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Abstract
The localized nature of severe weather events leads to a concentration of correlated risks that can substantially
amplify aggregate event-level losses. We propose a copula-based regression model for replicated spatial data to
characterize the dependence between property damage claims arising from a common storm when analyzing its
financial impact. The factor copula captures the location-based spatial dependence between properties, as well as the
aspatial dependence induced by the common shock of experiencing the same storm. The framework allows insurers
to flexibly incorporate the observed heterogeneity in marginal models of skewed, heavy-tailed, and zero-inflated
insurance losses, while retaining the model interpretation in decomposing latent sources of dependence. We present
a likelihood-based estimation to address the computational challenges from the discreteness and high dimensionality
in the outcome of interest. Using hail damage insurance claims data from a US insurer, we demonstrate the effect
of dependence on claims management decisions.

1. Introduction
The (re)insurance industry has traditionally placed greater emphasis on modeling natural catastrophe
perils with the highest loss potentials, such as earthquakes and cyclones, compared to the more frequent,
small-to-mid-sized events sometimes termed “secondary perils,” such as thunderstorms, hail, and flash
floods. This delineation has blurred in recent years, with secondary perils being the predominant driver
of catastrophe insurance losses over the last decade (Aon, 2020) and causing over 70% of the $81 billion
(USD) insured catastrophe losses in 2020 worldwide (Swiss Re Institute, 2021). As shifting weather
and socioeconomic patterns continue generating larger property exposure (Changnon, 2009), increased
modeling and monitoring for secondary perils offer opportunities for insurers to incorporate detailed
weather and claims information to manage weather risk more effectively.

The purpose of our work is to provide a statistical method for insurers to predict the financial impact of
spatially dependent property insurance losses arising out of convective storms. Since the 1970s, severe
convective storms have been responsible for more insurance damage than any other secondary peril
in the US, with significantly increasing insured losses throughout this period even after normalization
(Barthel and Neumayer, 2012). Despite being short-lived and geographically smaller-scaled, convec-
tive storms can exhibit extreme intensity that can accumulate very large losses at the aggregate event
level (Insurance Information Institute, 2020b). Their highly localized nature results in a setting where
concentrated groups of properties are simultaneously affected by storms of varying intensity, inducing
complicated dependence structures between claims.
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The dependence between insured property losses from a storm can arise from two sources: the
inherent spatial dependence between properties based on their physical proximity to each other and
the dependence induced by the common shock of experiencing the same storm. To accommodate the
distinctive features of insurance losses, we propose a copula-based regression model for replicated spa-
tial data. The proposed method demonstrates two key advantages, aligning well with the goal of this
study: first, it establish a predictive model for non-normal insurance claims data, mixed outcomes in our
context, while incorporating heterogeneity from weather, property, and policy characteristics; second,
it extends the model to the multivariate context in the spatial dimension, accommodating both spatial
and aspatial dependence among insurance claims. It is notable that predictive modeling for replicated
spatial data, particularly for non-normal data, has received limited attention in the literature. Our work
builds on and further extends the copula-based regression literature. The central piece of our model
is the spatial factor copula proposed by Krupskii et al. (2018), where the dependence structure is for-
mulated as the copula extracted from a spatial factor process. The underlying factor process consists
of a random field specifying location-based dependence and a latent factor jointly affecting all obser-
vations in a storm regardless of location. The resulting copula-based regression framework allows us
to flexibly accommodate the unique features of insurance losses such as skew, excess zeros, and heavy
tails, under well-studied univariate models incorporating rich covariate information, while retaining the
interpretation of latent sources of dependence among the joint losses.

The particular type of convective storm event in our application focus is hail, the leading sub-peril
comprising 50–80% of convective storm losses in any given year (Insurance Information Institute,
2020b). Hail and wind damage have consistently accounted for the most substantial portion of annual
US homeowners insurance losses over the past two decades (Insurance Information Institute, 2020a).
In 2021, the US experienced 20 weather and climate disasters where the damages exceeded $1 billion,
7 of which were related to hail damage (NOAA NCEI, 2022). We analyze a replicated spatial dataset
of hail property claims that leverages hail radar maps to identify claims arising out of a given hail-
storm. Incorporating rich weather, property, and policy characteristics, we demonstrate how insurers
can harness the growing availability of detailed weather and claims information to enhance their claims
management for hail and other storm perils.

There are limited studies in the literature assessing hail risk using property insurance claims, primar-
ily due to the lack of data (Changnon, 1999). Recent studies are Brown et al. (2015), Shi et al. (2022),
and Gao and Shi (2022). From a loss control perspective, Brown et al. (2015) evaluate the resilience of
various roofing materials to hail by analyzing claims associated with a single large storm in the Dallas-
Fort Worth area from multiple local insurers. Shi et al. (2022) study the arrival times of insurance
claims, as well as their relationship with the subsequent loss amounts using a marked counting process.
To support proactive insurer claims management, Gao and Shi (2022) predict the geographical distribu-
tion of insurance claim reports immediately after a hailstorm occurs by incorporating high-resolution
weather information in a spatial point process framework. In contrast, our work emphasizes the depen-
dence among joint insured losses from a storm that are particularly prone to concentration as a hazard
and examines claim severity given the reporting of claims using methods for spatial modeling of geosta-
tistical data. Our model allows insurers to decompose sources of dependence in hail property claims to
make claims management decisions based on predictive distributions of the insured losses. For exam-
ple, predicting the joint losses stemming from a hailstorm can inform insurers’ weather risk retention
and transfer decisions, which we demonstrate with an application in the reinsurance context. We also
supplement the literature on insurance claims modeling for other secondary perils and convective storm
events. Recent settings include flooding (Lyubchich and Gel, 2017), water damage (Haug et al., 2011;
Scheel et al., 2013; Spekkers et al., 2013), and thunderstorm winds in Hua et al. (2017).

More broadly, our work extends the actuarial literature on the role of statistical methods and pre-
dictive analytics in improving insurance operations. A comprehensive review on analytics in key
operational areas of non-life insurance is given in Frees (2015), which emphasizes the value of adopting
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a micro-oriented view of individual insurance contract developments. Micro-level models using granu-
lar insurance data have been actively developing in the key functional areas of ratemaking (for example,
Shi et al., 2016; Yang and Shi, 2019; Henckaerts et al., 2021, and Shi and Zhao, 2020) and loss reserving
(for example, Pigeon et al., 2013; Antonio and Plat, 2014; Wüthrich, 2018, and Badescu et al., 2016;
Badescu et al., 2019). We contribute to the burgeoning literature on micro-level models supporting
insurer claims management, particularly for insurance claims due to weather-related perils (for example,
Shi et al., 2022 and Gao and Shi, 2022). As losses from secondary perils continue to increase, insur-
ers are reevaluating their reinsurance protection, and aggregate excess-of-loss reinsurance is an effective
way for insurers to manage the volatility in event severity (Aon, 2021). Our model allows insurers to cap-
ture the dependence in property claims stemming from a storm event and obtain predictive distributions
of storm-level losses to better understand excess layers for retention and transfer decisions.

Finally, on the computational front, our contribution involves a two-stage estimation procedure to
estimate the parameters in the proposed model. Existing literature on spatial modeling of insurance
claims is sparse, with a few examples including Shi and Shi (2017) and Tufvesson et al. (2019) in
automobile insurance, Zhao et al. (2021) in property insurance, and Huang et al. (2024) in crop insur-
ance. To the best of our knowledge, our work is among the first to address the unique features posed by
replicated spatially dependent insurance claims data. A number of characteristics unique to our context
make existing estimation approaches, such as maximum likelihood estimation (Huang et al., 2024) and
Bayesian estimation (Shi and Shi, 2017; Tufvesson et al., 2019) prohibitively expensive. First, unlike the
repeated measurements taken at a low number of fixed locations, our replicated spatial data are unbal-
anced, where the number of claims in a storm may range from one to thousands at varying locations,
leading to dimensionality concerns. Second, insurance losses often exhibit a probability mass at zero
from coverage denials or modifications such as the deductible. The discreteness in the outcome greatly
complicates the evaluation of the copula density in the likelihood function by introducing a numerical
integration problem. At the intersection of these two challenges, a large number of zero-payment claims
within a storm require computing high-dimensional multiple integrals with dimensions that may be in
the hundreds or thousands. The proposed two-stage estimation, inspired by the multilevel composite
likelihood method in Zhao et al. (2021), extends its scope to the context of replicated spatial data.

The rest of the article proceeds as follows: Section 2 describes the property insurance hail claims
data, Section 3 introduces our spatial factor copula regression model, Section 4 discusses the estimation
procedure of our proposed model, Section 5 analyzes the hail damage claims using our model, Section 6
explores a claims management application, and Section 7 concludes.

2. Data
The severity of hail damage property insurance claims that arise from multiple hailstorms consti-
tutes replicated spatial data, where the insurer observes the geographical locations of the reported
claims associated with each hailstorm. Similar to the approach in Shi et al. (2022) and Gao and Shi
(2022) examining the occurrence of claims, we construct the dataset of hail claims by overlaying hail
radar maps on top of the insurer’s exposure map of in-force policies to study the dependence in the
severity of the reported claims from each storm.

Our hail property insurance claims data consist of policyholder claims from a major U.S. insurer
operating in the personal homeowners line of business in Kansas over 2011–2015. The radar maps of
hail experience were obtained by the insurer from a third-party vendor. We define hailstorms based
on hail event day within a county, which assumes that all hail experienced in a county on a given day
belong to a distinct storm. We acknowledge that the definition of a hailstorm is a data limitation in this
setting since the hail maps do not distinguish between different hail swaths on the same day, and only
identify regions that experienced hail on a particular day. In total, we observe 839 hailstorms in Kansas
producing 23,882 hail property claims over the sampling period.
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Figure 1. Locations and severity of hail claims from storm on April 3, 2011, in Douglas County (black)
with hail radar outline (green). Claims with zero payment are in gray.

As an example, Figure 1 displays the locations and severity of the claims arising out of a hail event on
April 3, 2011, as identified by the hail radar map (green) in Douglas County (black), with zero payment
claims in gray. As foreshadowed by the figure, not all filed claims result in positive payments. There are
filed claims with “denied coverage,” a general term we use to encompass any reason for zero payments,
including, but not limited to, the case where the loss amount falls below the policy deductible. The hail
claim severity outcomes are thus semicontinuous, with a discrete probability mass at zero and a positive
continuous component. Figure 2 exhibits the distribution of the insured losses on the original scale in the
left panel and on the log scale in the right panel. Notably, the distribution features inflated zero outcomes
and heavy tails.

The observed heterogeneity at the claim locations for each hailstorm consists of traditional
policyholder-level rating variables and claim characteristics, as well as event-level features that can be
spatially invariant or spatially varying. At the policyholder level, property characteristics consist of the
building age in years, construction type (frame, masonry, or other), roof type (asphalt, slate, metal, tile,
wood, flat, or other), and property type (outbuilding, single family residence, or multi-family residence).
Policy characteristics consist of the deductible and coverage amount, and claim characteristics consist
of the reporting lag in days between the hailstorm occurrence and claim filing dates.

Event-level features are predictors that are uniquely measured for each hailstorm. As a result, these
features are storm specific and may either be spatially varying or identical for all properties exposed to
the same storm. In our analysis, event-level features include the season (winter, spring, summer, or fall),
density of the insured properties affected by the storm (number of exposures per unit area of the radar-
defined storm observation window), as well as spatially varying weather information on hail size, wind

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.7
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.116, on 21 Jul 2025 at 17:51:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.7
https://www.cambridge.org/core


246 Lisa Gao and Peng Shi

Figure 2. Distribution of claim severity following a hailstorm on the original scale (left) and log scale
(right).

speed, and wind direction. Due to the data limitation of only observing the date of a hailstorm rather
than the exact timestamp, corresponding weather information is also at a daily resolution. Hail sizes for
individual hailstorms (measured as hailstone diameter in inches) are given in the hail radar maps from the
insurer’s third-party vendor. We obtain wind information across each storm from daily U.S. weather data
collected from land surface stations by the National Oceanic Atmospheric Administration (NOAA; see
NOAA et al., 1998 for data collection details) and archived in the Global Historical Climatology Network
(GHCN)-Daily database (Menne et al., 2012). We incorporate wind information from the 262 Kansas
climate-monitoring stations on the days with hailstorm occurrences over 2011–2015. To illustrate our
proposed method, we use ordinary kriging to interpolate wind measurements at the claim locations
following Gao and Shi (2022), but note that spatial interpolation is a large topic in atmospheric science
and statistical science literature. Wind speed measures the rate at which air is moving horizontally past
a given point in meters per second and records the fastest consecutive 2-min average speed over the 24-h
period ending at local midnight. Wind direction describes the prevailing direction from which the fastest
2-min wind is blowing, in tens of degrees from 10◦ clockwise through 360◦, where 360◦ represents a
north wind (i.e., blowing from the north to the south). As a circular predictor where 10◦ is closer to
360◦ than to 30◦, we decompose the wind direction into the sine and cosine (vertical and horizontal
components respectively) prior to interpolation (Al-Daffaie and Khan, 2017).

The event-level, policy/claim, and property characteristics at the claim locations from each hailstorm
are summarized separately across claims that resulted in zero loss payment and claims that resulted in
a positive loss payment in Table 1. On average, larger hail sizes and higher wind speed are observed in
claims that resulted in positive loss payments compared to claims with no payment. In addition, there
is a longer average reporting lag between the hailstorm occurrence and claim filing for claims with no
payment, which may indicate that minor property damage takes longer to detect and is less likely to
exceed the deductible. On average, relatively more claims from properties with asphalt roofing or frame
construction resulted in positive payments. The observed heterogeneity from the policy-level and storm-
level weather covariates, along with the spatial and aspatial dependence between claims from a given
hailstorm, are characteristics that motivate our factor copula model.

3. Methodology
We use a factor copula regression framework to jointly model the insured losses of property insur-
ance claims that are filed following the occurrence of a hailstorm. Assume a hailstorm generates n
property damage claims at locations {s1, . . . , sn} ∈R

2. Let {Y(s1), . . . , Y(sn)} be the collection of corre-
sponding claim payments and denote Y(sj) = Yj for j = 1, . . . , n, and Y = (Y1, . . . , Yn). Further, denote
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Table 1. Descriptive statistics for covariates by whether the claim paid was positive.

Zero loss paid Positive loss paid

Mean SD Min Max Mean SD Min Max
Weather characteristics
Hail size 1.460 0.623 0.750 4.000 1.752 0.638 0.750 4.000
Wind speed 14.093 2.859 7.572 18.712 14.368 2.988 6.213 18.848
Wind direction (sin) −0.079 0.265 −0.665 0.921 −0.112 0.284 −0.666 0.921
Wind direction (cos) 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000

Other event-level characteristics
Exposure density 0.095 0.110 0.001 1.750 0.093 0.110 0.001 1.750
Season

Summer 0.158 0.364 0.142 0.349
Fall 0.028 0.165 0.025 0.157
Winter 0.019 0.137 0.022 0.145
Spring 0.795 0.404 0.811 0.391

Policy/claim characteristics
Deductible ($’000) 0.805 0.817 0.050 10.000 0.719 0.594 0.050 10.000
Coverage amount ($’000) 202.297 120.431 5.200 1552.700 198.137 115.278 1.000 2019.100
Reporting lag 38.784 65.193 0.555 363.834 31.193 60.404 0.474 364.785

Property characteristics
Property type

Outbuilding 0.001 0.030 0.001 0.030
Single family 0.990 0.100 0.992 0.090
Multi-family 0.009 0.096 0.007 0.084

Roof type
Slate 0.001 0.024 0.001 0.030
Metal 0.006 0.074 0.008 0.087
Tile 0.008 0.088 0.005 0.073
Asphalt 0.888 0.316 0.925 0.263
Wood 0.094 0.292 0.057 0.232
Flat 0.003 0.051 0.002 0.044
Other 0.001 0.034 0.002 0.042

Construction type
Masonry 0.052 0.222 0.045 0.206
Frame 0.946 0.226 0.953 0.212
Other 0.002 0.045 0.003 0.053

the set of predictors for the property located at s by X(s) = (X1(s), . . . , Xp(s)), which may consist of a
combination of weather information, property characteristics, and contract features. We similarly use
the notation X(sj) = X j for j = 1, . . . , n, and X = (X1, . . . , Xn). By Sklar’s theorem for conditional dis-
tributions (Patton, 2006), the joint distribution of Y given X can be represented using a multivariate
copula such as

FY(y1, . . . , yn|X) = Pr(Y1 ≤ y1, ..., Yn ≤ yn|X)

= C(F1(y1|X), ..., Fn(yn|X)|X), (3.1)

where Fj(·|X) is the conditional distribution function for Yj given X and C(·|X) is the conditional cop-
ula. We make two additional assumptions: (i) Fj(·|X) = Fj(·|X j) and (ii) C(·|X) = C(·|D), where D is
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a nonstochastic symmetric matrix of pairwise spatial distances, that is, D = [
rij

]n

i,j=1
with rij = rji. The

first assumption permits different sets of covariates to be used for each marginal distribution. In our
application, it is reasonable to assume that, given the predictors measured at the location of the prop-
erty, predictors at other locations carry no additional information on the insured losses. The second
assumption is standard in spatial statistics literature; we assume second-order spatial stationarity, where
conditional on the observed heterogeneity, the association between two observations is a function of
their spatial distance.

In our context, a policyholder may be denied payment due to contract features such as the deductible.
As a result, the distribution of Yj features a probability mass at zero. For vector Y , let I+ = {i1, . . . , ik}
be the indices for the positive payments. The joint density of (3.1) can be expressed as

fY(y1, . . . , yn|X) =

⎧⎪⎨
⎪⎩

C(F1(y1|X1), . . . , Fn(yn|Xn)|D), k = 0

C(k)(F1(y1|X1), . . . , Fn(yn|Xn)|D)
∏

j∈I+ fj(yj|X j), 0< k< n

c(F1(y1|X1), . . . , Fn(yn|Xn)|D)
∏n

j=1 fj(yj|X j), k = n,

(3.2)

where C(k)(u1, ..., un|D) = ∂ kC

∂ui1 · · · ∂uik

and c(·|D) is the density of the conditional copula.

3.1. Marginal model for insured losses
We consider two strategies to accommodate the probability mass at zero in claim payments. The first
strategy assumes that zero payment outcomes are a result of the policy deductible, that is the policyholder
receives no indemnification if the ground-up loss is below the per-occurrence deductible. Let Y∗

j be the
ground-up loss for the claim at location sj, and dj be the deductible that applies to the claim. The insured
loss Yj and ground-up loss Y∗

j satisfy the relation:

Yj = (Y∗
j − dj)+ = max{Y∗

j − dj, 0} =
{

0, Y∗
j ≤ dj

Y∗
j − dj, Y∗

j > dj.

From the above, the distribution and density of claim payment Yj are

Fj(y|X j) = F∗
j (y + dj|X j) y ≥ 0 (3.3)

fj(y|X j) =
{

F∗
j (dj|X j) y = 0

f ∗
j (y + dj|X j) y> 0,

(3.4)

where F∗
j (·|X j) and f ∗

j (·|X j) are the distribution and density functions of the ground-up loss, respectively.
The second strategy models the claim payment directly. We consider a two-part mixture regression:

Fj(y|X j) = p(X j) + (1 − p(X j)) G(y|X j) y ≥ 0 (3.5)

fj(y|X j) =
{

p(X j) y = 0

(1 − p(X j)) g(y|X j) y> 0
(3.6)

where p(X j) = Pr (Yj = 0|X j) and G(·) and g(·) are the distribution and density functions for a random
variable defined on the positive real line. The approach of the two-part model is data driven and ignores
the mechanism behind the zero-inflated outcomes; thus, it can be readily applied in settings other than
the presence of a policy deductible. In addition, this strategy is consistent with the approximation method
for pricing the deductible contract discussed in Lee (2017), where the deductible is treated as a predictor
in the regression model.
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3.2. Factor copula model for spatial dependence
The association among insurance claims from a storm could arise from two sources: the spatial depen-
dence and the unobserved storm-specific effect. The former reflects a situation where outcomes observed
at different locations are correlated with one another, with the correlation between two observations
diminishing as their distance increases. The latter points to a special type of aspatial dependence where
the unobserved storm-specific effect is a common shock inducing an exchangeable dependence structure
among all observations affected by a particular storm.

To account for both the spatial and aspatial dependence, we employ the factor copula introduced by
Krupskii et al. (2018). The factor copula is derived from a random spatial process Q(s) that varies by
location s ∈R

2:

Q(s) = Z(s) + V0, (3.7)

where Z(s) is a Gaussian random field and V0 is an independent common factor that does not depend on
location s. The Gaussian random field Z(s) in (3.7) captures the spatial dependence among observations
in different locations in the correlation function. For instance, the Matérn class of spatial correlation
functions characterizes the common empirical observation that the correlation between outcomes at
two locations decreases as the distance r increases:

ρ(r) = 21−ν

�(ν)

(
r

ξ

)ν

Kν

(
r

ξ

)
,

where Kν(·) is the modified Kessel function of order ν, ν > 0 is a shape parameter determining the
smoothness of the process, and ξ > 0 is a scale parameter for the range of the spatial dependence (see
Matérn, 1986 and Guttorp and Gneiting, 2006 for more details). In addition, the factor V0 accommodates
the aspatial dependence among all observations within a storm due to the common shocks.

For observations at n unique locations s1, . . . , sn, the finite-dimension representation of the spatial
process (3.7) is

Qj = Zj + V0, (3.8)

for j = 1, . . . , n, where Qj and Zj denote Q(sj) and Z(sj), respectively. Then Z = (Z1, . . . , Zn) follows
a zero-mean, unit-variance multivariate normal distribution ��Z (·|�Z) with correlation matrix �Z and
let V0 follow a distribution FV0 (·|γ 0) with parameters γ 0, independent of Z. By Sklar’s theorem (Sklar,
1959), we extract the dependence structure of the spatial process Q(s) via the copula implied by the joint
distribution of Q = (Q1, . . . , Qn) at locations s1, . . . , sn. Thus, we obtain the factor copula C as

C(u1, . . . , un|�Z , γ 0) = FQ
(
(FQ,1)

−1(u1|γ 0), . . . , (FQ,n)
−1(un|γ 0)|�Z , γ 0

)
, (3.9)

where FQ(q1, . . . , qn|�Z , γ 0) =
∫ ∞

−∞
��Z (q1 − v0, . . . , qn − v0|�Z)dFV0 (v0|γ 0) is the multivariate distri-

bution function of Q. In addition, FQ,j(q|γ 0) = ∫ ∞
−∞ �(q − v0) dFV0 (v0|γ 0) is the marginal distribution

function of Qj, where �(·) is the univariate standard normal distribution function.
Factor copulas arise from factor models, where latent random variables are employed to induce

dependence among observed variables. These models provide a highly flexible framework for captur-
ing complex dependence structures and are particularly well-suited to high-dimensional settings, where
traditional methods may struggle with scalability or interpretability. The development of various factor
copulas in the literature has been driven by the need to address unique structural characteristics of dif-
ferent data types across a range of disciplines, including time series data (e.g., Krupskii and Joe, 2013;
Oh and Patton, 2017), spatiotemporal data (e.g., Krupskii and Genton, 2017; Krupskii et al., 2018),
mortality data (e.g., Chen et al., 2015), and ordinal data (e.g., Nikoloulopoulos and Joe, 2015), among
others.

Lastly, it is worth noting that the joint distribution FQ is only used to extract the dependence structure
of the factor spatial process (3.7) and construct the factor copula C, whereupon C joins the marginal
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models discussed in Section 3.2. The spatial factor copula thus allows us to flexibly accommodate var-
ious features of insurance claim payments such as skewness, heavy tails, and excess zeros, as well as
incorporate the rich covariate information in the marginal models, while retaining the interpretation of
the association arising from spatial and aspatial sources in the dependence model.

3.3 Model specification
In this section, we discuss the detailed specification of the marginal models and the factor copula for our
hail property damage claims application. The marginal claim payments are modeled based on the gen-
eralized beta of the second kind (GB2) distribution, a four-parameter family that flexibly accommodates
the skew and heavy tails commonly exhibited by insurance claims data. The GB2 distribution is well
studied in the context of insurance claims modeling (see Shi, 2014 for a review). For a GB2 distributed
variable Y with location parameter μ, scale parameter σ , and shape parameters α1 and α2, the density
is defined on y> 0:

g(y|X) = exp (z)α1

y|σ |B(α1, α2)(1 + exp (z))α1+α2
,

where z = (log (y) −μ(X)) /σ and B(·, ·) is the beta function.
In Section 3.1, we presented two strategies for accommodating the probability mass at zero in claim

payments. For the first strategy, we assume the ground-up loss Y∗
j follows a GB2 distribution and is left-

censored at the per-occurrence policy deductible dj. The covariates X j are linearly incorporated in the
GB2 location parameter μ, so that Y∗

j ∼ GB2(μ(X j), σ , α1, α2), where μ(X j) = X j β for coefficients β.
The marginal model parameters for the first strategy are θ 1,cens = (β, σ , α1, α2). For the second strategy
of directly modeling the claim payment, we specify p(X j) using a generalized linear model with a logit
link so that

p(X j) = 1

1 + eXjβ1

for covariates X j, where β1 are the coefficients associated with whether a claim has a positive payment.
Then G(·) and g(·) defined on the positive real line are the distribution and density functions of the
GB2(μ(X j), σ , α1, α2) describing the positive payments, where μ(X j) = X j β2 for coefficients β2. The
marginal model parameters for the second strategy are θ 1,2pt = (β1, β2, σ , α1, α2). Note that the covariate
set in the two-part model contains the policy deductible, while that of the censored regression does not.

In our factor copula specification, we assume the correlation matrix of Z ∼ N(0, �Z) corresponding
to the Gaussian random field Z(s) takes the form

�Z = [
σjj′

]
n×n

=
{

1, j = j′

κτjj′ j �= j′,
(3.10)

for j, j′ ∈ {1, . . . , n}, where κ ∈ (0, 1) captures the nugget effect for microscale variation and mea-
surement error. Let rjj′ = ||sj − sj′ || denote the distance between locations sj and sj′ . In addition,
τjj′ = exp{−3rjj′/ψ} is the exponential spatial correlation function, a special case of the Matérn family
where the correlation between Yj and Yj′ decreases as the distance rjj′ between their locations increases.
The parameter ψ controls how quickly the spatial correlation decays with distance and is parameterized
to represent the practical range, the distance at which the correlation is 0.05 (Diggle and Ribeiro, 2007).
We further assume V0 ∼ N(0, σ 2

0 ) for simplicity, which results in a tractable special case of a structured
Gaussian factor copula. Note that Q follows a multivariate normal distribution with correlation matrix

�Q = (1 − ρ)�Z + ρJn, (3.11)

where ρ = σ 2
0 /(1 + σ 2

0 ) ∈ (0, 1) can be interpreted as the correlation introduced due to the unobserved
storm-specific effect and Jn is an n-dimensional square matrix of ones. The resulting factor copula is
thus the Gaussian copula
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C(u1, . . . , un|D) =��Q

(
�−1(u1), . . . ,�

−1(un)|D)
, (3.12)

where ��Q is the zero-mean, unit-variance multivariate normal distribution function with correlation
matrix �Q. Denote the association parameters by θ 2 = (κ ,ψ , ρ). If the distance rjj′ → 0, then the spatial
correlation equals κ , reflecting the nugget effect, while the overall correlation is (1 − ρ)κ + ρ. If the
distance rjj′ → ∞, then the spatial correlation approaches 0 and the overall dependence approaches ρ >
0, reflecting the positive contribution of the aspatial dependence in the severity of claims from the same
storm regardless of their locations.

The Gaussian factor copula is also particularly convenient for our replicated spatial data and predic-
tion application. Due to the heterogeneity in claim frequency and geographical distribution, the factor
copula dimensionality n can vary substantially across storms. The marginal consistency of the Gaussian
copula allows us to easily adapt the correlation matrix under changing dimensions while maintaining
the same underlying factor covariance structure.

4. Statistical estimation
The parameters in the spatial factor copula regression model are estimated using a fully paramet-
ric likelihood-based approach. Assume that for m total hailstorms, the ith hailstorm (i = 1, . . . , m)
is observed to have ni > 0 claims at locations {si1, . . . , sini}. Let yi = (yi1, . . . , yini ) be the observed
claim payments from storm i at the corresponding claim locations for our point-referenced data. Let
xi = (xi1, . . . , xini ) be the corresponding covariates associated with the claims from hailstorm i, where
xij = (xi,1(sij), . . . , xi,p(sij)) is the covariate vector for claim j in storm i for j = 1, . . . , ni. The data are
summarized by {yi, xi:i = 1, . . . , m}. Let θ = (θ 1, θ 2) be the vector of model parameters containing the
unknown parameters in the marginal distributions and the factor copula dependence. The log-likelihood
of the data can be expressed as

l(θ) =
m∑

{i:ki=0}
log C(Fi1(yi1|xi1), . . . , Fini (yini |xini ))+

m∑
{i:0<ki<ni}

{
log C(ki)(Fi1(yi1|xi1), . . . , Fini (yini |xini )) +

∑
j∈Ii+

log fij(yij|xij)

}
+

m∑
{i:ki=ni}

{
log c(Fi1(yi1|xi1), . . . , Fini (yini |xini )) +

ni∑
j=1

log fij(yij|xij)

}
, (4.1)

based on the joint density defined in (3.2). The discreteness in the claim payment outcome and the high
dimensionality of the Gaussian factor copula in our insurance claims context offer a more general setting
that greatly complicates the traditional maximum likelihood estimation presented in Krupskii et al.
(2018). In particular, directly evaluating the data likelihood based on the joint density (3.2) involves an
(ni − ki)-dimensional integration where ki ≤ ni is the number of claims with positive payments as defined
in (3.2). As discussed in Section 2, the number of zero components in a hailstorm can be several hundred,
which is not computationally viable. Motivated by the computational challenges associated with the high
dimensionality of the factor copula and exacerbated by the discreteness in the outcome, we propose a
two-stage estimation procedure for this more general setting. The first stage estimates parameters in
the marginal models assuming working independence and the second stage estimates parameters in the
dependence model via a composite likelihood approach.

4.1. Stage I: Estimating parameters in marginals
In the first stage, we estimate the parameters in the marginal models in the spirit of the inference functions
for margins method (Joe and Xu, 1996). Specifically, the log-likelihood function under the working
independence assumption is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.7
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.116, on 21 Jul 2025 at 17:51:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.7
https://www.cambridge.org/core


252 Lisa Gao and Peng Shi

l1(θ 1) =
m∑

i=1

ni∑
j=1

1(yij = 0) log fij(yij|yij = 0, xij) +

1(yij > 0) log fij(yij|yij > 0, xij), (4.2)

where fij(·|xij, θ 1) is the marginal density (under (3.4) or (3.6) for the censored and two-part mixture
GB2 strategies, respectively) and 1(·) is the indicator function. The estimators for the parameters θ 1 are
obtained by

θ̃ 1 = arg maxθ1
l1(θ 1). (4.3)

4.2. Stage II: Estimating parameters in dependence
In the second stage, we estimate parameters in the factor copula fixing the estimates for parameters in the
marginal regression. The discreteness and lack of balance in the data make the inference functions for
margins challenging to implement. To further improve computational efficiency, we consider the com-
posite likelihood method for dependence parameter estimation (Lindsay, 1988). Composite likelihood
methods have been prevalent in spatial analysis for reducing the computational burden in estimation (see
Varin et al., 2011 for a survey). The composite likelihood function results from the product of a collec-
tion of component likelihoods, with the responses within a component assumed to be dependent, but
orthogonal across components. We consider the special case of pairwise composite likelihood, which
takes the form:

l2(θ 2) =
m∑

i=1

ni∑
j=1

∑
j<j′

w(yij, yij′) log f (yij, yij′ |xi, θ̃ 1), (4.4)

where θ̃ 1 are the marginal parameter estimates in the first stage, f (yij, yij′) denotes the bivariate likelihood
function for (Yij, Yij′), and w is the weight given to the pair. The bivariate joint density is

f (yij, yij′ |xi, θ̃ 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(Fij(yij|θ̃ 1), Fij′(yij′ |θ̃ 1)), yij = 0, yij′ = 0

C(1)(Fij(yij|θ̃ 1), Fij′(yij′ |θ̃ 1)) fij(yij|θ̃ 1), yij > 0, yij′ = 0

C(2)(Fij(yij|θ̃ 1), Fij′(yij′ ;θ̃ 1)) fij′(yij′ |θ̃ 1), yij = 0, yij′ > 0

c(Fij(yij|θ̃ 1), Fij′(yij′ |θ̃ 1)) fij(yij|θ̃ 1)fij′(yij′ |θ̃ 1), yij > 0, yij′ > 0,

(4.5)

where C(h)(u1, u2) = ∂

∂uh

C(u1, u2) for h = 1, 2 is the partial derivative of the bivariate copula with respect
to the h-th component. Thus, the dependence parameter estimates are computed as

θ̃ 2 = arg maxθ2
l2(θ 2). (4.6)

The pairwise formulation (4.4) is critical to our application in two aspects. First, it lowers the
computational burden via dimension reduction. Notably, the high-dimensional integration due to the
discreteness in the loss payments within a storm is reduced to a maximum of two dimensions. Second,
regardless of the computational burden, the likelihood method is not straightforward to implement due
to the lack of balance in the number of claims across storms. The pairwise formulation avoids this issue
since all multivariate distributions have a dimension of two.

The above two-stage estimator is an extension of the multilevel composite likelihood in Zhao et al.
(2021) to the context of replicated spatial data. The estimator is consistent and asymptotically normal,
where the asymptotic covariance is given by the inverse of the Godambe information matrix (Godambe,
1960). In many cases, including ours, the asymptotic covariance cannot be solved analytically, although
consistent estimates can be obtained via jackknife (Joe and Xu, 1996) or other subsampling techniques
(Heagerty and Lumley, 2000).

In implementing the composite likelihood method, an efficient weight can improve both statistical
and computational efficiency (see, for instance, Joe and Lee, 2009 and Bai et al., 2012). Denote by
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d(sij, sij′) the Euclidean distance between observations yij and yij′ . We use the weight defined below
for (4.4):

w(yij, yij′) =
{

1, if d(sij, sij′) ≤ d

0, if d(sij, sij′)> d,

for a fixed spatial lag d. In data analysis, the optimal value of d is selected to result in the most informative
set of estimating equations by minimizing the trace of the inverse of the Godambe information matrix, so
as to minimize the asymptotic variance of the estimator (Bevilacqua et al., 2012). Numerical experiments
have also suggested that shorter distances often result in greater efficiency (Varin et al., 2011; Bai et al.,
2012).

5. Data analysis
We implement the proposed spatial factor copula regression model to analyze the hail property insur-
ance claims data described in Section 2. We use the hailstorms in 2011–2014 as the training data for
model development and hold out the hailstorms in 2015 for model validation and prediction. There are
709 and 130 storms (with 21,937 and 1945 corresponding claims) in the training and hold-out data,
respectively.

5.1. Estimation results
We fit the factor copula regression model using the proposed two-stage estimation. To summarize, we
incorporate the covariates from Section 2 in GB2 marginal claim payment distributions and consider
both the deductible-censored and two-part mixture model strategies for accommodating the excess zeros
from Section 3.1. Due to insufficient variability in the cosine of the wind direction (see Table 1), we
exclude it in the model fitting. Pairwise spatial distances between locations are taken as the great-circle
distance in kilometers under the haversine method assuming a spherical earth. Thus, the parameter ψ
representing the practical range and the spatial lag d are also interpreted in kilometers.

The tuning parameter d in the composite likelihood weight function is selected based on the criterion
of minimizing the trace of the inverse of the Godambe information matrix. We estimate the Godambe
information matrix using a delete-subset jackknife approach to alleviate the computational burden (Joe,
2014). Specifically, we randomize the in-sample storms into 18 subsets and re-estimate the full model
parameters on each delete-subset dataset. We consider 35 different candidate values for d ranging from
0.25 to 25 km. The optimal spatial lag d selected is 1 and 1.25 km for the censored and two-part mixture
GB2 marginal models, respectively.

Table 2 presents the parameter estimates, with standard errors estimated via the delete-subset jack-
knife. The hail size and wind speed weather characteristics are significant and positively associated with
claim payments. Several property characteristics are statistically significant, with older properties expe-
riencing higher claim payments (while exhibiting a lower probability of positive payment in the two-part
model). Outbuildings and multi-family properties are both associated with lower claim payments com-
pared to single-family properties. In addition, properties with metal and wood roofing experience higher
claim payments compared to the commonly used asphalt (while wood roofing is associated with a lower
probability of positive payment in the two-part model). Masonry construction, considered to be sturdier
than frame construction, is also associated with lower insurance losses. The association parameters under
both models indicate significant correlation introduced due to the unobserved storm-specific effect, with
ρ estimates of 0.27 and 0.23 under the censored and two-part models, respectively. In addition, the
respective practical range estimates of 1.89 and 1.55 km indicate that the spatial correlation between
claimants within a hailstorm is low beyond those distances. The κ nugget effect estimates suggest that
there remains short-scale variability in the losses.
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Table 2. Estimation results for the proposed factor copula regression model with two alternative
strategies for zero inflation.

Censored GB2 Two-part mixture GB2

Logit GB2

Est. Std. error Est. Std. error Est. Std. error
Marginal GB2 parameters
σ 0.083 0.007 ∗∗∗ – – 0.090 0.001 ∗∗∗

α1 0.060 0.005 ∗∗∗ – – 0.113 0.002 ∗∗∗

α2 0.343 0.034 ∗∗∗ – – 0.331 0.006 ∗∗∗

Coefficients
Intercept 1.494 0.151 ∗∗∗ 1.711 0.462 ∗∗∗ 0.548 0.110 ∗∗∗

Hail size 0.179 0.005 ∗∗∗ 0.768 0.043 ∗∗∗ 0.147 0.009 ∗∗∗

Wind speed 0.003 0.001 ∗ 0.030 0.013 ∗∗ 0.005 0.003 ∗

Wind direction (sin) 0.005 0.026 −0.240 0.072 ∗∗∗ 0.057 0.040
Exposure density −0.027 0.026 0.565 0.070 ∗∗∗ −0.043 0.025 ∗

Season
Summer (reference)
Fall −0.110 0.030 ∗∗∗ −0.167 0.106 −0.131 0.033 ∗∗∗

Spring −0.039 0.014 ∗∗ −0.052 0.085 −0.028 0.025
Winter 0.006 0.027 0.237 0.104 ∗∗ −0.007 0.039

Log building age 0.050 0.004 ∗∗∗ −0.106 0.025 ∗∗∗ 0.054 0.005 ∗∗∗

Property type
Single family (reference)
Outbuilding −0.312 0.108 ∗∗ −0.493 2.640 −0.264 0.070 ∗∗∗

Multi-family −0.313 0.020 ∗∗∗ −0.275 0.054 ∗∗∗ −0.350 0.018 ∗∗∗

Roof type
Asphalt (reference)
Slate 0.654 0.070 ∗∗∗ 0.351 0.228 0.504 0.078 ∗∗∗

Metal 0.536 0.016 ∗∗∗ 0.312 0.053 ∗∗∗ 0.483 0.022 ∗∗∗

Tile 0.020 0.037 −0.511 0.056 ∗∗∗ −0.150 0.057 ∗∗∗

Wood 0.218 0.011 ∗∗∗ −0.493 0.034 ∗∗∗ 0.232 0.009 ∗∗∗

Flat −0.140 0.042 ∗∗∗ −0.047 0.087 −0.294 0.077 ∗∗∗

Other 0.365 0.038 ∗∗∗ 0.639 0.162 ∗∗∗ 0.325 0.046 ∗∗∗

Construction type
Frame (reference)
Masonry −0.015 0.012 −0.156 0.037 ∗∗∗ −0.035 0.009 ∗∗∗

Other 0.180 0.033 ∗∗∗ 0.426 0.106 ∗∗∗ 0.114 0.036 ∗∗∗

Reporting lag −0.001 0.000 ∗∗∗ −0.001 0.000 ∗∗∗ −0.001 0.000 ∗∗∗

Log coverage amount 0.636 0.012 ∗∗∗ 0.001 0.041 0.686 0.010 ∗∗∗

Log deductible – – −0.191 0.010 ∗∗∗ 0.028 0.003 ∗∗∗

Dependence parameters
ψ 1.894 0.269 ∗∗∗ – – 1.545 0.113 ∗∗∗

ρ 0.272 0.026 ∗∗∗ – – 0.227 0.009 ∗∗∗

κ 0.233 0.017 ∗∗∗ – – 0.271 0.017 ∗∗∗

∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.
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Figure 3. Q-Q plots of Cox–Snell residuals for the censored (left) and two-part mixture (right) marginal
models.

Figure 4. Example of calibrated dependence illustrated on claims from the storm in Figure 1 as a
connected graph, where the colored edges indicate the strength of the pairwise correlations.

To assess the fit of the marginal models, we consider the Cox–Snell residuals (Cox and Snell 1968)
based on the probability integral transform (PIT) (Dawid 1984) of the response using their fitted dis-
tributions. In particular, due to the probability mass at zero in the claim payments, the standard PIT
is not uniformly distributed. We instead consider the more general randomized PIT approach (Czado
et al. 2009; Rüschendorf 2009) and use the transformation in Yang and Shi (2019) for semicontinuous
observations. Figure 3 displays the Q-Q plots of the generalized Cox–Snell residuals for the censored
and two-part mixture models. The Q-Q plots follow the 45-degree line closely, suggesting that GB2
regressions flexibly capture the skewed, heavy-tailed losses. The slight hump near the zero quantile in
the censored model suggests that the distributional assumptions of the more flexible two-part mixture
marginal better reflects the training data compared to the censored marginal model.

To visualize the calibrated dependence based on the fitted copula parameters in Table 2, Figure 4 maps
an example for a group of claims within the storm depicted in Figure 1. The claim locations are plotted
as a connected graph, where the colored edges indicate the strength of the fitted pairwise correlations.
Correlations are stronger between claims that are geographically closer to each other, although claims
within the storm still exhibit low positive correlation at any distance.
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Figure 5. Predictive distributions of storm-level losses under dependence and independence models
for the censored (left) and two-part mixture (right) models, with the observed loss in black.

5.2. Prediction
We evaluate the dependence assumptions of the proposed factor copula model using the hold-out hail-
storms and their associated claims by simulating their predictive distributions. To demonstrate the value
of the factor copula, we compare the predictive distributions from the factor copula regression model to
those from the corresponding regression models assuming independence between claims. Specifically,
based on the fitted model estimates in Table 2, we simulate 5000 realizations of the joint losses for each
hold-out storm under the factor copula and under the independence copula to obtain predictive distribu-
tions of storm-level losses. For example, Figure 5 displays the predictive distributions of the storm-level
losses for two hold-out hailstorms with different numbers of claims n under the factor copula dependence
(orange) and independence (purple) models for the censored (left) and the two-part mixture (right) strate-
gies of handling the probability mass at zero. The predictive distributions of storm-level losses under
the factor copula have heavier tails and exhibit more right skew compared to those under independence,
with the effect becoming more pronounced with higher claim frequency.

To assess the distributional assumptions of the full factor copula model on the hold-out hailstorms,
we examine the PIT of the storm-level losses and the coverage probabilities of the prediction inter-
vals. Denote the storm-level losses by Si = ∑ni

j=1 Yij. Based on the simulated predictive distributions, the
empirical distribution function of Si is Ĥi(s) = (1/b)

∑b
k=1 1(sik ≤ s), where sik are the simulated real-

izations of Si for k = 1, . . . , b and b = 5000 replications in our setting. The predictive distribution is
probabilistically calibrated if the PIT Ĥi(Si) has a standard uniform distribution. Figure 6 displays the
uniform Q-Q plots of the PIT of the hold-out storm losses for the censored (top) and two-part mixture
(bottom) factor models (left), compared to their counterparts under independence (right). The Q-Q plots
suggest that the independence assumption does not capture the storm-level loss distributions effectively.
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Figure 6. Q-Q plots of PIT of storm-level losses on hold-out sample for the censored (top) and two-part
mixture (bottom) dependence models (left), compared to the independence case (right).

The two-part mixture GB2 dependence model similarly does not appear appropriate, showing depar-
tures from the 45-degree line. Thus, the censored GB2 factor copula model is better probabilistically
calibrated to the hold-out sample compared to the two-part mixture GB2, which may have overfitted the
marginal distribution on the training data in Section 5.1.

We further assess out-of-sample calibration by examining the coverage probabilities of the predic-
tion intervals for storm-level losses. We build prediction intervals for a range of levels based on the
predictive distributions of Si. For α ∈ (0, 1), let Li,PI(α) and Ui,PI(α) be the lower and upper bounds of
the 100(1 − α)% prediction interval of Si. Then L̂i,PI(α) = Ĥ−1

i (α/2) and Ûi,PI(α) = Ĥ−1
i (1 − α/2) so that

Pr (L̂i,PI(α)< Si < Ûi,PI(α)) ≈ 1 − αwith approximately α/2 probability in each tail. The coverage proba-
bility is the probability that the observed storm-level loss lies in its prediction interval, which we estimate
empirically across the hold-out hailstorms. If the distributional assumptions of the model are appropri-
ate, the 100(1 − α)% prediction interval should achieve a coverage probability of at least 1 − α. Figure 7
summarizes the coverage probabilities for the prediction intervals for the censored (left) and two-part
mixture (right) models. The dependence models appear to obtain the desired coverage probabilities
near the 45-degree line, compared to the lower coverage probabilities of the independence models. The
censored GB2 dependence model coverage probabilities follow the 45-degree line more closely than
the two-part GB2 dependence model, suggesting that, similar to the PIT Q-Q plots, the censored GB2
factor copula model is more distributionally appropriate for the hold-out sample. We proceed with the
censored GB2 factor copula model in the applications.

6. Application
Characterizing the dependence between insured losses stemming from a common storm allows insur-
ers to make efficient claims management decisions, especially when claims in a concentrated area are
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Figure 7. Prediction interval coverage probabilities under dependence and independence models.

spatially correlated. We demonstrate an application in the context of a treaty reinsurance contract on
hail property damage claims. In particular, we consider an aggregate excess-of-loss (XL) contract, a
non-proportional arrangement where the treaty covers all accumulated losses consequential to a given
event that exceed the attachment point (aggregate reinsurance deductible). Aggregate XL reinsurance is
particularly well suited for managing property claims from weather-related events as it protects insurers
from the accumulation of risks whose individual losses may not be very large, but whose total payout
may be substantially amplified by positive correlation. The spatial and aspatial association in our hail
property claims exemplify the positive correlation in this setting. In fact, special cases of aggregate XL
with high cover are a common method for insurers to manage natural catastrophe-related property losses
for primary perils such as earthquakes (Parodi, 2014).

In the presence of an aggregate XL reinsurance treaty that covers event-level losses, insurers are inter-
ested in predicting their retained losses to provide claims management insights. Following an observed
storm, the insurer can leverage the weather, property, and policy information to obtain a predictive distri-
bution of their retained losses to support their financial planning activities, such as setting case reserves
and making risk retention and transfer decisions.

Using the predictive distributions of the hold-out hailstorms in 2015, we compare the factor copula
model that captures the spatial and aspatial dependence among losses to the independence assumption
for the aggregate XL contract. As an example, for an attachment point of $1 million, Figure 8 shows
the cumulative distribution functions of the predictive distributions of the storm-level losses that are
retained by the insurer under the dependence and independence models for four storms with varying
numbers of claims n, two of which were previously shown in Figure 5. Insurers setting case reserves
based on predictive distributions of their retained losses would substantially underestimate the risk if
assuming independence, leading to potentially insufficient reserves. To illustrate, consider an insurer
that sets the case reserves for each storm equal to the 75% value-at-risk of their retained losses. Based
on the distributions in Figure 8, the dependence model implies a $4734 (8.9%) higher case reserve than
the independence model for the storm with n = 5 claims, a $24,517 (15.5%) higher reserve for the storm
with n = 23 claims, and a $134,366 (15.5%) higher reserve for the storm with n = 102 claims. There
is no difference for the storm with n = 272 claims due to both of the models predicting a very high (at
least 75%) probability of the storm-level loss exceeding the $1 million attachment point.

Considering a range of attachment points, Figure 9 displays the expected retained losses under the
dependence and independence models for the same storms as those shown in Figures 5 and 8. At a
given attachment point, the dependence model suggests lower expected retained losses (i.e., reinsurance
deductible cost) than the independence model. Thus, for a given level of desired retention by the insurer,
the dependence model suggests selecting a higher attachment point than under the independence model
to manage claim costs. Even when incorporating the same rich covariate information, insurers must
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Figure 8. Predictive distributions of retained losses for a common attachment point of $1 million under
dependence and independence models. Storms include those shown in Figure 5.

account for the dependence between losses arising from the same storm in their claims management
decisions.

Our application involving an aggregate XL reinsurance treaty reveal several implications for insurers’
claims management and risk transfer decisions involving excess layers of coverage. First, ignoring the
spatial and aspatial dependence among losses originating from a common storm greatly mischaracterizes
the distributions of the insurer’s retained and ceded losses, which impacts financial planning decisions
such as setting case reserves. Second, for a desired level of retention by the insurer, the dependence
model suggests that the insurer can seek a higher attachment point than under the independence model.

7. Conclusion
Property damage from hail and other severe convective storm perils is responsible for a substan-
tial portion of US weather-related insurance losses against the backdrop of changing weather and
socioeconomic patterns and growing property exposure. The intense, localized nature of convective
storms produces a concentration of spatially correlated claim outcomes whose dependence must be
characterized to support effective claims management and reinsurance decisions.

We provide a method for insurers to predict the financial impact of spatially dependent property
insurance claims arising out of a common storm event. Our copula-based regression for replicated
spatial data features a spatial factor copula that captures the spatial dependence between properties
that decays with distance, as well as the aspatial dependence from being jointly affected by the same
storm irrespective of location. While retaining the interpretation of latent sources of dependence, the
framework also allows us to flexibly leverage the suite of well-studied univariate methods of incor-
porating granular weather and claim information to model skewed, heavy-tailed insurance losses. We
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Figure 9. Expected retained losses for a range of attachment points under dependence and indepen-
dence models. Storms correspond to those shown in Figure 8.

propose a likelihood-based estimation procedure to relieve the computational burden associated with
high dimensionality and exacerbated by the zero-inflated loss outcomes. To demonstrate the estimation
and prediction, we analyze a unique hail claims dataset constructed with hail radar maps and property
exposures. We further highlight the implications of the spatial and aspatial dependence on insurer claims
management decisions through an application involving an aggregate excess-of-loss reinsurance treaty.

While our proposed method focuses on the analysis of replicated spatial data to model joint property
losses, we recognize the importance of combining actuarial models of claim occurrence (e.g., frequency,
location, timing, and severity) with climate science models of storm occurrence and weather scenarios
to support a broader array of actuarial applications. Our spatial factor copula framework assumes that
losses from different storms are independent conditional on the occurrence of claims and the observed
heterogeneity. Future work may explore the potential relationship between the frequency and geograph-
ical distribution of claims with their severity. Potentially evolving hail patterns due to climate change
suggest further consideration of temporal trends across storms. In addition, while the Gaussian factor
copula has the ability to accommodate flexible correlation specifications and unbalanced numbers of
claims, it is restricted by its symmetry and lack of tail dependence. Growing concern about managing
risk associated with the highest loss potentials suggests that future work should explore more flexible
dependence characterization.

Our application setting involves hail property loss data, although our model is more broadly appli-
cable to other severe storm settings where a concentrated group of properties are simultaneously
affected by an event that introduces potential for positively correlated losses to rapidly accumulate.
Our work demonstrates how data and analytics can support our understanding of the dependence in
claims arising from common weather events, as well as their effects on claims management deci-
sions. As (re)insurers focus on modeling and monitoring a growing range of natural catastrophe perils,
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the increasing availability of detailed weather and claims information offer continual opportunities to
expand their capacity to accept and manage weather and climate risk.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/asb.2025.7.
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