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Abstract

The operating room scheduling (ORS) problem deals with the optimization of daily operating
room surgery schedules. It is a challenging problem subject to many constraints, like to deter-
mine the starting time of different surgeries and allocating the required resources, including the
availability of beds in different department units. Recently, solutions to this problem based on
answer set programming (ASP) have been delivered. Such solutions are overall satisfying but,
when applied to real data, they can currently only verify whether the encoding aligns with the
actual data and, at most, suggest alternative schedules that could have been computed. As a
consequence, it is not currently possible to generate provisional schedules. Furthermore, the
resulting schedules are not always robust. In this paper, we integrate inductive and deductive
techniques for solving these issues. We first employ machine learning algorithms to predict the
surgery duration, from historical data, to compute provisional schedules. Then, we consider the
confidence of such predictions as an additional input to our problem and update the encoding
correspondingly in order to compute more robust schedules. Results on historical data from the
ASL1 Liguria in Italy confirm the viability of our integration.
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1 Introduction

The operating room scheduling (ORS) problem consists of optimizing daily surgical

schedules in operating rooms (ORs). It is a complex and highly constrained problem that

requires, among other tasks, determining the starting times of surgeries and allocating

the necessary resources (Meskens et al . 2013; Aringhieri et al . 2015; Abedini et al .

2016; Hamid et al . 2019). Recently, several solutions based on answer set programming

(ASP) for the ORS problem have been proposed (Dodaro et al. 2022a, 2024), showing

promising results in finding feasible and efficient schedules under realistic constraints.

However, when applied to real-world data, such as those provided by ASL1 Liguria in

Italy (Dodaro et al . 2024), these solutions rely on the assumption that surgery durations

are known in advance. Specifically, since the scheduling was performed on past surg-

eries, the actual durations were already available. This allowed researchers to compare

the ASP-generated schedules with those historically adopted by the hospital and evalu-

ate potential improvements retrospectively. Nevertheless, in a practical setting, surgery

durations are not known beforehand, and this uncertainty poses a critical challenge: ASP

systems heavily depend on accurate input values, and imprecise duration estimations can

lead to suboptimal scheduling solutions. As a result, the ability to generate provisional

schedules under uncertainty remains largely unaddressed.

To overcome this limitation, it is necessary to integrate predictive models capa-

ble of estimating surgery durations before the actual scheduling process takes place.

Machine learning (ML) techniques offer a promising solution for this purpose, enabling

the estimation of surgery durations based on historical patient and surgery data.

The integration of deductive (logic-based) and inductive (ML-based) approaches has

emerged as one of the most active areas of research in the AI community in recent years,

and ASP is no exception. Indeed, several efforts have been made in this direction, such as

using ML to guide the heuristics of ASP solvers to improve performance (Balduccini 2011;

Dodaro et al . 2022b; Liu et al . 2022), applying algorithm selection techniques (Maratea

et al . 2014; Hoos et al . 2014), representing and explaining ML models via ASP (Giordano

and Dupré 2022; Eiter et al . 2023), and developing languages and tools for learning ASP

programs (Yang et al . 2020; Law et al . 2020; Tarzariol et al . 2023; Cunnington et al .

2023). In addition, there has been growing interest in neuro-symbolic approaches in real-

world applications where ASP is applied in conjunction with ML techniques (Eiter et al .

2022; Bruno et al . 2022; Barbara et al . 2023).

In this paper, we contribute to this line of research by proposing a hybrid approach that

integrates ML predictions into an ASP-based solution for the ORS problem. Specifically,

our contributions are as follows. First, we perform an analysis of the available real-world

dataset, identifying significant distribution skewness that could negatively affect predic-

tive accuracy. To mitigate this, we apply a dedicated preprocessing phase to improve

data quality and reliability. Then, we systematically evaluate several state-of-the-art ML

algorithms for predicting surgery durations, using standard performance metrics such as

mean absolute error, root mean squared error, and coefficient of determination. Among

the tested models, XGBoost (Chen and Guestrin 2016) achieves the best performance

and is selected for further integration. Subsequently, we introduce the notion of prediction

confidence by clustering the predicted durations into four discrete levels, ranging from

high confidence to very low confidence, providing an additional layer of information to

https://doi.org/10.1017/S1471068425100136 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100136


Improving ASP-Based ORS Schedules through Machine Learning Predictions 3

assess prediction reliability. Then, we extend the original ASP encoding to incorporate

confidence information into the scheduling process, enabling the computation of more

robust and reliable surgical schedules. Finally, we conduct an extensive experimental

evaluation. Despite the challenges posed by the inherent distribution skewness in the

dataset, and the limited predictive accuracy of the models, the results show that incor-

porating ML predictions, especially when combined with confidence information, leads

to a good improvement in scheduling quality. In fact, our approach obtains a better OR

usage and reduces the incidence of overbooking compared to the baseline ASP encoding

that relies only on statistical averages.

2 Problem and data description

In this section, we present a high-level description of the ORS problem considered in this

paper and the available dataset.

The ORS problem specifications described in the following were defined by ASL1

Liguria, a local health authority in Italy that includes three hospitals: Bordighera,

Sanremo, and Imperia. Such hospitals serve a population of around 213, 000 people. The

central element of the ORS problem is the concept of a registration. Each registration

represents a surgical procedure requested by a patient and is associated with a specific

duration, a reservation number, a medical specialty, and a type of hospitalization. The

set of registrations that have not yet been performed constitutes the surgical waiting

list. The overall goal of the ORS problem is to assign as many registrations as possible

from a large waiting list to appropriate ORs. Due to resource or specialty constraints, it

may not be possible to assign certain surgical specialties to specific ORs. Therefore, the

objective is to maximize the usage of OR time, which is an extremely valuable resource.

Indeed, OR costs are estimated to be in the range of tens of dollars per minute (Smith

et al . 2022), with approximately half representing fixed costs incurred even when the

OR is not used (Macario 2010). Since patients cannot overlap within the same OR and

OR overload must be avoided, the first requirement is to ensure that the total duration

of surgeries assigned to any given OR does not exceed its available operating time. In

the context of the three hospitals managed by ASL1 Liguria, Bordighera has two ORs

available from 07:30 A.M. to 01:30 P.M., while Imperia and Sanremo each have five ORs

available from 07:30 A.M. to 08:00 P.M. The ORS problem also includes aspects related

to patient prioritization and OR usage. In particular, registrations may correspond to

different clinical conditions and, in general, have been placed on the waiting list for vary-

ing lengths of time. These factors are jointly abstracted into a unified priority metric

that guides the scheduling process, where registrations with the highest priority refer

to patients already preplanned by the hospital and are therefore subject to a hard con-

straint, that is they must be scheduled, while other registrations are scheduled according

to OR capacity and subject to a hierarchical preference. Furthermore, some ORs are des-

ignated for limited elective use due to their partial reservation for emergency procedures

or other institutional needs.

More precisely, given a set of surgery registrations (each consisting of a patient ID, a

priority level from p1 to p4, the required specialty, and the expected surgery duration)

and a Master Surgical Schedule (MSS), which defines the specialty assigned to each OR
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during each shift of the week, the goal is to assign each registration (i.e., each patient)

to an OR, within a specific shift on a given day of the scheduling period, subject to the

following constraints:

• Each registration is assigned at most once;

• The total length of the surgeries assigned to a given OR and shift must not exceed

the length of the shift;

• Registrations with priority level p1 must be assigned to an OR within the scheduling

period;

• Unassigned registrations with priority levels p2, p3, and p4 should be minimized,

giving precedence to higher-priority cases;

• A specific OR, referred to as OR A, can be assigned to at most one patient, as it is

reserved for emergencies.

As for the datasets, we used data taken from a weekly schedule of surgeries across

the three hospitals of ASL1, as well as data from historical other weeks, including a list

of available ORs for all hospitals. We collected and prepared the data for testing by

working with four different files, where each file represents a different type of data. In

particular, the first file contains the operating list of the considered week of surgeries,

from 04/03/2019 to 10/03/2019, providing information on the required surgery, the OR,

and the specialty originally scheduled. The second file includes the historical list of surg-

eries scheduled in 2019, which includes information on the required surgery, the starting

and ending time of the surgery, and the date of the surgery. The third file includes the

list of ORs in each hospital and their opening hours. The fourth file contains the list of

patients hospitalized the week before the considered week of the scheduling, along with

their admission and discharge times. Overall, the dataset contains 32 features. Each fea-

ture represents a different attribute related to the surgical procedure, patient, diagnosis,

timing, or logistics. Each row corresponds to a single surgical intervention. Specifically,

Table 1 shows all the features included in the dataset along with the corresponding

description.

3 Prediction methodology and experimental evaluation

This section presents the preprocessing applied to the dataset (Section 3.1), the ML

algorithms employed to analyze the data (Section 3.2), quantitative model performances

(Section 3.3), and the results of the experiments in terms of confidence (Section 3.4).

3.1 Data preprocessing and distribution analysis

Data preprocessing is a crucial step in ML, particularly when working with real-world

medical datasets that often suffer from skewed distributions, noise, and sparsity. In our

study, the target variable, DURATA, representing the total operative time in minutes,

was derived from the difference between USCITASALA (exit from OR) and INGRESSOSALA

(entry). Both fields were parsed as datetime objects, and duration was computed as the

difference in minutes. Entries with negative or zero durations, likely due to data entry

errors, were removed from the dataset to ensure data integrity and modeling accuracy.

As the goal of our study is regression, addressing target distribution characteristics is
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Table 1. Description of the features in the surgical procedures dataset

Feature Description

PROGRESSIVO Unique identifier for each surgical record.
TIPORICOVERO Type of hospitalization (e.g., emergency, urgent post-operative).
SESSO Biological sex of the patient (F = Female, M = Male).
ETA Patient age at the time of procedure, expressed in years.
REPARTO Hospital department or unit where the procedure was performed.
PRES ANESTES Presence of anaesthesiologist during the procedure (Yes/No).
STAMP Internal administrative flag.
CC Internal compliance tracking flag.
CA Additional clinical flag.
ANESTLOC Whether localized anesthesia was used.
DIAGNOSI1 Primary diagnostic code (ICD format).
DESCDIAGNOSI1 Description of the primary diagnosis.
INGRESSOSALA Timestamp of patient entry into the operating room.
USCITASALA Timestamp of patient exit from the operating room.
REGRICOVERO Type of hospital admission (e.g., ordinary, day surgery).
CHIRURGHI 1 Identifier for the surgeon or surgical team.
ICD1 Code for the surgical procedure (ICD format).
DESCICD1 Description of the surgical procedure.
BLOCCO Surgical block location in the hospital.
DATANASCITA Patient date of birth.
NOSOLOGICO Internal hospital case reference number.
DATAINTERVENTO Date of surgical intervention.
SALA Operating room designation.
TIPOANESTESIA Type of anaesthesia administered.
INGRESSOBLOCCOOP Timestamp of entry into the operative block.
PREPARAZIONEPAZIENTE Start time of preoperative patient preparation.
INIZIOANESTESIA Start time of anesthesia administration.
INIZIOINTERVENTO Start time of the surgical procedure.
FINEINTERVENTO End time of the surgical procedure.
FINEASSANESTINSALA End of anesthesiology assistance in the operating room.
USCITABLOCCOOP Timestamp of patient exit from operative block.
DURATA Total procedure duration in minutes.

particularly important. As shown in Figure 1, the original distribution of the intervention

durations was highly skewed, with a large concentration of cases around 15 minutes and

a long tail of less frequent, prolonged procedures. This distribution skewness can signifi-

cantly affect model performance, leading to biased predictions and poor generalization,

particularly for minority classes or rare cases. To address these issues, we employed the

following preprocessing steps:

1. Diagnoses that appeared only once within each department (REPARTO) were identi-

fied and grouped by K-Means clustering (with up to 3 clusters). This step reduced

data sparsity and helped generalize rare cases by associating them with similar

groups according to the department.
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Fig. 1. Histogram of intervention durations (before preprocessing).

2. We filtered out extreme values that lay outside the typical range of durations using

the Interquartile Range (IQR) method, that is a statistical measure of dispersion,

calculated as the difference between the third quartile (Q3) and the first quartile

(Q1) of the data (i.e., IQR = Q3 – Q1) (Dekking et al . 2005). This improved

the central tendency and distribution spread, enhancing the learning stability of

regression models.

3. To mitigate issues related to multicollinearity, we removed features that exhibited

high pairwise correlation (above a 0.95 threshold). Redundant features can intro-

duce noise, inflate model complexity, and impair generalization. By identifying and

eliminating highly correlated variables, we reduced dimensionality and improved

model robustness and interpretability. Indeed, by removing highly correlated fea-

tures, we aimed to reduce redundancy in the dataset. When two or more features are

strongly correlated, they tend to capture the same underlying information, making it

difficult to isolate their individual contributions to the model. This redundancy com-

plicates interpretation especially when assessing which variables are truly driving

predictions, and reduces model stability. As discussed in Kuhn et al . (2013), elimi-

nating one of several highly correlated features typically does not impair predictive

performance and can lead to a simpler, more interpretable model.

In particular, Figure 2 illustrates the duration distribution after Step 2 of preprocess-

ing. Compared to the raw dataset, the cleaned data shows a more compact distribution

with fewer extreme outliers and a less pronounced right skew. Furthermore, the prepro-

cessing performed in Step 3 resulted in a reduction of feature dimensionality from 32 to

23, reflecting the elimination of less informative features.
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Fig. 2. Histogram of intervention durations (after preprocessing).

3.2 Predictive modeling

To predict surgical procedure durations, several ML regressors were implemented and

compared. All models were trained and evaluated under identical preprocessing and eval-

uation pipelines to ensure fairness. The dataset was split into training and testing subsets

(80% and 20%, respectively) using stratified sampling based on procedure duration. This

strategy ensured that the distribution of durations, particularly for rare or long proce-

dures, was preserved across both sets. In this way, we avoided scenarios where specific

duration ranges (e.g., particularly long procedures) appeared only in the test set, which

could otherwise result in biased or unreliable performance estimations. The following

algorithms were explored:

• Decision Tree Regressor (DT): a simple, interpretable model that recursively

splits the data based on feature thresholds to minimize prediction error (Breiman

et al . 1984).

• Random Forest Regressor (RF): an ensemble method that constructs multiple

decision trees using bootstrap sampling and random feature selection at each split

(Breiman 2001). Final predictions are computed as the average of individual tree

predictions.

• Gradient Boosting Regressor (GB): a sequential ensemble technique where

each new tree is trained to correct the residuals of the previous ensemble (Friedman

2001). It combines weak learners into a strong predictor and includes hyperparam-

eters for controlling learning rate, tree depth, and regularization.
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• Extreme Gradient Boosting (XGBoost): a highly optimized and regularized

gradient boosting framework (Chen and Guestrin 2016), known for its scalability

and efficiency. XGBoost introduces system-level optimizations (e.g., parallelization)

and algorithmic enhancements like shrinkage and sparsity-aware split finding.

• K-Nearest Neighbors Regressor (KNN): a non-parametric method that pre-

dicts the target as the average of the k nearest neighbors in the feature space

(Altman 1992).

• Support Vector Regressor (SVR): a margin-based regression technique that

aims to find a function within an ε-tube from the true outputs, penalizing predictions

only when errors exceed ε (Drucker et al . 1996).

3.2.1 Deep learning (DL) models

DL models are generally not well-suited for tabular data, as highlighted by Shwartz-Ziv

and Armon (2022) and by Borisov et al . (2024). Nevertheless, some of the recent DL

approaches obtained good performance on tabular data, as the one proposed by Arik

and Pfister (2021), called TabNet. Indeed, TabNet is a deep neural architecture tailored

for tabular data that uses sequential attention to select features at each decision step,

enabling both high performance and interpretability. Motivated by this promising finding,

we tested the performance of TabNet on our dataset and we adapted and evaluated the

classical DL models Multi-Layer Perceptron (MLP) (Almeida 2020) and 1D

Convolutional Neural Network (1D-CNN) (Ige and Sibiya 2024). Each model was

optimized via grid search and the best configuration is reported in Table 2. In more

detail, MLP was implemented as a feedforward neural network with the Rectified Linear

Unit (ReLU), a nonlinear activation function that introduces nonlinearity into the model

and helps mitigate the vanishing gradient problem. It outputs the input directly if it is

positive and zero otherwise, effectively retaining only the positive part of its argument.

We also used mean squared error loss and adaptive moment estimation (Adam) optimizer

to make training faster and more stable, especially on noisy or sparse data (Kingma and

Ba 2015). Our implementation followed a standard configuration with two hidden layers

and 64 units per layer. 1D-CNN was adapted to tabular input by reshaping the feature

vectors as sequences, applying a single convolutional layer with 32 filters and kernel size 2,

followed by a fully connected hidden layer and regression output. TabNet was tested using

a flexible wrapper that allowed us to tune key architectural parameters such as the size of

internal layers, the number of steps in the attention process, and the strength of feature

sparsity. Unlike standard neural networks, TabNet learns which features to use at each

step, making it more efficient for tabular tasks.

3.3 Evaluation metrics and experiments

To evaluate the performance of the ML and DL models in predicting surgical procedure

durations, we employed three standard regression metrics. The first one is the mean

absolute error (MAE) that reflects the average magnitude of prediction errors, and is

computed as the average of the absolute differences between the predicted values ŷi and
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Table 2. Best hyperparameter configuration for each algorithm

Algorithm Hyperparameter

DT max depth = 50, min samples split = 2, criterion=friedman mse

RF n estimators = 10, max depth=None, min samples split = 5

GB n estimators = 400, learning rate = 0.01, max depth = 15

XGBoost n estimators = 400, learning rate = 0.1, max depth = 5

KNN n neighbors = 5, weights=distance

SVR C = 1, epsilon = 0.01, kernel=rbf

MLP epochs = 100, batch size = 64

1D-CNN epochs = 50, batch size = 8

TabNet n d = 8, n a = 16, n steps = 3, gamma = 2.0,
lambda sparse = 0.0001, lr = 0.01

Table 3. Model performance using best parameters. Best results are in bold

Model MAE (min) RMSE (min) R2

DT 16.99 26.74 0.55
RF 12.93 19.45 0.76
GB 13.32 20.42 0.74
XGBoost 12.36 18.20 0.79
KNN 15.69 24.03 0.64
SVR 17.22 26.87 0.55
MLP 15.73 23.28 0.66
1D-CNN 15.24 22.57 0.68
TabNet 14.45 22.38 0.69

the true values yi, that is MAE= 1
n

∑n
i=1 |yi − ŷi|. The second metric is the root mean

squared Error (RMSE), which penalizes larger errors more than MAE and reflects

the model’s sensitivity to outliers. RMSE is calculated as the square root of the mean

squared error, that is RMSE=
√

1
n

∑n
i=1(yi − ŷi)2. The last one is the coefficient of

determination (R2), which measures the proportion of variance in the target variable

explained by the model, that is R2 = 1−
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−ȳ)2 , where ȳ is the mean of the observed

values. In addition to model evaluation, we conducted hyperparameter tuning using grid

search with cross-validation. The final configuration for each model was selected based on

the combination of hyperparameters that achieved the lowest MAE and RMSE averaged

across the validation folds during cross-validation, as shown in Table 2 (for details about

the hyperparameters see https://github.com/DeMaCS-UNICAL/ML4ORS). Moreover,

Table 3 highlights the performance of each ML model in predicting surgical procedure

durations. Among all candidates, the XGBoost Regressor achieved the best results, with

the lowest MAE (12.36 minutes), lowest RMSE (18.20 minutes), and highest R2 score

(0.79). RF and GB followed closely behind, also demonstrating strong predictive perfor-

mance with slightly higher error metrics. In contrast, simpler models such as DT, KNN,

and SVR showed substantially lower performance. The DT and KNN regressors yielded
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higher MAE values (16.99 and 15.69 minutes, respectively) and lower R2 scores (0.55

and 0.64), indicating limited generalization. The SVR model performed comparably to

the DT, with the highest MAE (17.22 minutes) and RMSE (26.87 minutes), and an R2

of 0.55, suggesting both struggled to capture the underlying structure of the data.

These discrepancies in performance can be partially explained by the distribu-

tional characteristics of the target variable. As shown in Figure 2, the duration data

remains skewed even after preprocessing. Most surgeries are short-clustered around 15–20

minutes, but a long tail of high-duration outliers exists. This distribution skewness makes

the prediction task inherently challenging, particularly for models like SVR and KNN,

which are more sensitive to variance and do not adapt well to skewed or noisy distri-

butions. In contrast, ensemble methods like XGBoost and GB are well-suited to handle

skewed data, thanks to their iterative learning approach and ability to capture complex,

nonlinear relationships. It is important to observe that the overall error is still non-

negligible (as it is around 12 minutes on average). Nevertheless, this level of accuracy,

combined with the confidence estimation framework (where over 65% of predictions were

classified as High or Moderate confidence) makes the models suitable for potential deploy-

ment in time-sensitive hospital operations and to be employed to improve the robustness

of the schedules, as we will show in Section 4.3.

Concerning DL approaches, it is possible to observe that they do not outperform

XGBoost in this task. However, TabNet demonstrates improved performance compared

to other DL models, with an MAE of 14.45 minutes, RMSE of 22.38 minutes, and R2

of 0.69, which is better than both the 1D-CNN (MAE: 15.24, RMSE: 22.57, R2: 0.68)

and MLP (MAE: 15.73, RMSE: 23.28, R2: 0.66). Nevertheless, despite its competitive

performance, TabNet still remains slightly behind XGBoost (MAE: 12.36, RMSE: 18.20,

R2: 0.79).

Moreover, to interpret the contribution of each feature to the model’s predictions, we

employed SHAP (SHapley Additive exPlanations) that assigns each feature an impor-

tance value for a particular prediction (Lundberg and Lee 2017). Figure 3 shows the

SHAP summary plot for the best-performing model (XGBoost), where features are

ranked by their overall contribution to the predictions. The horizontal spread reflects

the variability in feature impact across all samples, while the color gradient indicates the

feature value (from low in black to high in red). As an example, REGRICOVERO, repre-

senting the type of hospital admission, shows a wide range of SHAP values, highlighting

its strong and variable influence on predicted operative duration. Higher values of this

feature (in red) tend to increase the predicted duration, whereas lower values (in blue)

are associated with shorter procedures. This suggests the model has learned to associate

certain admission types (e.g., complex or urgent cases) with longer surgery times.

3.4 Confidence estimation

To assess the precision of individual predictions, we computed the absolute percentage

error (APE) for each instance. This metric quantifies the relative difference between

the predicted value ŷ and the true target value y:

APE=
|ŷ− y|

y
· 100.
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Fig. 3. SHAP summary plot for the best-performing regression model (XGBoost).

In particular, the absolute value ensures that the error is always positive, and the

percentage form allows for intuitive interpretation across varying scales.

Based on the APE, we categorized each prediction into one of four confidence levels,

namely high confidence when APE is less than 10%, moderate confidence when

APE is between 10% and 25%, low confidence when APE is between 25% and 50%,

and very low confidence when APE is greater than or equal to 50%.
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1 {x(ID,P,OR,DAY,SHIFT)} :- registration(ID,P,SP,DUR), mss(OR,SP,SHIFT,DAY).
2 :- #count{OR,DAY,SHIFT: x(ID,P,OR,DAY,SHIFT)} > 1, registration(ID,_,_,_).
3 :- mss(OR,_,SHIFT,DAY), #sum{DUR, ID: x(ID, _, OR, DAY, SHIFT),

registration(ID,_,_,DUR)} > DURATION, shift(SHIFT, DURATION).
4 :- not x(ID,_,_,_,_), registration(ID,1,_,_).
5 :∼ not x(ID,_,_,_,_), registration(ID,P,_,_). [1@7-P, ID]
6 :- #count{ID: x(ID,_,_,"OR A",_)} > 1.

Listing 1. ASP encoding for the ORS problem.

4 Improving ASP-based ORS solution through ML predictions

In this section, we first review the ASP encoding of the ORS problem evaluated

on real data employed by Dodaro et al . (2024) (Section 4.1). Then, we present the

changes needed to take into account ML predictions (Section 4.2). Finally, we show the

results of an experimental analysis that demonstrate the improvements of our approach

(Section 4.3).

In the following sections, we assume the reader is familiar with logic programming

conventions, and with ASP syntax and semantics (Brewka et al . 2011; Calimeri et al .

2020).

4.1 ASP-based ORS solution

In this section, we briefly describe an existing ASP-based encoding for the ORS problem.

We begin by describing the problem’s input and expected output and then show the

core rules that model the scheduling constraints and objectives within the ASP frame-

work. This encoding serves as the baseline for the extensions introduced in the following

sections.

4.1.1 Data model

The input data is specified by means of the following constants and atoms. Instances

of registration(ID,P,SP,DUR) represent the registration of the patient identified by

an ID (ID) with priority level (P), the requested specialty (SP), and the expected

duration of the surgery (DUR). Instances of mss(OR,SP,SHIFT,DAY) represent which spe-

cialty (SP) is assigned to an OR (OR) in a shift (SHIFT) on a day (DAY). Instances of

shift(SHIFT,DURATION) indicate that the total duration of all surgeries scheduled in

shift SHIFT must not exceed DURATION (expressed in time slots). The output is repre-

sented by atoms of the form x(ID,P,OR,DAY,SHIFT), whose intuitive meaning is that

the patient identified by an ID (ID) having a priority (P) is assigned to the OR (OR) in

the shift (SHIFT) on the day (DAY).

4.1.2 Encoding

The related encoding is shown in Listing 1. The choice rule assigns an OR, a day, a shift

to each registration. The second rule ensures that each registration is assigned at most

once. The third rule ensures that the total duration of the assigned registration does

not exceed the length of the shift. The fourth rule ensures that every registration with
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1 sumConfidence(DAY, OR, SHIFT, N) :- mss(OR, _, SHIFT, DAY), #sum{L, ID:
confidence(ID, L), x(ID, _, OR, DAY, SHIFT)} = N.

2 maxConfidenceDay(N) :- #max{L: sumConfidence(_, _, _, L)} = N.
3 minConfidenceDay(N) :- #min{L: sumConfidence(_, _, _, L)} = N.
4 :∼ maxConfidenceDay(N). [N@2]
5 :∼ maxConfidenceDay(MAX), minConfidenceDay(MIN), MAX-MIN > 0. [MAX-MIN@1]

Listing 2. Additional rules to take into account confidence.

priority p1 is assigned to some OR on a day, shift. The weak constraint then minimizes

the number of unassigned registrations with priority p2, p3, and p4. Finally, the last

constraint is added to ensure that the specific OR “OR A” is assigned to at most one

patient, as it was reserved for emergencies and used in this limited way in the original

data.

4.2 Integration of the ML predictions in ASP

As discussed before, the ORS solutions described by Dodaro et al . (2024) can only ver-

ify whether the encoding aligns with the actual data and, at most, suggest alternative

schedules that could have been computed. Thus, it is not possible to generate provisional

schedules. Furthermore, the resulting schedules are not always robust. In this section,

we describe how this encoding has been extended to incorporate predictive information

obtained through ML techniques. The core idea is to exploit the confidence scores pro-

duced by the predictive models (specifically, the XGBoost algorithm, which achieved the

best results in our evaluation, as shown in Section 3.3) in order to guide the scheduling

decisions made by the ASP program.

To this end, we first update the parameter DUR of the registrations. Indeed, now the

duration is predicted by the ML algorithm. Then, we also introduce atoms of the form

confidence(ID,L) that collect the confidence associated to each registration, where L

is 1 if the confidence is High, 2 if the confidence is Moderate, 3 if the confidence is Low,

and 4 if the confidence is Very Low.

Finally, we handle these two changes by adding a new set of rules, reported in Listing 2.

The key idea is to prefer balanced and high-confidence scheduling decisions. Indeed,

the first rule derives the sum of all the confidences assigned to a particular day. The

subsequent two rules derive the values corresponding to the maximum and the minimum

sum of confidences in each day, respectively. Then, the first weak constraint penalizes

solutions where the maximum sum of confidence scores assigned to a day and OR is

high, whereas the second one promotes balance across ORs and days by penalizing the

difference between the maximum and minimum confidence sums. In this way, we aim at

distributing equally among the ORs and days the patients with high confidence value.

4.3 Experiments

This section presents the experimental evaluation conducted to assess the effectiveness

of the proposed neuro-symbolic approach.

First of all, it is important to observe that, in the context of ORS, it is not possi-

ble to determine the exact duration of a surgical procedure in advance. Typically, the
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parameter DUR of the atoms registration(ID,P,SP,DUR) is assigned by hospital staff

based on prior experience. In most cases, it corresponds either to the average duration

of surgeries of the same type or to the average duration of surgeries performed within

the same department. Therefore, for the purposes of the following experimental analysis,

we compare these two traditional approaches (average by procedure type and average by

department) against ML-based strategies described in the previous sections. Specifically,

we replace the DUR value in the ASP encoding with the respective predicted duration,

compute the surgical schedule using ASP, and then evaluate the quality of the schedules

based on the actual durations of the procedures. The real durations, available only after

the scheduling has been executed, are crucial for accurately estimating how effectively

the ORs were used on each day.

We evaluate all the approaches on real-world data provided by ASL1 Liguria and

already used by Dodaro et al . (2024). The evaluation focuses on key metrics such as the

OR percentage occupancy (mean, standard deviation, minimum, and maximum), and the

number of times in which an OR has been underbooked (an OR is used less than 80% of

the time) or overbooked (an OR is used for more than 100% of the time). It is important

to note that, with respect to these parameters, ASP solutions (even within the same

solver) may exhibit unintuitive behavior. For instance, a solution that is preferable in

terms of optimality (e.g., lower cost) may still yield worse overbooking and underbooking

values, since these aspects are evaluated only in a post-processing phase. To mitigate this

issue, in our encoding, the weak constraints related to confidence are assigned a lower

priority level than the original ones. This ensures that performance differences can be

attributed primarily to the introduction of the new constraints.

The comparison has been carried out on an Apple M1 CPU machine with 8 GB of

physical RAM and a time limit of 60 s per run. As ASP system, we used clingo v. 5.6.2,

configured with parameters –restart-on-model and –parallel-mode = 6 . These parameters

have been found to be effective in a preliminary analysis we performed with several

options.

The results are presented in Table 4. The column VBA refers to the virtually best

approach, in which the durations are set to their actual values, known only after the

surgeries have been performed. This serves as a reference for the optimal performance

achievable by predictive methods. The column Conf. refers to the method in which the

parameter DUR is set using the durations predicted by the ML model XGBoost, with

the ASP encoding also taking into account the associated confidence information. The

column Pred. corresponds to the method where DUR is set using the XGBoost predictions

without considering the confidence scores. The columns Dep. and Surg. represent the

methods where DUR is assigned based on the average duration per department and per

surgical procedure, respectively.

For the evaluation of the scheduling results, it is important to note that the ideal situa-

tion is to maximize the usage of ORS without exceeding their available capacity. Thus, an

OR occupancy rate close to, but not exceeding, 100% is preferred. Schedules that lead

to overbooking (i.e., planned durations exceeding the available OR time) are undesir-

able, as they can cause operational disruptions and delays. Similarly, underbooking (i.e.,

leaving significant unused OR time, i.e. below 80%) should be minimized, although it is

generally less critical than overbooking. Therefore, among the generated schedules, the
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Table 4. Comparison of the different methods

Bordighera Imperia Sanremo

VBA Conf. Pred. Dep. Surg. VBA Conf. Pred. Dep. Surg. VBA Conf. Pred. Dep. Surg.

% OR occ. (mean) 99 96 95 101 88 99 100 100 101 102 100 101 101 103 103
OR occ. (std) 0.87 11.32 12.64 11.25 10.35 0.68 10.32 11.16 13.14 10.21 0.51 10.21 7.8 13.24 8.65
% OR occ. (max) 99 124 120 132 107 99 126 152 136 132 100 118 114 120 119
% OR occ. (min) 97 79 67 88 69 97 78 80 60 81 99 86 85 74 94
Overbooking 0 9 9 11 10 0 40 40 42 44 0 5 9 8 8
Underbooking 0 1 2 0 6 0 1 1 2 0 0 0 0 1 0
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most desirable are those that maintain high, balanced occupancy rates without causing

overbooking and with minimal underbooking.

By analyzing the results, we observe that the method Conf. (XGBoost predictions

with confidence information) achieves the best overall performance, followed by Pred.

(XGBoost predictions without confidence). In Bordighera, the mean OR occupancy with

Conf. is 96%, which is very close to the ideal 100% threshold, outperforming Dep.

(101%) and Surg. (88%). Additionally, the standard deviation is reasonably low, indi-

cating consistent scheduling performance across different days. The number of overbooked

cases is slightly lower or comparable to the other methods, and underbooking is almost

negligible. Also Pred. obtains a good performance being quite close toConf.. In Imperia,

all methods reach a mean occupancy around 100%, but Conf. maintains better control

over the standard deviation compared to Dep. and Surg., and slightly fewer overbooked

cases are observed. Similarly, in Sanremo, the Conf. and Pred. methods result in a mean

occupancy closer to 100% (101%), whereas methods like Dep., and Surg. tend to over-

book, with mean occupancies exceeding 103%. Furthermore, Conf. achieves the lowest

number of overbooking (5) compared to all the other methods, and avoids underbooking

altogether.

Overall, integrating confidence information into the scheduling process improves the

average OR usage and also helps limiting extreme cases of overbooking and underbooking,

leading to more balanced and operationally feasible schedules.

5 Related work

The integration of symbolic reasoning and ML has garnered significant attention in recent

years, leading to the emergence of neuro-symbolic AI. This paradigm aims to combine the

learning capabilities of neural networks with the interpretability and formal reasoning

of symbolic approaches (Sheth and Roy 2024). In the context of ASP, neuro-symbolic

methods have been explored to enhance various applications, including knowledge rep-

resentation and visual question answering (VQA). In particular, Barbara et al . (2023)

present a combination of deep learning techniques with ASP, and allows for identifying

possible anomalies and errors in the final product of an Italian Company operating in

electrical control panel production, which provided real data. Bruno et al . (2022) define

a framework to represent and solve explicit knowledge via ASP, taking advantage of

it for driving decisions taken by neural networks and refining the output for providing

explanations and interpretations. The framework has been tested on semantic segmen-

tation tasks over two datasets of biomedical images. As for VQA, Eiter et al . (2022)

introduce a neuro-symbolic pipeline for the analysis of CLEVR, which is a well-known

dataset that consists of pictures showing scenes with objects and questions related to

them. They employ confidence thresholds into the logic programs to be solved by an

ASP solver, with the goal of making robust VQA systems. In the same VQA domain,

Riley and Sridharan (2019) and Basu et al . (2020) also combine ASP and ML.

Concerning the ORS problem, Şeyda Gür and Eren (2018) provide a comprehensive

overview of various approaches, discussing both different solution methods and alter-

native problem formulations. Among the works proposing and evaluating solutions on

real-world data, Aringhieri et al . (2015) address the scheduling of surgical interventions
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over a one-week planning horizon, considering multiple departments sharing a fixed num-

ber of ORs and post-operative beds. The authors propose a two-phase approach aimed

at minimizing patient waiting times and maximizing the usage of hospital resources.

Their method first generates a feasible assignment and then optimizes the scheduling

plan. Similarly, Landa et al . (2016) tackle the ORS problem by decomposing it into two

interconnected sub-problems: assigning patients to specific dates within a given planning

horizon and determining their allocation and sequencing within the ORs. To solve this, a

hybrid two-phase optimization algorithm is introduced, combining neighborhood search

techniques with Monte Carlo simulation to efficiently explore the solution space. Another

relevant contribution is provided by Hamid et al . (2019), who incorporate Decision-

Making Styles (DMS) of surgical teams to better handle constraints related to material

and resource availability, patient priorities, and the competencies of surgical staff. They

develop a multi-objective mathematical model and design two metaheuristic algorithms

to find Pareto-optimal solutions, which have been validated using data collected from a

hospital in Iran. In a different direction, Zhang et al . (2017) address the scheduling of both

elective and non-elective patients by introducing a time-dependent policy that prioritizes

patients dynamically based on urgency levels and waiting times. The problem is formu-

lated as a stochastic shortest-path Markov Decision Process (MDP) with blind alleys

and is solved using an asynchronous value iteration method. Experimental results on

synthetic data show that the time-dependent policy significantly reduces patient waiting

times compared to classical MDP models, without leading to excessive increases in OR

usage. The ORS problem has also been successfully solved by ASP solutions (Dodaro

et al . 2019) also in the presence of additional resources, such as beds (Dodaro et al .

2022a) and care units (Galatà et al. 2021), demonstrating its flexibility in modeling com-

plex scheduling scenarios with multiple resource constraints. In this work, however, we

focus on a different aspect of the problem: we build upon the real-world data presented

by (Dodaro et al . 2024), concentrating specifically on the prediction and integration of

surgical procedure durations. Additional resources, such as post-operative beds or care

units, were not explicitly considered in our model, as they do not directly impact the

duration of surgical interventions, that is, the key parameter that our ML models were

designed to predict and integrate into the scheduling process.

Our work is based on a neuro-symbolic approach that leverages ML predictions to

enhance the robustness and efficiency of ASP-based scheduling. To the best of our

knowledge, this is the first paper in this direction for the ORS problem.

6 Conclusion

In this paper, we have proposed a neuro-symbolic approach to the ORS problem, com-

bining ML techniques with ASP. Starting from an existing ASP encoding, we extended

the model to incorporate the confidence scores produced by an ML predictor, specifically,

an XGBoost model trained to estimate surgical intervention durations. By integrating

this predictive information into the scheduling process, we aimed to enhance both the

robustness and the practical efficiency of the resulting schedules. Experimental evalua-

tions conducted on real-world data from ASL1 Liguria demonstrated that our approach

achieves better OR usage compared to traditional methods based on historical averages.
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In particular, leveraging confidence information allowed the ASP solver to generate

schedules that are closer to the ideal occupancy threshold reducing overbooking or

underbooking issues w.r.t. existing approaches. These results highlight the potential of

neuro-symbolic techniques in improving scheduling performance in complex, resource-

constrained environments. As future work, one might take into account additional

predictive elements, for example patient-specific surgical risks, or apply our approach

to other problems. Moreover, we also observe that the confidence levels derived from

APE thresholds cannot provide uncertainty estimations at inference time, as they are

computed a posteriori and require access to the ground truth values. In this paper, our

objective was not to quantify model uncertainty, but rather to demonstrate how pre-

diction quality metrics can be integrated into the scheduling optimization. Furthermore,

since APE relies on ground truth values, the absence of such data may be addressed

by leveraging external estimations of expected durations based on standardized clinical

averages per procedure type as reported in the medical literature. Nevertheless, explor-

ing uncertainty quantification techniques capable of providing confidence estimations

directly at inference time represents a promising direction for future work. In particu-

lar, since XGBoost emerged as the best-performing approach in our evaluation, it would

be interesting to investigate whether using confidence measures specifically tailored to

XGBoost could further improve performance. In our preliminary analysis, the version of

XGBoost combined with our confidence slightly outperformed the variants using dedi-

cated confidence measures. However, various parameter combinations and configurations

remain to be explored. While such an approach might yield better performance, it would

come at the cost of reduced generality compared to the method proposed in this paper.

Nonetheless, this direction represents a promising avenue for future research. All material

for reproducibility is available at https://github.com/DeMaCS-UNICAL/ML4ORS.
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