can take

a sequence of closed subsets I2 = I ′0 ⊂ I ′1 ⊂ ·· · ⊂ I ′r = I1 such that #(I ′i \I ′i−1) = 1. Let Ai

such that I ′i = I ′i−1 ∪{Ai}. Then by Lemma 2.27, NI′
i
/NI′

i−1
� M{Ai,Ais}(ε(Ai)), where

ε(Ai) ∈ {±1} is as in the proof of Lemma 2.27. In particular, this is graded free and

therefore, MI1/MI2 =MI′
r
/MI′

0
is also graded free.

Proof of Proposition 2.24. Set N = M ∗ Bs. We prove that N satisfies (S). Let

I1,I2 be closed subsets, and we prove the surjectivity of NI1/NI1∩I2 ↪→ NI1∪I2/NI2 .

For each ν ∈ X∨
K
, let S(ν) be the localization at the prime ideal (ν). Then, S(ν) is

an Sα-algebra for some α ∈ Δ+. Since N(ν) = S(ν) ⊗S N satisfies (LE), N(ν) satisfies

(S) by Lemma 2.10. Hence, this embedding is surjective after applying S(ν)⊗S . Put

L(ν) = S(ν)⊗S L for a left S -module L. Since NI1/NI1∩I2 is graded free by Lemma 2.28,
we have NI1/NI1∩I2 =

⋂
ν(NI1/NI1∩I2)(ν). Hence, NI1/NI1∩I2 =

⋂
ν(NI1/NI1∩I2)(ν) �⋂

ν(NI1∪I2/NI2)(ν) ⊃NI1∪I2/NI2 . We get the surjectivity.

Now N{A} is well-defined and isomorphic to M{A,As}(ε(A)), where ε(A) ∈ {±1} is as
in the proof of Lemma 2.27. Hence, N{A} is graded free; namely, N admits a standard

filtration.

As a consequence of Lemma 2.27, we get the following corollary.

Corollary 2.29. If M ∈ K̃Δ, then we have

(M ∗Bs){A} �
{
M{A,As}(−1) (As < A),

M{A,As}(1) (As > A).
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Therefore, we have

grk((M ∗Bs){A}) =

{
v−1(grk(M{A})+grk(M{As})) (As < A),

v(grk(M{A})+grk(M{As})) (As > A)

for each A ∈ A and s ∈ Saff .

The action of SBimod preserves K̃P too.

Proposition 2.30. We have K̃P ∗SBimod⊂ K̃P .

Proof. Let M ∈ K̃P and s ∈ Saff . We prove M ∗Bs ∈ K̃P . We have already proved that
M ∗Bs ∈ K̃Δ.

Assume that a sequence M1 → M2 → M3 in K̃Δ satisfies (ES). By Lemma 2.17, 0 →
(M1){A,As} → (M2){A,As} → (M3){A,As} → 0 is also exact for any A∈A. Hence, 0→ (M1∗
Bs){A} → (M2 ∗Bs){A} → (M3 ∗Bs){A} → 0 is exact (i.e., M1 ∗Bs →M2 ∗Bs →M3 ∗Bs

also satisfies (ES)). Since M ∈ K̃P , the sequence 0→Hom•(M,M1 ∗Bs)→Hom•(M,M2 ∗
Bs)→Hom•(M,M3 ∗Bs)→ 0 is exact. By Proposition 2.22, M ∗Bs ∈ K̃P .

2.7. Indecomposable objects

Assume that K is complete local Noetherian integral domain. ForM,N ∈ K̃′, Hom•
S(M,N)

is finitely generated as an S -module sinceM,N are finitely generated and S is Noetherian.

Hence, Hom•
˜K′(M,N)⊂Hom•

S(M,N) is also finitely generated. Therefore, Hom
˜K′(M,N)

is finitely generated K-module. Hence, K̃′ has Krull-Schmidt property. This is also true

for K̃P .

Let (RΔ)int = {λ ∈ RΔ | 〈λ,Δ∨〉 ⊂ Z} be the set of integral weights. For λ ∈ (RΔ)int,

let Πλ be the set of alcoves A such that 〈λ,α∨〉−1< 〈a,α∨〉< 〈λ,α∨〉 for any a ∈ A and
simple root α. The set Πλ is called a box and each A ∈ A is contained in a box. Each

Πλ has the unique maximal element A−
λ . Let W ′

λ = StabW ′
aff
(λ) be the stabilizer. Then,

A−
λ is the minimal element in W ′

λA
−
λ . The set W ′

λA
−
λ is the set of alcoves whose closure

contains λ.
We define Qλ ∈ K̃ as follows. Consider the orbit W ′

λA
−
λ through A−

λ . As an (S,R)-

bimodule, it is given by

Qλ = {(zA) ∈ SW ′
λA

−
λ | zA ≡ zsα,〈λ,α∨〉A (mod α∨) for α ∈Δ and A ∈W ′

λA
−
λ }

where the right action of R is given by (zA)f = (fAzA). We have Q∅
λ = (S∅)W

′
λA

−
λ . The

module (Qλ)
∅
A is the A-component if A ∈W ′

λA
−
λ , and 0 otherwise.

The definition of Qλ comes from the structure sheaf of the moment graph associated
to Wf . The structure sheaf is defined by

Z = {(zx)x∈Wf
∈ SWf | zx ≡ zsαx (mod α∨)}.

The natural map W ′
λ ↪→ W ′

aff → Wf is an isomorphism. The map Wf � W ′
λ

w �→w(A−
λ )−−−−−−−→

W ′
λA

−
λ is a bijection which preserves orders and, by this bijection, we have Z �Qλ.

The following are well-known. (See [Abe20b] for example.)
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• The map S⊗SWf S →Z defined by f ⊗g �→ (x−1(f)g)x∈Wf
is an isomorphism.

• Let K ⊂Wf be a closed subset and w ∈K such that K \{w} is closed. Put ZK =
{(zx) ∈ Z | zx = 0 for x /∈ K} and the same for ZK\{w}. Then, ZK/ZK\{w} �
S(−2�(w0w)) as a left S -module.

Let d : A×A → Z be the function defined in [Lus80, 1.4]. From the second property,

we get the following.

Lemma 2.31. Let A ∈W ′
λA

−
λ and I ⊂A is a closed subset such that A ∈ I and I \{A}

is closed. Then, we have (Qλ)I/(Qλ)I\{A} � S(2d(A,A−
λ )).

It is easy to see that Qλ satisfies (LE) and the argument of the proof of Proposition
2.24 with the above lemma implies that Qλ also satisfies (S). Hence, we have Qλ ∈ KΔ.

Lemma 2.32. Let S0 be a flat commutative graded S-algebra. We have Hom•
˜K′(S0)

(S0⊗S

Qλ,M)�M{A′∈A|A′≥A−
λ } for M ∈ K̃′(S0). Therefore, S0⊗S Qλ ∈ K̃P (S0).

Proof. Since S0 is flat, we have

S0⊗S Qλ = {(zA) ∈ S
WfA

−
0

0 | zA ≡ zsα,〈λ,α∨〉A (mod α∨) for α ∈Δ and A ∈WfA
−
λ }.

Put I = {A′ ∈ A |A′ ≥A−
λ } and q = (1)A∈WfA

−
λ
∈ S0⊗S Qλ.

Any (S0,R)-bimodule is regarded as an S0⊗R-module. Let M ∈ K̃Δ(S0) and m ∈M .
According to the decomposition M∅ =

⊕
A∈AM∅

A, m can be written as m =
∑

A∈AmA

with mA ∈ M∅
A. Consider SWf = {f ∈ S | w(f) = f for all w ∈ Wf}. Then, we have the

following.

• For A ∈ A and f ∈ SWf , fA does not depend on A.
• For f ∈ S, we have fm=

∑
fmA =

∑
mAf

A.

Therefore, we have an embedding SWf ↪→R naturally and any M is an S0⊗SWf R-module.

Then, we have a map S⊗SWf R→Qλ defined by f⊗g �→ (fgw(A−
λ )), and by the property

of Z we have remarked, this is an isomorphism. Therefore, Qλ is a free S⊗SWf R-module

of rank one with a basis q. We also remark that q ∈ S0⊗S Qλ = (S0⊗S Qλ)I . Therefore,

ϕ �→ ϕ(q) gives an embedding

Hom•
˜KΔ(S0)

(S0⊗S Qλ,M) ↪→MI .

Let m ∈ MI and ϕ : S0 ⊗S Qλ → M be an (S0,R)-bimodule homomorphism such that
ϕ(q) =m. We prove that this is a morphism in K̃(S0). Let A∈W ′

λA
−
λ . Then, ϕ((Qλ)

∅
A)⊂⊕

A′∈A+ZΔ,A′∈I M
∅
A′ . Therefore, the lemma follows from the following lemma.

Lemma 2.33. Let A ∈W ′
λA

−
λ . Then, (A+ZΔ)∩{A′ ∈ A | A′ ≥ A−

λ } = {A′ ∈ A+ZΔ |
A′ ≥A}.

Proof. Since A−
λ is the minimal element in W ′

λA
−
λ , the right-hand side is contained in

the left-hand side. Let A′ be in the left-hand side. Take x ∈W ′
λ and μ ∈ ZΔ such that

A= x(A−
λ ) and A′ =A+μ. Then, A′ = x(A−

λ )+μ. Since A′ ≥A−
λ and λ is in the closure of
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A−
λ , we have x(λ)+μ−λ∈R≥0Δ

+ by Lemma 2.2. Since x∈W ′
λ = StabW ′

aff
(λ), x(λ) = λ.

Therefore, μ ∈ R≥0Δ
+. Hence, A′ =A+μ≥A.

Let A∈Πλ and take w ∈Waff such that A=A−
λw. As in the proof of [Lus80, Proposition

4.2], for any x < w and A′ ∈W ′
λA

−
λ , we have A′x > A−

λw. Let w = s1 · · ·sl be a reduced
expression. Then, Qλ ∗Bs1 ∗ · · · ∗Bsl satisfies the following.

Lemma 2.34. We have the following.

(1) (Qλ ∗Bs1 ∗ · · · ∗Bsl){A} � S(l) as a left S-module.

(2) suppA(Qλ ∗Bs1 ∗ · · · ∗Bsl)⊂ {A′ ∈ A |A′ ≥A}.

Proof. (2) is obvious from what we mentioned before the lemma. We prove (1) by

induction on l. Set M =Qλ ∗Bs1 ∗ · · · ∗Bsl−1
and s= sl. By Lemma 2.27, (M ∗Bs){A} �

M{A,As}(1). By (2), A /∈ suppA(M). Hence, M{A,As} �M{As}. Therefore, (M ∗Bs){A} �
M{As}(1) and the inductive hypothesis implies (1).

Theorem 2.35. We have the following.

(1) For any A ∈ A, there exists an indecomposable object Q(A) ∈ K̃P such that

suppA(Q(A)) ⊂ {A′ ∈ A | A′ ≥ A} and Q(A){A} � S. Moreover, Q(A) is unique

up to isomorphisms.

(2) Any object in K̃P is a direct sum of Q(A)(n), where A ∈ A and n ∈ Z.

Proof. Fix s1, . . . ,sl as in the above. By Lemma 2.34, there is the unique indecomposable

module Q(A) such that Q(A){A} � S and Q(A)(l) is a direct summand of Qλ ∗Bs1 ∗ · · · ∗
Bsl . It is sufficient to prove that any object M ∈ K̃P is a direct sum of Q(A)(n)’s. By

induction on the rank of M, it is sufficient to prove that Q(A)(n) is a direct summand of

M for some A ∈ A and n ∈ Z if M �= 0.
Let M ∈ K̃P and let A ∈ suppA(M) be a minimal element. Then, M{A} �= 0. Since

M admits a standard filtration, M{A} is graded free. Hence, there exists n such that

S(n) � Q(A)(n){A} is a direct summand of M{A}. Let i : Q(A)(n){A} → M{A} (resp.
p : M{A} →Q(A)(n){A}) be the embedding from (resp. projection to) the direct summand.

Let I be a closed subset which contains suppA(M) such that I \ {A} is closed. Then,

I ⊃ {A′ ∈ A |A′ ≥A} ⊃ suppA(Q(A)). Therefore, we have two sequences

MI\{A} →MI =M →M{A},

Q(A)(n)I\{A} →Q(A)(n)I =Q(A)(n)→Q(A)(n){A},

which satisfy (ES). Consider the homomorphism Q(A)(n)→Q(A)(n){A}
i−→M{A}. Since

Q(A)(n)∈ K̃P , there exists a lift ĩ : Q(A)(n)→M of the above homomorphism. Similarly,

we have a morphism p̃ : M → Q(A)(n) which is a lift of p. The composition p̃ ◦ ĩ ∈
End(Q(A)(n)) induces the identity on Q(A)(n){A}. Therefore, 1− p̃ ◦ ĩ is not a unit.

Since Q(A)(n) is indecomposable, the endomorphism ring of Q(A)(n) is local. Therefore,

p̃◦ ĩ is an isomorphism. Hence, Q(A)(n) is a direct summand of M.

Corollary 2.36. Any object in K̃P is a direct summand of a direct sum of objects of a

form Qλ ∗Bs1 ∗ · · · ∗Bsl(n), where λ ∈ (RΔ)int, n ∈ Z and s1, . . . ,sl ∈ Saff .
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Proof. This is obvious from Theorem 2.35 and the proof of the theorem.

Corollary 2.37. Let M,N ∈ K̃P . Then, Hom
•
˜KP

(M,N) is graded free of finite rank as

an S-module.

Proof. We may assume M = Qλ ∗ Bs1 ∗ · · · ∗ Bsl(n) for some λ ∈ (RΔ)int, n ∈ Z

and s1, . . . ,sl ∈ Saff . Hence, by Proposition 2.22, we may assume M = Qλ. Then,

Hom•
˜KP

(M,N) � N{A′∈A|A′≥A−
λ } and this is graded free since N admits a standard

filtration.

Corollary 2.38. Let M,N ∈ K̃P . Then, for any flat commutative graded S-algebra S0,

we have S0⊗S Hom•
˜KP

(M,N)�Hom•
˜KP (S0)

(S0⊗S M,S0⊗S N).

Proof. As in the proof of the previous corollary, we may assume M =Qλ. Set I = {A′ ∈
A |A′ ≥A−

λ }. Then, the corollary is equivalent to S0⊗SNI � (S0⊗SN)I . This is clear.

2.8. The categorification

Assume that K is a complete local Noetherian integral domain. We follow the notation
of Soergel [Soe97] for the Hecke algebra and the periodic module. The Z[v,v−1]-algebra

H is generated by {Hw | w ∈Waff} and defined by the following relations.

• (Hs−v−1)(Hs+v) = 0 for any s ∈ Saff .
• If �(w1)+ �(w2) = �(w1w2) for w1,w2 ∈Waff , we have Hw1w2

=Hw1
Hw2

.

It is well-known that {Hw | w ∈Waff} is a Z[v,v−1]-basis of H.

Set P =
⊕

A∈AZ[v,v−1]A and define a right action of H [Soe97, Lemma 4.1] on P by

AHs =

{
As (As > A),

As+(v−1−v)A (As < A).

for s ∈ Saff .

For an additive category B, let [B] be the split Grothendieck group of B. We
have [SBimod] � H[Abe21, Theorem 4.3] and under this isomorphism, [Bs] ∈ [SBimod]

corresponds to Hs+v ∈H. By [M ][B] = [M ∗B], [KP ] is a right [SBimod]-module. Fix a

length function � : A→ Z in the sense of [Lus80, 2.11]. Define ch: [KP ]→P by

ch(M) =
∑
A∈A

v�(A) grk(M{A})A.

Then, by Corollary 2.29, ch is an [SBimod]�H-module homomorphism.

For each λ ∈ (RΔ)int, set eλ =
∑

A∈W ′
λA

−
λ
v−�(A)A. We put P0 =

∑
λ∈(RΔ)int

eλH⊂P.

Lemma 2.39. We have ch(Qλ) = v2�(A
−
λ )eλ.

Proof. It follows from Lemma 2.31.

Theorem 2.40. We have ch: [K̃P ]
∼−→P0.
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Proof. Since eλ = v−2�(A−
λ ) ch(Qλ) ∈ Im(ch), the image of ch is contained in P0 and

it surjects to P0. The H-module [K̃P ] has a Z[v,v−1]-basis [Q(A)] by Theorem 2.35.

Since ch(Q(A))∈ v�(A)A+
∑

A′>AZ[v,v−1]A′, {ch(Q(A)) |A∈A} is linearly independent.

Hence, ch is injective.

2.9. A relation with a work of Fiebig-Lanini

Assume that K is a complete local Noetherian integral domain. In [FL15], Fiebig and
Lanini constructed a category denoted by C and proved that this is an exact category.

They also constructed a wall-crossing functor θs for s ∈ Saff on C and proved that

projective objects are preserved by wall-crossing functors. In this subsection, we prove

the following. We identify W ′
aff �Waff and S � R by using A+

0 , the maximal element in
W ′

0A
−
0 .

Theorem 2.41. The category K̃P is equivalent to the category of projective objects in C.

The action of Bs on K̃P corresponds to θs for s ∈ Saff .

Let M ∈ K̃P , and let J ⊂ A be an open subset. Then, MJ is an R-bimodule (as we

identify S �R) and the left action of f ∈RWf is equal to the right action of f. Hence, MJ

is an R⊗RWf R-module. The algebra R⊗RWf R is isomorphic to the structure algebra Z
on the moment graph attached to Wf . Hence, we get a functor F from K̃P to the category

of Z-coefficient presheaves on A.

We prove that F is fully faithful. Since M = F (M)(A) is an R-module, F induces an
injective map between the space of morphisms; namely, F is faithful. Let f : F (M) →
F (N) be a morphism between sheaves. We define ϕ : M → N by M = F (M)(A) →
F (N)(A) =N . Then, this is an R-bimodule morphism. Moreover, ϕ induces M/MA\J =
F (M)(J)→F (N)(J) =N/NA\J for any open subset J. Hence, ϕ(MI)⊂NI for any closed

subset I ⊂A. Therefore, ϕ is a morphism in K̃P , and therefore, F is full.

Next, we prove that F (M ∗Bs) � θs(F (M)) for M ∈ K̃P . Let s ∈ Saff , and let εs be
the functor defined in [FL15, 8.1]. Then an argument of the proof in [Abe21, Proposition

5.3] gives εs(M) � M ⊗R Bs as Z-modules (here, in the right-hand side, we consider a

Z-module as an R-bimodule via Z � R⊗RWf R). Let J ⊂ A be an open subset and J	

(resp. J
) be the largest (resp. smallest) s-invariant open subset which is contained in

(resp. contains) J. Then, we have morphisms

(M ∗Bs)J�
j�−→ (M ∗Bs)J

j�−→ (M ∗Bs)J�

such that j
,j	 are surjective. We have (M ∗Bs)J� �MJ� ∗Bs and (M ∗Bs)J� �MJ� ∗Bs

by Lemma 2.25. We have suppA(Kerj1) ⊂ J
 \J and suppA(Kerj2) ⊂ J \J	. Hence, by

[FL15, Lemma 2.8], (M ∗Bs)J satisfies the condition in [FL15, 8.3], and we get F (M ∗
Bs)(J)� θs(F (M))(J). Therefore, we get F (M ∗Bs)� θs(F (M)).

Finally, we prove that the image of F is projective and the functor from K̃P to the

category of projective objects in C is essentially surjective. Let Kλ be a projective object
in C defined in [FL15, Section 6]. From the definitions, we have F (Qλ) = Kλ. Any M ∈
K̃P is a direct sum of direct summands of objects of the form M ∗Bs1 ∗ · · · ∗Bsl(n) for

s1, . . . ,sl ∈ Saff and n ∈ Z. Since F (M ∗Bs1 ∗ · · · ∗Bsl(n)) = θsl · · ·θs1Kλ is projective in C
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by [FL15, Corollary 8.7], F (M) is projective in C for any M ∈ K̃P . Moreover, by the proof

of [FL15, Theorem 8.8], any projective object in C is a direct sum of direct summands

of objects of the form θsl · · ·θs1Kλ. Since F is fully faithful, the essential image of F is
closed under taking a direct summand. Hence, F is essentially surjective.

3. The category of Andersen-Jantzen-Soergel

3.1. Our combinatorial category

Assume that K is a complete local Noetherian integral domain. In this subsection, we

introduce some categories using the categories introduced in the previous section. The

categories will be related to the combinatorial categories of Andersen-Jantzen-Soergel.
Let S0 be a flat commutative graded S -algebra. Let K′(S0) be the category whose

objects are the same as those of K̃′(S0) and the spaces of morphisms are defined by

HomK′(S0)(M,N) = Hom
˜K′(S0)

(M,N)/{ϕ ∈Hom
˜K′(S0)

(M,N) | ϕ(M∅
A)⊂

⊕
A′>A

N∅
A′}.

We also define K(S0) and KΔ(S0) in the same way.

Lemma 3.1. Let M,N ∈ K̃′(S0), ϕ : M →N and B ∈ SBimod. If ϕ(M∅
A)⊂

⊕
A′>AN∅

A′

for any A∈A, then ϕ⊗ id : M ∗B→N ∗B satisfies (ϕ⊗ id)((M ∗B)∅A)⊂
⊕

A′>A(N ∗B)∅A′

for any A ∈ A.

Proof. Recall that we have (M ∗B)∅A =
⊕

x∈Waff
M∅

Ax−1 ⊗B∅
x. We have ϕ(M∅

Ax−1)⊗
B∅

x ⊂
⊕

A′x−1∈Ax−1+ZΔ,A′x−1>Ax−1 N∅
A′x−1 ⊗ B∅

x. Since x : (Ax−1 + ZΔ) → (A + ZΔ)

preserves the order, A′x−1 > Ax−1 if and only if A′ > A. Therefore, (ϕ⊗ id)(M ∗B)∅A ⊂⊕
x∈Waff,A′>AN∅

A′x−1 ⊗B∅
x =

⊕
A′>A(N ∗B)∅A′ .

Therefore, (M,B) �→ M ∗B defines a bi-functor K′(S0)×SBimod → K′(S0) and also

KΔ(S0)×SBimod→KΔ(S0).

Proposition 3.2. Let M,N ∈ K′(S0) and s ∈ Saff . Then, HomK′(S0)(M ∗ Bs,N) �
HomK′(S0)(M,N ∗Bs).

Proof. Let ϕ and ψ as in the proof of Proposition 2.22. Then, the proof of Proposition
2.22 shows that ϕ(M∅

A)⊂
⊕

A′>A(N ∗Bs)
∅
A′ for any A ∈A if and only if ψ((M ∗Bs)

∅
A)⊂⊕

A′>AN∅
A′ for any A ∈ A. The proposition follows.

For each morphism ϕ : M → N in K̃(S0) and A ∈ A, we have a homomorphism

ϕ{A} : M{A} → N{A}. Note that ϕ(M∅
A) ⊂

⊕
A′>AN∅

A′ if and only if ϕ{A} = 0. Hence,

M �→M{A} defines a functor from K(S0) to the category of graded S0-modules. Using this,
we define as follows. A sequenceM1 →M2 →M3 in K(S0) satisfies (ES) if the composition

M1 →M2 →M3 is zero in K(S0) and 0→ (M1){A} → (M2){A} → (M3){A} → 0 is exact

for any A ∈ A. Note that a sequence M1 → M2 → M3 in K̃ may not satisfy (ES) even
when it satisfies (ES) in K since the composition M1 →M2 →M3 may be zero only in K.

For the definition of KP (S0), we use the same condition to define K̃P (S0). For M ∈
KΔ(S0), we sayM ∈KP (S0) if, for any sequenceM1 →M2 →M3 in KΔ(S0) which satisfies
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(ES), the induced homomorphism 0 → Hom•
KΔ(S0)(M,M1) → Hom•

KΔ(S0)(M,M2) →
Hom•

KΔ(S0)(M,M3) → 0 is exact. Note that this definition is not the same as that in

the Introduction. We will prove that two definitions coincide with each other later
(Proposition 3.7).

Proposition 3.3. An indecomposable object in K̃′(S0) such that suppA(M) is finite and
is also indecomposable as an object of K′(S0).

Proof. Let M ∈ K̃′(S0) and assume that suppA(M) is finite. Then, {ϕ ∈ End
˜K′(S0)

(M) |
ϕ(M∅

A)⊂
⊕

A′>AM∅
A′ (A∈A)} is a two-sided ideal of End

˜K′(S0)
(M) and, since suppA(M)

is finite, this is nilpotent. Therefore, the idempotent lifting property implies the

proposition.

Lemma 3.4. Let K ⊂ A be a locally closed subset such that for any A ∈ K, we have

(A+ZΔ)∩K = {A}. Then, we have the following.

(1) For a morphism ϕ : M → N in K̃(S0) which is zero in K(S0), the homomorphism
MK →NK is zero in K̃(S0).

(2) Let M1 →M2 →M3 be a sequence in K̃(S0) and assume that the sequence M1 →
M2 →M3 satisfies (ES) as a seqeune in K(S0). Then, (M1)K → (M2)K → (M3)K
satisfies (ES) as a sequence in K̃(S0). In particular, 0 → (M1)K → (M2)K →
(M3)K → 0 is an exact sequence of (S0,R)-bimodules.

Proof. (1) We have M∅
K =

⊕
A∈KM∅

A and N∅
K =

⊕
A∈KN∅

A. Since ϕ= 0 in K, we have

ϕ(M∅
A) ⊂

⊕
A′>AN∅

A′ for any A ∈ K. We also know that ϕ(M∅
A) ⊂

⊕
A′∈A+ZΔN∅

A′ . By

the assumption, there is no A′ ∈A+ZΔ such that A′ >A and A′ ∈K. Hence, ϕ(M∅
A) = 0.

(2) By (1), the composition (M1)K → (M2)K → (M3)K is zero.

Lemma 3.5. Assume that a sequence M1 →M2 →M3 in KΔ(S0) satisfies (ES). Then,

M1 ∗B →M2 ∗B →M3 ∗B also satisfies (ES).

Proof. We may assume B=Bs where s∈Saff . We take lifts of M1 →M2 and M2 →M3 in

K̃(S0), and we regard M1 →M2 →M3 also as a sequence in K̃(S0). As in Corollary 2.29,
we have (Mi∗Bs){A} � (Mi){A,As}(ε(A)), where ε(A) is as in the proof of Lemma 2.27. By

the previous lemma, 0→ (M1){A,As} → (M2){A,As} → (M3){A,As} → 0 is exact. Therefore,

0→ (M1 ∗Bs){A} → (M2 ∗Bs){A} → (M3 ∗Bs){A} → 0 is exact. Hence, a sequence M1 ∗
Bs →M2 ∗Bs →M3 ∗Bs in KΔ(S0) satisfies (ES).

Combining Proposition 3.2, we have KP (S0)∗SBimod⊂KP (S0).

Lemma 3.6. Let λ ∈ (RΔ)int. The subset W ′
λA

−
λ is locally closed and we have a natural

isomorphism Hom•
K(S0)(S0⊗S Qλ,M)�MW ′

λA
−
λ
for M ∈ KΔ(S0).

Proof. Set I = {A′ ∈ A | A′ ≥ A−
λ }. We prove I \W ′

λAλ− is closed. Let A1 ∈W ′
λA

−
λ and

A2 ∈ I satisfies A2 ≤ A1. We prove A2 ∈ W ′
λA

−
λ . This proves that I \W ′

λAλ− is closed.

Take A3 ∈W ′
λA

−
λ such that A2 ∈A3+ZΔ. Then, by Lemma 2.33, we have A2 ≥A3. Take

x ∈W ′
λ and μ ∈ ZΔ such that A1 = x(A3) and A2 =A3+μ. Then, A1 ≥A2 ≥A3 implies

https://doi.org/10.1017/S1474748023000130 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000130


A Hecke action on G1T -modules 1153

x(λ)− (λ+μ) ∈ R≥0Δ
+ and (λ+μ)−λ ∈ R≥0Δ

+. As x(λ) = λ, we have μ = 0. Hence,

A2 =A3 ∈W ′
λA

−
λ .

We have Hom•
˜K(S0)

(Qλ,M) � MI where I = {A′ ∈ A | A′ ≥ A−
λ } and, under this

correspondence, {ϕ ∈ Hom•
˜K(S0)

(Qλ,M) | ϕ((Qλ)
∅
A) ⊂

⊕
A′>AM∅

A′} exactly corresponds

to {m ∈MI |mA = 0 for any A ∈W ′
λAλ−}. Since I \W ′

λAλ− is closed, {m ∈MI |mA =

0 for any A ∈W ′
λAλ−}=MI\W ′

λA
−
λ
. Hence, Hom•

K(S0)(Qλ,M)�MW ′
λA

−
λ
.

Proposition 3.7. The objects of KP are the same as those of K̃P .

Proof. First, we prove that any M ∈ K̃P belongs to KP . By Theorem 2.35, we may

assume M = Qλ ∗Bs1 ∗ · · · ∗Bsl(n) for some λ ∈ (RΔ)int, s1, . . . ,sl ∈ Saff and n ∈ Z. By

Proposition 3.2 and Lemma 3.5, we may assume M =Qλ.
We have HomK(Qλ,N) � NW ′

λA
−
λ

for N ∈ K. Since W ′
λA

−
λ satisfies the condition of

Lemma 3.4, this implies Qλ ∈ KP .

The objectQ(A) is indecomposable in KP by Proposition 3.3. Using the argument in the

proof of Theorem 2.35, any object in KP is a direct sum of Q(A)(n) where A ∈ A,n ∈ Z.
Hence, the proposition is proved.

Hence, our KP is the same as that in the Introduction.

Corollary 3.8. Let M ∈ KP , N ∈ KΔ and S0 a flat commutative graded S-algebra.

(1) The natural map S0 ⊗S Hom•
KP

(M,N) → Hom•
KP (S0)(S0 ⊗S M,S0 ⊗S N) is an

isomorphism.

(2) We have S0⊗S M ∈ KP (S0).

Proof. We may assume M =Qλ ∗Bs1 ∗ · · · ∗Bsl(n) for some λ ∈ (RΔ)int, s1, . . . ,sl ∈ Saff

and n ∈ Z.

(1) By Proposition 3.2, we may assume M =Qλ. In this case, the corollary is equivalent
to S0⊗S (NW ′

λA
−
λ
)� (S0⊗S N)W ′

λA
−
λ
. This is clear.

(2) By Lemma 3.5, we may assume M =Qλ. Then, S0⊗S Qλ ∈ KP (S0) by Lemma 3.4

and 3.6.

We can define ch: [KP ]→P0 by the same formula as ch: [K̃P ]→P0. By the previous

proposition with Theorem 2.40, we get the following.

Theorem 3.9. We have [KP ]� P0.

3.2. A formula on homomorphisms

Assume that K is amcomplete local Noetherian integral domain. Let m �→m be a map

from P0 to P0 defined in [Soe97, Theorem 4.3]. For m ∈ P0 and m′ ∈ P, take cA,dA ∈
Z[v,v−1] such that m =

∑
A∈A cAA and m′ =

∑
A∈A dAA. Set (m,m′)P =

∑
A∈A cAdA.

We define ω : H→H by ω(
∑

x∈W ax(v)Hx) =
∑

x∈W ax(v
−1)H−1

x . Then, we have

(mh,m′)P = (m,m′ω(h))P

where m ∈ P0, m′ ∈ P and h ∈ H. This easily follows from the definitions. Let w0 ∈Wf

be the longest element.
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Theorem 3.10. Let P ∈ KP and M ∈ KΔ. Then, Hom
•
KΔ

(P,M) is amgraded free left

S-module and the graded rank is given by

grkHom•
KΔ

(P,M) = v−2�(w0)(ch(P ), ch(M))P .

Proof. Since [KP ] is generated by elements of a form [Qλ ∗Bs1 ∗ · · · ∗Bsl ] with λ ∈
(RΔ)int and s1, . . . ,sl ∈ Saff , we may assume P has this form. Moreover, by Lemma 3.2

and the formula before the theorem, we may assume P = Qλ. In this case, we have
Hom•

KΔ
(P,M)�MW ′

λA
−
λ
, and this is graded free by the definition of KΔ. Moreover, the

graded rank of MW ′
λA

−
λ
is

∑
A∈W ′

λA
−
λ
grk(M{A}).

Let Sλ be the set of reflections in W ′
λ along the walls of A−

λ . Then, this is a generator

of W ′
λ, and (W ′

λ,Sλ) is a Coxeter system. The length function of this Coxeter system is
denoted by �λ.

We calculate (ch(Qλ), ch(M)). We put (
∑

A∈A cAA,
∑

A∈A dAA)
′ =

∑
A∈A cAdA.

Let Eλ ∈ P be the element defined in [Soe97, 4] and A+
λ the maximal element

in W ′
λA

−
λ . Then, we have Eλ =

∑
w∈W ′

λ
v�λ(w)wA+

λ . Since �(w(A+
λ )) = �(A+

λ ) −
�λ(w), we have eλ =

∑
w∈W ′

λ
v−�(w(A+

λ ))w(A+
λ ) = v−�(A+

λ )Eλ. Therefore, ch(Qλ) =

v2�(A
−
λ )eλ = v2�(A

−
λ )−�(A+

λ )Eλ. Since Eλ = Eλ, we get ch(Qλ) = v−2�(A−
λ )+�(A+

λ )Eλ =

v−2�(A−
λ )+2�(A+

λ )eλ = v2�(w0)eλ. Hence,

(ch(Qλ), ch(M))P = v2�(w0)(eλ, ch(M))′

= v2�(w0)

⎛⎝ ∑
A∈W ′

λA
−
λ

v−�(A)A,
∑
A∈A

v�(A) grk(M{A})A

⎞⎠′

= v2�(w0)
∑

A∈W ′
λA

−
λ

grk(M{A})

= v2�(w0) grkHom•
KP

(Qλ,M).

We get the theorem.

3.3. The category Kα
P

Assume that K is a complete local Noetherian integral domain. In this subsection, we

analyze Kα
P = KP (S

α). First, we define an object QA,α where A ∈ A and α ∈ Δ+. Set

QA,α = {(a,b) ∈ S2 | a≡ b(mod α∨)} and define a right action of R on QA,α by (x,y)f =
(fAx,sα(fA)y) for (x,y) ∈QA,α and f ∈R. We have Q∅

A,α = S∅⊕S∅ and we set

(QA,α)
∅
A′ =

⎧⎪⎨⎪⎩
S∅⊕0 (A′ =A),

0⊕S∅ (A′ = α ↑A),
0 (otherwise).

It is easy to see that Qα
A,α = Sα⊗S QA,α is indecomposable.

Lemma 3.11. We have Qα
A,α ∈ Kα

P .
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Proof. It is easy to see that Qα
A,α ∈Kα

Δ. Let M ∈Kα
Δ and we analyze Hom•

Kα
Δ
(Qα

A,α,M).

By (LE), M �
⊕

iMi such that suppA(Mi) ⊂ W ′
α,affAi for some Ai ∈ A. We have

Hom•
Kα

Δ
(Qα

A,α,Mi) = 0 if A /∈W ′
α,affAi. Therefore, it is sufficient to prove the following:

if a sequence M1 → M2 → M3 in Kα
Δ satisfies (ES) and suppA(Mi) ⊂ W ′

α,affA, then

0→ Hom•
Kα

Δ
(Qα

A,α,M1)→ Hom•
Kα

Δ
(Qα

A,α,M2)→ Hom•
Kα

Δ
(Qα

A,α,M3)→ 0 is exact. We can

apply a similar argument of the proof of Proposition 3.7.

We can apply the argument in the proof of Theorem 2.35 and get the following

proposition.

Proposition 3.12. Any object in Kα
P is a direct sum of Qα

A,α(n) where A∈A and n∈Z.

3.4. The combinatorial category of Andersen-Jantzen-Soergel

Assume that K is a complete local Noetherian integral domain. We recall the combina-
torial category of Andersen-Jantzen-Soergel [AJS94]. We use the version introduced by

Fiebig in [Fie11]. We write KAJS for this category.

Let S0 be a flat commutative graded S -algebra and we define the category KAJS(S0) as
follows. An object of KAJS(S0) is M= ((M(A))A∈A,(M(A,α))A∈A,α∈Δ+), where M(A)

is a graded (S0)
∅-module andM(A,α)⊂M(A)⊕M(α ↑A) is a graded sub-(S0)

α-module.

A morphism f : M→N in KAJS(S0) is a collection of degree zero (S0)
∅-homomorphisms

fA : M(A) → N (A) which sends M(A,α) to N (A,α) for any A ∈ A and α ∈ Δ+. Put

KAJS =KAJS(S) and K∗
AJS =KAJS(S

∗) for ∗ ∈ {∅}∪Δ.

For each s ∈ Saff , the translation functor ϑs : KAJS(S0)→KAJS(S0) is defined as

ϑs(M)(A) =M(A)⊕M(As)

and

ϑs(M)(A,α) =

⎧⎪⎨⎪⎩
M(A,α)⊕M(As,α) (As /∈W ′

α,affA),

{(x,y) ∈M(A,α)2 | x−y ∈ α∨M(A,α)} (As= α ↑A),
α∨M(As,α)⊕M(α ↑A,α) (As= α ↓A).

We define F(S0) : KP (S0)→KAJS(S0) as follows. First, we put

(F(S0)(M))(A) =M∅
A.

To define (F(S0)(M))(A,α), we take X ∈ K̃P (S
α
0 ) and an isomorphism ϕ : X → Mα in

K̃P (S
α
0 ) such that X =

⊕
Ω∈W ′

α,aff\A
(X ∩

⊕
A∈ΩX∅

A). Such X exists since M satisfies

(LE). Then we have an isomorphism X∅
A � (X≥A/X>A)

∅ � ((Mα)≥A/(M
α)>A)

∅ �M∅
A.

In general, for Y ∈KP (S0), y ∈ Y ∅ and A ∈A, write yA for the Y ∅
A-component of y along

the decomposition Y ∅ =
⊕

A∈AY ∅
A. Then, this isomorphism can be written as x �→ϕ(x)A.

Here, we use the same letter ϕ for the induced map X∅ →M∅.
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Now let (F(S0)(M))(A,α) be the image of

X≥A →X∅
A⊕X∅

α↑A �M∅
A⊕M∅

α↑A.

In other words, (F(S0)(M))(A,α) is the set of (ϕ(xA)A,ϕ(xα↑A)α↑A) where x ∈X≥A. We
may assume x ∈

⊕
A′∈W ′

α,affA
X∅

A′ . Of course, we have to prove that this space does not

depend on a choice of X. We use the following lemma.

Lemma 3.13. Let X,Y ∈ K̃P (S0), f : X → Y be a morphism, A∈A and α∈Δ+. Assume

that x ∈X∅
≥A satisfies xA′ = 0 for A′ /∈W ′

α,affA.

(1) We have f(x)A = f(xA)A and f(x)α↑A = f(xα↑A)α↑A.

(2) Let g : Y → Z be another morphism in K̃P (S0). Then, g(f(x)A′)A′ = g(f(x))A′ for

A′ ∈ {A,α ↑A}

Proof. We prove (1). Let A′′ ∈ A. Then f(x)A′′ =
∑

A′∈A f(xA′)A′′ . We have

• xA′ = 0 unless A′ ≥A since x ∈X≥A.
• xA′ = 0 unless A′ ∈W ′

α,affA from the condition on x.

• f(xA′)A′′ = 0 unless A′′ ≥A′ from the definition of morphisms in K̃P (S0).

Therefore, in the sum
∑

A′∈A f(xA′)A′′ , we may assume A′ satisfies A ≤ A′ ≤ A′′,A′ ∈
W ′

α,affA. If A′′ = A, then A ≤ A′ ≤ A′′, implying A′ = A. Hence, f(x)A = f(xA)A. If
A′′ = α ↑ A, we have A ≤ A′ ≤ α ↑ A and A′ ∈W ′

α,affA. Thus, we have A′ = A or α ↑ A.
However, by Remark 2.7, we have f(xA)α↑A = 0. Hence, f(x)α↑A = f(xα↑A)α↑A.
We prove (2). We have f(xA′)∈

⊕
A′′≥A′ Y ∅

A′′ . Hence, f(xA′)−f(xA′)A′ ∈
⊕

A′′>A′ Y ∅
A′′ .

Therefore, g(f(xA′))− g(f(xA′)A′) ∈
⊕

A′′>A′ Z∅
A′′ . Hence, g(f(xA′))A′ = g(f(xA′)A′)A′ .

By (1), the right-hand side is g(f(x)A′)A′ and the left-hand side is g(f(xA′))A′ = (g ◦
f)(xA′)A′ = (g ◦f)(x)A′ = g(f(x))A′ .

Let ϕ′ : X ′ → Mα be another isomorphism which satisfies the condition for X and

set ψ = (ϕ′)−1 ◦ ϕ. For A′ ∈ {A,α ↑ A}, we have ϕ(xA′)A′ = ϕ(x)A′ = ϕ′(ψ(x))A′ =

ϕ′(ψ(x)A′)A′ . Hence, (ϕ(xA)A,ϕ(xα↑A)α↑A) = (ϕ′(ψ(x)A)A,ϕ
′(ψ(x)α↑A)α↑A). As ψ is a

morphism, ψ(x) ∈ X ′
≥A. Hence, the right-hand side is in (F(S0)(M))(A,α) determined

by X ′. Therefore, the space (F(S0)(M))(A,α) determined by X is contained in the space

(F(S0)(M))(A,α) determined byX ′. By swapping X withX ′, we get the reverse inclusion
and therefore, the space (F(S0)(M))(A,α) does not depend on the choice of X.
Let f : M → N be a morphism in KP (S0) and take a lift f̃ ∈ Hom

˜KP (S0)
(M,N)

of f. Then, we have a homomorphism (F(S0)(f))(A) : M
∅
A → N∅

A defined by M∅
A ↪→⊕

A′≥AM∅
A′

˜f−→
⊕

A′≥AN∅
A′ � N∅

A. In other words, we put (F(S0)(f))(A)(m) = f̃(m)A.

It is easy to see that this does not depend on a lift f̃ .

We prove that the collection ((F(S0)(f))(A))A∈A preserves (F(S0)(M))(A,α). Take

X ∈ K̃P (S
α
0 ) and ϕ : X

∼−→ Mα as in the definition of (F(S0)(M))(A,α). We also take
ψ : Y

∼−→ Nα where Y ∈ KP (S
α
0 ) satisfies Y =

⊕
Ω∈W ′

α,aff
(Y ∩

⊕
A∈ΩY ∅

A). Let (x1,x2) ∈
(F(S0)(M))(A,α). There exists x ∈ X≥A such that (x1,x2) = (ϕ(xA)A,ϕ(xα↑A)α↑A).
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We may assume x ∈
⊕

A′∈W ′
α,affA

X∅
A′ . We put g̃ = ψ−1 ◦ f̃ . Then, (F(S0)(f))(A)(x1) =

f̃(ϕ(xA)A)A =ψ(g̃(ϕ(xA)A))A. By Lemma 3.13 (2) to ϕ(xA)A, we have ψ(g̃(ϕ(xA)A))A =
ψ(g̃(ϕ(xA)A)A)A and again by Lemma 3.13 (1), (2), this is equal to ψ(g̃(ϕ(x))A)A.

Similarly, we have (F(S0)(f))(α ↑ A)(x2) = ψ(g̃(ϕ(x))α↑A)α↑A. Since the element

(ψ(g̃(ϕ(x))A)A,ψ(g̃(ϕ(x))α↑A)α↑A) is the image of g̃(ϕ(x)) ∈ Y≥A under Y≥A →
Y ∅
A ⊕ Y ∅

α↑A � N∅
A ⊕N∅

α↑A, it is in (F(S0)(N))(A,α). Hence, we have proved that the

collection ((F(S0)(f))(A))A∈A defines a morphism F(S0)(M)→F(S0)(N). Hence, F(S0)

is a functor.
Put F = F(S) and F∗ = F(S∗) for ∗ ∈ {∅}∪Δ.

Proposition 3.14. We have F(M ∗Bs)� ϑs(F(M)).

Proof. Before giving a proof, we give some notation. Fix α ∈ Δ and M ∈ K(S0). Put

M (Ω) =Mα∩
⊕

A∈ΩM∅
A for Ω∈W ′

α,aff\A. Then, ifMα =
⊕

Ω∈W ′
α,aff\A

(Mα∩
⊕

A∈ΩM∅
A),

then (F(M))(A,α) is the image of M (W ′
α,affA) in M∅

A ⊕M∅
α↑A. As suppM (W ′

α,affA) ⊂
W ′

α,affA and W ′
α,aff ∩ [A,α ↑A] = {A,α ↑A}, we have (F(M))(A,α)�M

(W ′
α,affA)

[A,α↑A] .

Take δs ∈ Λ∨
K

such that 〈αs,δs〉 = 1 and put be = (α∨
s )

−1(δs ⊗ 1− 1⊗ s(δs)) and bs =

(α∨
s )

−1(δs⊗1−1⊗δs). Note that this does not depend on a choice of δs. We fix (Bs)
∅
e �R∅

and (Bs)
∅
s �R∅ as

R∅ � 1 �→ be ∈ (Bs)
∅
e,

R∅ � 1 �→ bs ∈ (Bs)
∅
s.

We have (M ∗Bs)
∅
A =M∅

A⊗ (Bs)
∅
e ⊕M∅

As⊗ (Bs)
∅
s �M∅

A⊕M∅
As = ϑs(F(M))(A). Here,

we use the above fixed isomorphisms. We check F(M ∗Bs)(A,α)� ϑs(F(M))(A,α) under
this isomorphism. We may assume Mα =

⊕
Ω∈W ′

α,aff\A
(Mα∩

⊕
A∈ΩM∅

A).

First, we assume that As /∈ W ′
α,affA. Then, we have (M ∗Bs)

(W ′
α,affA) = M (W ′

α,affA)⊗
be⊕M (W ′

α,affAs)⊗ bs by Lemma 2.23. As be ∈ (Bs)
∅
e (resp. bs ∈ (Bs)

∅
s) and [A,α ↑ A]s∩

W ′
α,affAs= [As,α ↑As]∩W ′

α,affAs, we have

(M ∗Bs)
(W ′

α,affA)

[A,α↑A] =M
(W ′

α,affA)

[A,α↑A] ⊗ be⊕M
(W ′

α,affAs)

[As,α↑As] ⊗ bs

Therefore, F(M ∗Bs)(A,α) = F(M)(A,α)⊕F(M)(As,α) = ϑs(F(M))(A,α).

Next, assume that As = α ↑ A. Then, we have [A,α ↑ A] = [A,As] = {A,As}. Hence,
F(M ∗Bs)(A,α) = (M ∗Bs)

α
{A,As}. Since [A,As] = {A,As} is s-invariant, by Lemma 2.25,

we have (M ∗Bs)
α
[A,As] �Mα

[A,As]⊗RBs =F(M)(A,α)⊗RBs. Our claim is that the image

of Mα
{A,As}⊗RBs in (M{A,As} ∗Bs)

∅ � (M∅
A⊕M∅

As)⊕ (M∅
As⊕M∅

A) is equal to {(x,y) ∈
Mα

{A,As} |x−y ∈α∨Mα
{A,As}}. We write the image ofm∈M inM∅

A′ bymA′ for A′ ∈A. We

have Mα
{A,As}⊗RBs =Mα

{A,As}⊗Rs R and the image of m1⊗1+m2⊗δs ∈Mα
{A,As}⊗Rs R

in (M∅
A⊕M∅

As)⊕ (M∅
As⊕M∅

A) is

((m1,A+ δAs m2,A,m1,As+ δAs m2,As),(m1,As+s(δs)
Am2,As,m1,A+s(δs)

Am1,A)).
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Therefore, we have

(m1,A+ δAs m2,A,m1,As+ δAs m2,As)− (m1,A+s(δs)
Am2,A,m1,As+s(δs)

Am2,As)

= (α∨
s )

A(m2,A,m2,As)

which is in α∨Mα
{A,As} since (α∨

s )
A ∈ {±1}α∨. From this formula it is easy to see the

reverse inclusion.

Finally, we assume that As = α ↓ A. Note that As < A < α ↑ A < (α ↑ A)s. Put N =

M (W ′
α,affA). We have F(N ∗Bs)(A,α)⊂F(N ∗Bs)(A)⊕F(N ∗Bs)(α ↑A) = (N∅

As⊕N∅
A)⊕

(N∅
α↑A ⊕N∅

(α↑A)s). We describe the image of (N ∗Bs)[A,α↑A] in (N∅
As ⊕N∅

A)⊕ (N∅
α↑A ⊕

N∅
(α↑A)s), or equivalently the image of (N ∗Bs)I where I = {A′ ∈ A |A′ ≥As}\{As}.
Set I ′ = {A′ ∈ A | A′ ≥ As}. Then, I ′ ⊃ I and I ′ is s-invariant. Hence, (N ∗Bs)I′ =

NI′ ⊗Bs =NI′ ⊗Rs R by Lemma 2.25. Consider the projection (N ∗Bs)I′ → (N ∗Bs)As⊕
(N ∗Bs)A⊕ (N ∗Bs)α↑A = (N∅

As ⊕N∅
A)⊕ (N∅

A ⊕N∅
As)⊕ (N∅

α↑A ⊕N∅
(α↑A)s). This is given

by

NI′ ⊗Rs R (N∅
As⊕N∅

A)⊕ (N∅
A⊕N∅

As)⊕ (N∅
α↑A⊕N∅

(α↑A)s)

m⊗f ((mAsf,mAs(f)),(mAf,mAss(f)),(mα↑Af,m(α↑A)ss(f))).

� �

Any element in NI′ ⊗Rs R is written as m1 ⊗ 1+m2 ⊗ δs for m1,m2 ∈ NI′ . It is in
(N ∗Bs)I if and only the projection to (N ∗Bs)

∅
As �N∅

As⊕N∅
A is zero. This projection is

given by (m1,As+ sα(δ
A
s )m2,As,m1,A+ sα(δ

A
s )m2,A). Hence, it is sufficient to prove that

the image of

{m1⊗1+m2⊗ δs ∈NI′ ⊗Rs R | (m1+sα(δ
A
s )m2)A′ = 0 for A′ =A,As}

in (N ∗Bs)
∅
A ⊕ (N ∗Bs)

∅
α↑A = N∅

A ⊕N∅
As ⊕N∅

α↑A ⊕N∅
(α↑A)s is α∨N[As,A] ⊕N[α↑A,(α↑A)s]

(note that A= α ↑ (As) and (α ↑A)s= α ↑ (α ↑A)).
The image of m1⊗1+m2⊗ δs in N∅

A⊕N∅
As⊕N∅

α↑A⊕N∅
(α↑A)s is given by

(m1,A+ δAs m2,A,m1,As+ δAs m2,As,m1,α↑A+sα(δ
A
s )m2,α↑A,m1,(α↑A)s+sα(δ

A
s )m2,(α↑A)s).

Define ε ∈ {±1} by αA
s = εα. Since m1,A + sα(δ

A
s )m2,A = 0, we have m1,A + δAs m2,A =

(δAs − sα(δ
A
s ))m2,A = εα∨m2,A. By the same argument, we have m1,As + δAs m2,As =

εα∨m2,As. Therefore, (m1,A+δAs m2,A,m1,As+δAs m2,As)=α∨(εm2,A,εm2,As)∈α∨N∅
[A,As].

Therefore, the image is in α∨N[As,A]⊕N[α↑A,(α↑A)s].

However, let m′
1 ∈ N[As,A] and m′

2 ∈ N[α↑A,(α↑A)s]. Take a lift m1 ∈ NI′ (resp. m2 ∈
MI′′) of m′

1 (resp. m′
2) where I ′′ = {A′ ∈ A | A′ ≥ α ↑ A}. Put n =m2⊗ 1+ ε(m1⊗ δs−

(s(δs))
Am1⊗ 1). Then, since m2 ∈MI′′ , m2,A = 0, m2,As = 0. Now it is straightforward

to see n ∈ (M ∗Bs)I and the image of n is (α∨m′
1,A,α

∨m′
1,As,m

′
2,α↑A,m

′
2,(α↑A)s). We get

the proposition.
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3.5. Some calculations of homomorphisms

Assume that K is a complete local Noetherian integral domain. In this subsection, we fix

a flat commutative graded S -algebra S0. We define some morphisms as follows. These

will be used only in this subsection. Let A ∈ A and α ∈Δ+.

i0 : QA,α →QA,α (f,g) �→ (0,α∨g),

i+0 : QA,α →Qα↑A,α (f,g) �→ (g,f),

i−0 : QA,α →Qα↓A,α (f,g) �→ (0,α∨f).

It is straightforward to see that these are morphisms in K̃. We use the same letter for the

images of these morphisms in K.

Lemma 3.15. We have End•K(S0)(S0⊗S QA,α) = End•
˜K(S0)

(S0⊗S QA,α) = S0 id⊕S0i0.

Proof. Put M = S0⊗SQA,α. Note that suppA(M) = {A,α ↑A}. Let ϕ ∈End
˜K(S0)

(S0⊗S

QA,α). We have ϕ(M∅
A) ⊂

⊕
A′∈A+ZΔM∅

A′ = M∅
A. By the same argument, we also have

ϕ(M∅
α↑A) ⊂ M∅

α↑A. Therefore, ϕ preserves M∅
A′ for any A′ ∈ A. Hence, we get the first

equality of the lemma.

We prove ϕ ∈ S0 id+S0i0. Since ϕ preserves M∅
A′ , we have ϕ(f,g) = (ϕ1(f),ϕ2(g)) for

some ϕ1,ϕ2 : S
∅
0 → S∅

0 . Restricting to {(f,g) ∈M | g = 0} = α∨S0⊕ 0, ϕ1 sends α∨S0 to
α∨S0. Therefore, it is given by ϕ1(f) = cf for some c ∈ S0. Replacing ϕ with ϕ− c id,

we may assume ϕ1 = 0. The image of ϕ is contained in {(f,g) ∈M | f = 0} = 0⊕α∨S0.

Hence, ϕ2(g) = α∨dg for some d ∈ S0 and we have ϕ= di0.

Lemma 3.16. We have Hom•
K(S0)(S0⊗S QA,α,S0⊗S Qα↑A,α) = S0i

+
0 .

Proof. Let ϕ : S0 ⊗S QA,α → S0 ⊗S Qα↑A,α be a morphism in K̃(S0). By a similar

argument of the proof of Lemma 3.15, ϕ is given by ϕ(f,g) = (ϕ1(g),ϕ2(f)) for ϕi : S
∅
0 →

S∅
0 such that ϕi(α

∨S0)⊂ α∨S0 for i= 1,2. Hence, ϕ1(f) = cf for some c ∈ S0. It is clear

that ϕ− ci+0 is zero as a morphism in K(S0). Hence, we get the lemma.

Lemma 3.17. We have Hom•
K(S0)(S0⊗S QA,α,S0⊗S Qα↓A,α) = S0i

−
0 .

Proof. Set M = S0⊗SQA,α and N = S0⊗SQα↓A,α and let ϕ : M →N be a morphism in

K̃(S0). We have ϕ(M∅
α↑A)⊂

⊕
A′≥α↑AN∅

A′ =0 and ϕ(M∅
A)⊂

⊕
A′∈A+ZΔN∅

A′ =N∅
A. Hence

ϕ(f,g) = (0,ϕ1(f)) for some ϕ1 : S
∅
0 →S∅

0 . For any f ∈ S0 we have ϕ(f,f) = (0,ϕ1(f))∈N .

Hence, ϕ1(f) ∈ α∨S0. Therefore, ϕ1(f) = cα∨f for some c ∈ S0. Hence, ϕ= ci−0 .

Lemma 3.18. If A1 �= α ↓A2,A2,α ↑A2, then HomK(S0)(QA1,α,QA2,α) = 0.

Proof. It follows from suppA(QA1,α)∩ suppA(QA2,α) = ∅.

Next, we calculate homomorphisms in KAJS. Set QA,α = F(QA,α).
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Lemma 3.19. The object QA,α is given by

QA,α(A
′) =

{
S∅ (A′ =A,α ↑A),
0 (otherwise),

QA,α(A
′,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sβ ⊕0 (A′ =A,α ↑A, β �= α),

0⊕Sβ (β ↑A′ =A,α ↑A, β �= α),

α∨Sα⊕0 (A′ = α ↑A, β = α),

{(f,g) ∈ (Sα)2 | f ≡ g (mod α∨)} (A′ =A, β = α),

0⊕Sα (A′ = α ↓A, β = α),

0 (otherwise).

Proof. The formula of QA,α(A) is obvious. If β �= α, then Sβ⊗S QA,α = Sβ⊕Sβ . Hence,
the formula of QA,α(A

′,β) with β �= α follows. The other formulas follow from a direct

calculation.

Set ι0 = F(i0), ι
+
0 = F(i+0 ), ι

−
0 = F(i−0 ). These morphisms are described as follows.

ι0 : QA,α →QA,α (ι0)A = 0,(ι0)α↑A = α id,

ι+0 : QA,α →Qα↑A,α (ι+0 )A = 0,(ι+0 )α↑A = id,

ι−0 : QA,α →Qα↓A,α (ι−0 )A = α id,(ι−0 )α↑A = 0.

Lemma 3.20. We have End•KAJS(S0)(S0⊗S QA,α) = S0 id⊕S0ι0.

Proof. Set M = S0⊗S QA,α and let ϕ : M → M be a morphism. Since M(A′) = 0 for

A′ �=A,α ↑A, we have ϕA′ =0 for such A′. The morphism ϕ preservesM(β ↓A,β)= 0⊕Sβ
0

for any β ∈ Δ+. Hence, ϕA(S
β
0 ) ⊂ Sβ

0 . Therefore, ϕA(S0) ⊂ S0 and hence, ϕA = c id for
some c ∈ S0. We also have ϕα↑A = d id for some d ∈ S0.

We prove ϕ ∈ S0 id+S0ι0. By replacing ϕ with ϕ− c id, we may assume ϕA = 0. We

have (ϕA(f),ϕα↑A(g)) ∈ M(A,α) for any (f,g) ∈ M(A,α). Since ϕA(f) = 0, we have
ϕα↑A(g) ∈ α∨Sα

0 . Therefore, d ∈ α∨Sα
0 ∩S0 = α∨S0. We have ϕ= (d/α∨)ι0.

Lemma 3.21. We have Hom•
KAJS(S0)(S0⊗S QA,α,S0⊗S Qα↑A,α) = S0ι

+
0 .

Proof. Set M = S0 ⊗S QA,α and N = S0 ⊗S Qα↑A,α. Let ϕ : M → N be a morphism.

Then, ϕA′ = 0 for A′ �= α ↑ A. For β ∈Δ+ \ {α}, since ϕ sends M(α ↑ A,β) = Sβ
0 ⊕ 0 to

N (α ↑A,β) =Sβ
0 ⊕0, we have ϕα↑A(S

β
0 )⊂Sβ

0 . Since ϕ sendsM(A,α) to N (A,α) = 0⊕Sα,

ϕα↑A(S
α)⊂ Sα. Hence, ϕα↑A ∈ S0 id and we get the lemma.

Lemma 3.22. We have Hom•
KAJS(S0)(S0⊗S QA,α,S0⊗S Qα↓A,α) = S0i

−
0 .

Proof. Set M = S0 ⊗S QA,α and N = S0 ⊗S Qα↓A,α. Let ϕ : M → N be a morphism.

Then, ϕA′ =0 for A′ �=A. For β ∈Δ+\{α}, ϕ sendsM(A,β) = 0⊕Sβ
0 toN (A,β) =Sβ

0 ⊕0.

Hence, ϕA(S
β
0 ) ⊂ Sβ

0 . The morphism ϕ sends M(A,α) to N (A,α) = α∨Sα ⊕ 0. Hence,

ϕA(S
α
0 )⊂ α∨Sα

0 . Therefore, ϕA ∈ α∨S0 id and we get the lemma.

Lemma 3.23. If A1 �= α ↓A2,A2,α ↑A2, then HomKAJS(S0)(QA1,α,QA2,α) = 0.
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Proof. It follows from there is no A such that QA1,α(A) �= 0 and QA2,α(A) �= 0.

Summarizing the calculations in this subsection, we get the following.

Lemma 3.24. The functor Fα = F(Sα) induces an isomorphism Hom•
K(S0)(S0 ⊗S

QA1,α,S0⊗S QA2,α)
∼−→Hom•

KAJS(S0)(S0⊗S Fα(QA1,α),S0⊗S Fα(QA2,α)).

3.6. Equivalence

Assume that K is a complete local Noetherian integral domain.

Lemma 3.25. The functor Fα : Kα
P →Kα

AJS is fully faithful for α ∈Δ.

Proof. By Corollary 3.8 and Proposition 3.12, we may assumeM =Qα
A1,α

andN =Qα
A2,α

,

where A1,A2 ∈ A. Hence, the lemma follows from Lemma 3.24.

Proposition 3.26. The functor F : KP →KAJS is fully faithful.

Proof. Let M,N ∈ KP and we prove that F : Hom•
KP

(M,N)→ Hom•
KAJS

(F(M),F(N))

is an isomorphism. By the diagram

Hom•
KP

(M,N) Hom•
KAJS

(M,N)

∏
A∈AHom•

S∅(M∅
A,N

∅
A),

F

F is injective (the injectivity of two morphisms in the above diagram follows from the

definitions).
We prove that F is surjective. For ν ∈ XK, let S(ν) be the localization at

the prime ideal (ν) ⊂ S. Since Hom•
KP

(M,N) is graded free, we have Im(F) =⋂
ν∈XK

S(ν) ⊗S Im(F). By Corollary 3.8, we have S(ν) ⊗S Im(F) = Im(F(S(ν))).
Since any S(ν) is an Sα-algebra for some α ∈ Δ, by Proposition 3.26, we have

Im(F(S(ν))) = Hom•
KAJS(S(ν))

(F(S(ν))(S(ν) ⊗S M),F(S(ν))(S(ν) ⊗S N)). Therefore, F
is surjective since

⋂
ν∈XK

Hom•
KAJS(S(ν))

(F(S(ν))(S(ν) ⊗S M),F(S(ν))(S(ν) ⊗S N)) ⊃
Hom•

KAJS
(F(M),F(N)).

Set Qλ = F(Qλ). Let KAJS,P be the full subcategory of KAJS consisting of direct

summands of direct sums of objects of a form (ϑs1 ◦ · · · ◦ϑsl)(Qλ)(n) for s1, . . . ,sl ∈ Saff ,

λ ∈ (RΔ)int and n ∈ Z. By Proposition 3.14 and 3.26, we get the following theorem.

Theorem 3.27. We have KP � KAJS,P . In particular, the category SBimod acts on

KAJS,P .

3.7. Representation Theory

In this subsection, we assume that K is an algebraically closed field of p>h, where h is the
Coxeter number. Let G be a connected reductive group over K and T a maximal torus of

G with the root datum (X,Δ,X∨,Δ∨). The Lie algebra g of G has a structure of a p-Lie

algebra. Let U [p](g) be the restricted enveloping algebra. Let Ŝ be the completion of S at
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the augmentation ideal. For S0 = Ŝ or K, let CS0
be the category defined in [AJS94]. The

category CK is equivalent to the category of G1T -modules, where G1 is the kernel of the

Frobenius morphism. Let ZS0
(λ) ∈ CS0

be the baby Verma module with highest weight
λ and PS0

(λ) ∈ CS0
the indecomposable projective module such that K⊗S0

PS0
(λ) is the

projective cover of the irreducible module with highest weight λ. Such objects exist by

[AJS94, 4.19 Theorem] when S0 = Ŝ.
We fix an alcove A0 ∈ A and λ0 ∈ X ∩ (pA0− ρ), where ρ is the half sum of positive

roots and pA0 = {pa | a ∈ A0}. For S0 = Ŝ or K, let CS0,0 be the full subcategory of

CS0
consisting of quotients of modules of a form

⊕
w∈W ′

aff
PS0

(w ·p λ0)
nw where w ·p λ0 =

pw((λ0+ρ)/p)−ρ and nw ∈ Z≥0. Then, the cateogory CS0,0 is a direct summand of CS0
.

Let Proj(CS0,0) = {P ∈ CS0,0 | P is projective}.
Let S0 be a flat commutative S -algebra which is not necessary graded. We consider

the following object: M= ((M(A))A∈A,(M(A,α))A∈A,α∈Δ+), where M(A) is an (S0)
∅-

module and M(A,α) ⊂ M(A)⊕M(α ↑ A) is a sub-(S0)
α-module (we consider usual

modules, not graded ones). Let Kf
AJS(S0) be the category of such objects. Starting

from this, we can define the functor ϑs and the category Kf
AJS,P (S0) in a similar way.

Andersen-Jantzen-Soergel proved the following (see [AJS94, 9.4. Proposition] for the full
faithfulness. For the essential surjectivity, see the discussion in [AJS94, 16.5]). We modified

the functor using [Fie11, Theorem 6.1].

Theorem 3.28. There is an equivalence of the categories V : Proj(C
̂S,0)

∼−→Kf
AJS,P (Ŝ).

Note that the functor V is defined explicitly.

Let K⊗
̂S Proj(C

̂S,0) be the category defined as follows. The objects of K⊗
̂S Proj(C

̂S,0)
are the same as those of Proj(C

̂S,0), and the space of homomorphism is defined by

HomK⊗
̂SProj(C

̂S,0)
(M,N) =K⊗

̂S HomProj(C
̂S,0)

(M,N).

Lemma 3.29. We have K⊗
̂S Proj(C

̂S,0)� Proj(CK,0).

Proof. We consider the functor K⊗
̂S Proj(C

̂S,0) → Proj(CK,0) defined by P �→ K⊗
̂S P .

This is essentially surjective by [AJS94, 4.19 Theorem] and fully faithful by [AJS94, 3.3

Proposition].

We also define K⊗
̂S Kf

AJS,P (Ŝ) and K⊗S Kf
AJS,P (S) in the same way.

Lemma 3.30. We have the following.

(1) The category Kf
AJS,P (S) is equivalent to the category defined as follows: the objects

are the same as KAJS,P , and the space of homomorphisms is defined by HomKf
AJS,P

=

Hom•
KAJS,P

.

(2) We have K⊗
̂S Kf

AJS,P (Ŝ)�K⊗S Kf
AJS,P (S).

Proof. (1) is obvious.
For (2), define Ŝ⊗S Kf

AJS,P in the obvious way. It is sufficient to prove Kf
AJS,P (Ŝ) �

Ŝ⊗SKf
AJS,P . The functor F : Ŝ⊗SKf

AJS,P →Kf
AJS,P (Ŝ) is defined in an obvious way and it
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is fully faithful by [AJS94, 14.8 Lemma]. In particular, F sends an indecomposable object

to an indecomposable object. We define the category Kf
P as in (1). Namely, the objects

of Kf
P are the same as those of Kf

P and we define HomKf
P
=Hom•

KP
. The indecomposable

objects in Kf
AJS,P �Kf

P and Kf
AJS,P (Ŝ)�Proj(C

̂S,0) are both parametrized by A, and it is

easy to see that F gives a bijection between the set of indecomposable objects. Therefore,

F is essentially surjective.

Therefore, we get

Proj(CK,0)�K⊗
̂S Proj(C

̂S,0)�K⊗
̂S Kf

AJS,P (Ŝ)�K⊗S Kf
AJS,P �K⊗S Kf

P .

Since the action of SBimod on KP is S -linear, it gives an action on K⊗S Kf
P . Hence,

SBimod acts on Proj(CK,0). With respect to this action, Bs acts as the wall-crossing

functor. We write this action as (M,B) �→M ∗B.

Now we prove the following theorem.

Theorem 3.31. There is an action of SBimod on CK,0 such that Bs acts as the wall-
crossing functor for s ∈ Saff .

Let L(pλ) ∈ CK be the irreducible module with highest weight pλ for λ ∈ ZΔ. The
category CK,0 has the structure of ZΔ-category via M �→ M ⊗L(pλ) for λ ∈ ZΔ. Fix a

projective ZΔ-generator P of CK,0 and set E =
⊕

λ∈ZΔHomCK,0
(P,P ⊗L(pλ)). This is a

ZΔ-graded algebra, and CK,0 �M �→
⊕

λ∈ZΔHom(P,M ⊗L(pλ)) gives an equivalence of
categories between CK,0 and the category of finitely generated ZΔ-graded right E-modules

[AJS94, E.4 Proposition]. Let ModZΔ(E) be the the category of finitely generated ZΔ-

graded right E-modules and ProjZΔ(E) the category of projective objects in ModZΔ(E).

Lemma 3.32. We have (Q ∗B)⊗ L(pλ) � (Q⊗L(pλ)) ∗B for Q ∈ Proj(CK,0), B ∈
SBimod and λ ∈ ZΔ.

Proof. Let λ ∈ ZΔ. Then, we have a functor Tλ (resp. TAJS,λ) on KP (resp. KAJS,P )
defined as follows.

• For M ∈ KP , Tλ(M) =M and Tλ(M)∅A =M∅
A+λ.

• For M∈KAJS, TAJS,λ(M)(A) =M(A+λ) and TAJS,λ(M)(A,α) =M(A+λ,α).

Since these functors are S -linear, they give functors on K⊗S KP and K⊗S KAJS,P ,

respectively. These functors give structures of ZΔ-category on each category. It is easy to
see that equivalences K⊗S KP �K⊗S KAJS,P � Proj(CK,0) are ZΔ-functor. Therefore, it

is sufficient to prove Tλ(M ∗B)� Tλ(M)∗B for M ∈ KP and B ∈ SBimod. This follows

from the definition.

Therefore, the action of B ∈ SBimod on Proj(CK,0) is compatible with the ZΔ-category

structure, and it gives an action on ProjZΔ(E). We write this action again by M �→M ∗B.
For each B ∈ SBimod, we define E(B) by E(B) =

⊕
λ∈ZΔHom(P,(P ∗B)⊗L(pλ)). This

is a ZΔ-graded E-bimodule.

Lemma 3.33. Let Q be a projective finitely generated ZΔ-graded E-module. Then, Q⊗E
E(B)�Q∗B.
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Proof. Let Qν be the ν-th graded piece of Q, where ν ∈ ZΔ. Let p ∈ Qν and let ϕp be
the corresponding element in HomModZΔ(E)(E,Q(ν)). Here (ν) is the shift of the grading.

Then, ϕp ∗B gives E ∗B → Q(ν) ∗B. By the definition, E ∗B = E(B). Therefore, for

m ∈ E(B), we have ϕp(m) ∈Q(ν)∗B � (Q∗B)(ν). Hence, we get Q⊗E E(B)→Q∗B by
p⊗m �→ ϕp(m). This is an isomorphism if Q = E . Hence, it is an isomorphism for any

Q ∈ ProjZΔ(E).

Now for ZΔ-graded right E-module M, put M ∗B =M ⊗E E(B). By the above lemma,

E(B1)⊗E E(B2)�E ∗B1 ∗B2 = E ∗(B1⊗B2)�E(B1⊗B2). Hence, (M ∗B1)∗B2 = (M⊗E
E(B1))⊗E E(B2)�M⊗E (E(B1)⊗E E(B2))�M⊗E E(B1⊗B2) =M ∗(B1⊗B2). It is easy
to see that this gives an action of SBimod on ModZΔ(E) and therefore, on CK,0.

3.8. Characters

Assume that K is an algebraically closed field of p>h, where h is the Coxeter number. Any

object P ∈Proj(CS,0) has a baby Verma flag. Let (P :ZS(w ·pλ0)) be the the multiplicity

of ZS(w ·p λ0) in P. The following lemma is obvious from the constructions.

Lemma 3.34. Let P ∈ Proj(CS,0) and M ∈ KP such that V(P )�F(M). Then, we have

(P : ZS(w ·p λ0)) = rank(M{wA0}) for w ∈W ′
aff .

The projective module PS(λ) is characterized by

• PS(λ) is indecomposable.
• (PS(λ) : ZS(λ)) = 1.
• (PS(λ) : ZS(μ)) = 0 unless μ−λ ∈ Z≥0Δ

+.

The module V−1(F(Q(wA0))) satisfies these conditions with λ = w ·p λ0 by the above

lemma. We get the following.

Proposition 3.35. Let w ∈W ′
aff . Then V(PS(w ·p λ0))�F(Q(wA0)).

The following corollary is obvious from the above proposition.

Corollary 3.36. We have [PK(w ·p λ0) : ZK(v ·p λ0)] = rank(Q(wA0){vA0}).

3.9. Lusztig’s conjecture

For B ∈ SBimod and w ∈Waff , let Bw be the image of B ↪→ B⊗RR∅ =
⊕

x∈Waff
B∅

x �
B∅

w. Put ch(B) =
∑

w∈Waff
v−�(w) grk(Bw). Then, [B] �→ ch(B) induces an isomorphism

[SBimod]�H. For each w ∈Waff , there exists an indecomposable object B(w)∈ SBimod

unique up to isomorphism such that ch(B(w)) ∈ Hw +
∑

x<wZ[v,v−1]Hx. We say that
B(w) satisfies the Soergel conjecture if ch(B(w)) is a Kazhdan-Lusztig basis; namely,

ch(B(w)) ∈Hw +
∑

x<w vZ[v]Hx. It is known that the Soergel conjecture is satisfied by

any B(w) over a characteristic zero field. Therefore, for a fixed w, if p is sufficiently large,

B(w) satisfies the Soergel conjecture (cf. [EW14]). We fix λ ∈ (RΔ)int and w ∈Waff such
that A+

λw ∈Πλ. Here, A
+
λ is the maximal element in W ′

λA
−
λ .

Lemma 3.37. Let wλ ∈ Waff such that A+
λwλ = A−

λ . Then, we have SA+
λ
∗B(wλ) �

Qλ(�(w0)).
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Proof. By the translation as in the proof of Lemma 2.31, we may assume λ = 0. Then,
W ′

λ =Wf and it is generated by Saff ∩Wf . Moreover, the element wλ is equal to the longest

element w0.

It is sufficient to prove: B(w0)� {(zw) ∈RWf | zwt ≡ zw(mod αt)}(�(w0)), where t runs
through the set of reflections in Wf and αt the corresponding element in ΛK [Abe21, 2.1].

Let (G∨
C
,B∨

C
,T∨

C
) be the reductive group over C, the Borel subgroup and the maximal torus

with the root datum (X∨,Δ∨,X,Δ) and the positive system Δ+ ⊂Δ. Then, the category

of K-coefficient parity B∨
C
-equivariant sheaves on G∨

C
/B∨

C
is equivalent to the category

of Soergel bimodules attached to (Wf,X
∨
K
) [RW18]. The object B(w0) corresponds to

the indecomposable parity sheaf such that the restriction to the big cell B∨
C
w0B

∨
C
/B∨

C

is KB∨
C
w0B∨

C
/B∨

C
[�(w0)]. It is obvious that the constant sheaf KG∨

C
/B∨

C
[�(w0)] satisfies this

condition, and therefore, the constant sheaf corresponds to B(w0). By the main theorem

of [FW14], the corresponding Soergel bimodule is given as above.

Recall that we took w ∈Waff and λ ∈ (RΦint) such that A+
λw ∈Πλ. Define SA+

λ
∈ K̃′(S)

as follows: SA+
λ
=S as a left S -module and R acts through f �→ fA. We have (SA+

λ
)∅
A+

λ

=S∅

and (SA+
λ
)∅A′ = 0 for A′ ∈ A\{A+

λ }.

Theorem 3.38. If B(w) satisfies the Soergel conjecture, then SA+
λ
∗B(w)�Q(A+

λw).

Proof. First, we prove that SA+
λ
∗B(w) ∈ KP . By the translation as in Lemma 2.31,

we may assume λ = 0. Then, W ′
λ = Wf , and this is isomorphic to the subgroup of

Waff generated by s ∈ Saff which contains a hyperplance through 0. We identify Wf ↪→
Waff . We have sw < w for any s ∈ Wf ∩ Saff . Therefore, Hs ch(B(w)) = v−1 ch(B(w))

by [JW17, Lemma 4.3]. Hence, Hx ch(B(w)) = v−�(x) ch(B(w)) for any x ∈ Wf . Take

ay =
∑

n∈Z
ay,nv

n ∈ Z≥0[v,v
−1] such that ch(B(w0)) =

∑
y∈Wf

ayHy (one can write

ay explicitly, but we do not do this here because we will not use this). Then, we
have ch(B(w0)⊗B(w)) =

∑
y∈Wf

ayv
−�(y) ch(B(w)). Hence, we get B(w0)⊗B(w) �⊕

y∈Wf,n∈Z
B(w)ay,n(n−�(y)). Therefore, up to shift, SA+

0
∗B(w) is a direct summand of

SA+
0
∗ (B(w0)⊗B(w))�Q0(�(w0))∗B(w) ∈ KP . Hence, SA+

0
∗B(w) ∈ KP .

We return to the proof of the theorem. By [Lus80, Theorem 5.2], ch(SA+
λ
∗B(w)) =

A+
λ ch(B(w)) is described by periodic Kazhdan-Lusztig polynomials; namely, we have

A+
λ ch(B(w)) = v−nPA0

for some A0 ∈ A and n ∈ Z. Here, PA′ ∈ P0 is the element
given in [Soe97, Proposition 4.16]. We know A+

λ ch(B(w)) ∈A+
λw+

∑
A′>A+

λwZ[v,v−1]A′.

Comparing with [Soe97, Lemma 4.21], we have n = �(w0) and ch(SA+
λ
∗B(w)) ∈ A+

λw+∑
A′>A+

λw v−1Z[v−1]A′. By the self-duality of PA0
, we have ch(SA+

λ
∗B(w)) = v�(w0)PA0

∈
v2�(w0)A+

λw+
∑

A′>A+
λw v2�(w0)−1Z[v−1]A′. Therefore, by Theorem 3.10, we have

grkHom•
K(SA+

λ
∗B(w),SA+

λ
∗B(w)) ∈ 1+v−2Z[v−1].

Hence, EndK(SA+
λ
∗ B(w)) is one-dimensional, and therefore, 1 and 0 are only its

idempotents. Therefore, SA+
λ
∗ B(w) is indecomposable. Since Q(A+

λw) is a direct

summand of SA+
λ
∗B(w), we get the theorem.
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From the above theorem and Corollary 3.36, the multiplicity of the baby Verma modules
in the projective cover of an irreducible module is given by the value at 1 of the Kazhdan-

Lusztig polynomial. Hence, the Lusztig’s conjecture holds for sufficiently large p.
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