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Abstract

Bijective correspondences are established between the radical classes 31 (in a variety if of rings)
with the property that a ring A is in 31 exactly when its finitely generated subrings are all in 91,
and certain filters of ideals in a free iS^-ring. It follows that such classes are determined by the
polynomial identities satisfied by the finite subsets of their members. Analogous considerations
are applied to radical classes 3t which, for a fixed integer n, have the property that a ring is in 01
if and only if its subrings generated by at most n elements are in St.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 21.

1. Introduction

Throughout this paper we shall use a variety iT of rings as our universal class,
and, on occasion, refer to T F as the 'universal variety'. In such a setting there are
several connections between radical classes, semi-simple classes and varieties
(that is subvarieties of 'W). Specifically, it is known when a variety is a radical
class and when a variety is a semi-simple class (compare Gardner (1975), Theorems
1.4 and 1.5, respectively) and there is also some information available, at least
when iV is the class of associative rings, concerning radical classes which are
contained in proper varieties, that is whose members all satisfy some set of poly-
nomial identities (see Gardner (1977)). There is, however, a further way in which
polynomial identities can intervene in the description of a radical class. We illustrate
this with two examples from the class of associative rings (the first example has
much wider validity).

The nil radical class Jf consists of all rings such that every one-element subset
(or, equivalently, every finite subset) satisfies a polynomial identity x" = 0. The
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258 B. J. Gardner [2]

locally nilpotent radical class .S? consists of all rings in which every finite subset
satisfies a linear monomial identity xt x2... xn = 0.

We shall investigate connections between radical classes like these and some
other properties of radical classes which we now define.

DEFINITION 1.1. A radical class 3? in i F is called local if it satisfies

A e<% if and only if every finitely generated subring of A is in St.

A radical class St'vcvW \% an n-radical class if it satisfies

A e& if and only if every subring generated by s£ n elements is in St.

Note that local and n-radical classes are strongly hereditary, that is closed under
formation of subrings.

Radical classes with these properties have been studied by Ryabukhin (1965)
and Stewart (1972a); S£ is an example of the first, Jf of the second, for n = 1.
The properties are reminiscent of a characteristic of torsion classes of modules:
a torsion class is completely determined by the one-generator modules it contains.
Consideration of annihilators of elements leads to the establishment of a bijection
between torsion classes and certain filters of left ideals of the scalar ring. This was
first demonstrated by Gabriel (1962).

For 1-radicals, Ryabukhin (1965) established a result which is quite closely
analogous to Gabriel's module result; he showed that with each 1-radical class one
can associate a certain filter of ideals in a free ring Ft on one generator (and con-
versely). For each element a of a ring, the ideal of one-variable polynomials vanish-
ing on a is the kernel of a natural map from Fl to the subring <a> generated by a.
The filter associated with a 1-radical class $ consists of all these ideals for a e A e M.

An attempt to generalize this result to /i-radicals, utilizing filters of ideals of a
free ring Fn on n generators comes up against the difficulty that the kernel of the
obvious natural map from Fn to a ring <at, ...,aB> generated by {aly ...,an} is not
the same thing as the ideal of polynomials vanishing on {au ...,aH}. It is however,
in a sense, the ideal of polynomials vanishing on the ordered n-tuple (alt ...,aj.
We find it profitable to establish a bijective correspondence between n-radical
classes and filters of these kernels and then show that, for an n-radical class &,
a ring A belongs to ^ if and only if for every subset S of cardinality < n, the ideal
of n-variable polynomials which vanish on S is in the filter associated with 01.

For local radicals, there are further complications; filters of ideals of a free
ring on Ko generators are associated with radical classes, but these ideals have a
fairly tenuous connection with sets of polynomials vanishing on finite sets. However,
the filter-radical correspondences lead to a demonstration that local radical
classes are 'locally equationally determined', and it turns out that a local radical
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[3] Local radicals 259

class is the same thing as a locally equational class in the sense of Hu (1973) which
is also closed under extensions.

Some applications of the results and methods of this paper will be presented in a
subsequent one.

We shall use the following notation

A<]B: A is an ideal of B,
A^B: A is a subring of B,
<au ...,«„>: subring generated by {au ...,an).

2. Local radical classes

Let F be a free ring (in some universal variety iT) on generators x1,x2,x3,....
We shall implicitly regard an element of F as a polynomial p(x1,x2,x3,...) in all
variables.

DEFINITION 2.1. Let v1,v2,v3,...,vm be elements (not necessarily distinct) of a
ring in -W. Let

I(vl,...,vJ = {peF\pivl,v2,...,vm,0,0,0,...) = 0}.

Note that I(vt, ...,vn) is associated with the ordered m-tuple (vt, ...,vm), rather
than with the set {vu..., vm}.

DEFINITION 2.2. A set & of ideals of F is called a radical filter if it satisfies the
following conditions.

(i) Je& implies that x,eJtoT almost all i;
(ii) Je&, JzK<lF implies that KeP;
(iii) Je&,pu...,PneF,neZ+ implies that 7(0! + / , . . . ,p n +J)e^;
(iv) K<\F,xleKfoTnlmostalli, Je&r,I(jl+K,...,jm+K)e#'foTallj1,...,jmeJ,

and all meZ+ implies that Ke^.

THEOREM 2.3. There are bijections between the collection of all local radical classes
in if and the collection of all radical filters of ideals in F, given by

^ = {A\I(au ...,aB)e^ for all au ...,aneA, neZ+}.

PROOF. Let 91 be a local radical class. If au ...,aneAe0l, then xtel(al7...,an)
for i>n and so &m satisfies (i).

If Je&g, then / = I(au...,an) for some aly...,aneAe&. The map / from
F to <«! an), defined by x1t->al xn^aB, xn+1t+0,xn+2i->0,..., has kernel
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260 B. J. Gardner [4]

J, so t h a t F / / s < a 1 ( . . . , a B >£^ . If now J^K<\F, then

where at=at+f(K). Since (al,...,anye<%, we have I(jau...,aje&r
a. If

then rtax.flj, ...,aB, 0,0,0,. . .) =/(y) e / ( /0 , so that

y(dua2, . . . ,S. ,0,0,0, . . . ) = y ^ . C j , ...,aB, 0,0,0, . . . )+ / (*) = 0,

that is yel(ax, ...,an). Conversely, for any Pel(au...,an), we have

and so
J»(«i, . . . ,a . ,0 ,0 ,0, . . . ) =f(S) = 5( f l l , . . . ,« . ,0 ,0,0, . . . )

for some <5eAT, whence P—5eI(au...,an) = J^K and so /?£.£. It follows that
K = / (« ! a . J e ^ ' a and so ̂ " a satisfies (ii).

If Jz&m and pu...,PneF, let J = I(au...,am) for some a,, . . . ,aRe.i4e&.
Then as before FIJ^(au ...,amy^Ae@ and so F/Je@. But then

so that I(0l + J, ...,Pn+J)e^a. This establishes (iii) for ^"«.
Finally we check (iv). Let K be an ideal of F containing almost all xt and let

Je&~m be such that I(j\+K, ...,jm+K)t&a for all ju...,jmeJ. Now J+Ke&g,
by (ii) (already verified) and so J+K = I{au ...,an) for some alt...,ameAe0t.
Consider the ring (J+K)/K. Ujlf ...JmeJ, then I(jt + K, ...,jm+K)e&a and so for
some ct, ...,CieCe0t, we have

But then

Thus every finitely generated subring of (J+K)/K is in ^ and so (J+K)jKedt.
From the exact sequence

0-K 7+ K)/K-*F/K-*FI(J+ K)-*0

where the vertical line denotes isomorphism, we conclude that F\Ke&. By assump-
tion concerning K, we have F/K = (xt + K, ...,xr + K} for some r e Z + , and
x ( e / : for i>r. Since F\K&91, Hpc^ + K, ...,xT+K)e^a. Any polynomial
ye/(*!+.£, ...,xr + Â ) can be written in the form <5+/i, where 5 involves only
xu ...,xr and every term of n involves at least one other xt. We have
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[5] Local radicals 261

and also

fi(x1+K,...,x, + K,0,0,0,...) = n(x1,...,xr, 0,0,0,...) + K,

since every term of \i involves some xx with i > r. Hence

6(x1 + K,...,x, + K,0,0,0,...) = 0, that is 8(xu ...,xr, 0,0,0, ...)eK.

But 5(xu ...,xr) = 5 and so SeK. Since also \i is in the ideal generated by
xr+1,xr+2,..., we have neK. Thus y = 6 + fieK and I(xu ...,xr)^K. Conversely,
if X e K, then X = p + a, where every term of a involves an xt with i > r (and thus
aeK) and no term of p does. Then peK and

p(Xl,...,xr,0,0,0,...)=peK; <r(xu ...,xr, 0,0,0, ...) = 0,

whence X(xu ...,xr,0,0,0, ...)eK, that is Ael(x1+K, ...,xr+K). We conclude that
K = I(xl + K, ...,xr+K)e&a. &x therefore satisfies (iv) and is a radical filter.

We turn now to the reverse correspondence. Given a radical filter 3F, we wish
to show that &? is a local radical class. This involves showing that 0t? is a strongly
hereditary radical class containing every ring of which it contains all the finitely
generated subrings. We note (for we will need the fact below) that 91? is clearly
strongly hereditary.

If L<iAe&p and au...,aneA, then

and so I(al+L,...,an+L)e&r, and thus A/Le0tp. So ^ is homomorphically
closed.

Consider now a ring A with an ideal L such that L and AIL are in &?. Let
au ...,an be in A and consider the homomorphism F-^(,alt ...,an> given by Xji->a,
if i^n and xf(->0 if />« . We have the following commutative diagram with exact
rows:

{(au...,any+L)IL

where the vertical lines denote isomorphism. From this it follows that

By definition of &?, and the fact that &? is known to be strongly hereditary, if
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262 B. J. Gardner [6]

a 1 , . . . , a m e / (a 1 +L, ...,an+L), then /(otj+Zfai, ...,an), ...,ocm + I(a1, ...,an

Since /(a t +L, ...,an+L)e^, defining condition (iv) for radical filters implies that
J(alt ...,an)e^. This being so for all ax,...,aneA, we conclude that Ae0t? and
^jcis closed under extensions

If a ring A has a chain {Le\6e@} of ideals in $? and if bu ...,bne\J9Le, then
£>!, ...,bne some Lfl and so /(Z^, ...,bn)e^~. Hence \JeLe is in &?. We have now
proved that !%& is a radical class.

As noted, ^jr is strongly hereditary. If && contains every finitely generated sub-
ring of a ring A and if at,...,aneA, then a1,...,aBe(.ai,...,anye&p and so
I(alf ...,an)s^ and thus AsSt^. This means that 0t? is a local radical class, as
asserted.

We conclude the proof by showing that the correspondences we have set up are
bijections. Let 01 be a local radical class. If a,,..., an e A e0t, then I(au...,an)e JT,,
so A e^rg, that is ̂ £ •••®?m- Suppose there is a ring Be®?^. Since & is local,
we may assume B is finitely generated. Let B=(bu ...,bm)^F/I(bl, ...,bm). Since

contains I(b1,...,bm). But then I(b1,...,bm) = I(c1,...,ck) for some
whence B^F/I(blt ...,bm) = F//(c,, . . . ,ck)s<c1, ...,c*>e0—a

contradiction. Hence ^ = ^ ^ ^ .
Finally, let IF be a radical filter with . /e^" . Since J contains almost all xh we

can write F/J = Oc, + J,..., xr + />. By condition (iii) for radical filters,

for all P1,...,flneF. This means that F/Je^. Hence I(x1 + J,...,
Arguing as in an earlier part of the proof, we can show that I(xt + J,..., xr+J) = J
(using the fact that /contains almost all x). Thus # " 2 ^ ^ . Conversely, if

and so Ke^. Hence & = ^ ^ ^ and the proof of the theorem is complete.

We have now demonstrated a strong connection between local radical classes and
families of ideals of the free ring. These ideals, however, are not the ideals of
identities satisfied by finite sets, or even by ordered n-tuples; for instance, for any
ordered pair (a, b) of elements of a ring, we have x1 x2 x3 e I(a, b), though clearly
Xi x2 x3 does not vanish on all two-element sets of all rings. Our next task is to
establish a connection between radical filters and the ideals of identities satisfied
by finite sets.

Let Fn be the free ring on {*,, ...,xn} (a subring of F). Thus the elements of Fn

are polynomials p(xu ...,*„).

DEFINITION 2.4. Let a,, ...,an be elements (not necessarily distinct) of a ring in

•W. Let

/„(*,,..., an) = {p = />(*,, • • •, *„) eF,\p(au ..., an) = 0}.
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[7] Local radicals 263

LEMMA 2.5. For each n, let nn: F-*Fn be defined by

xt if / < « ,{
0 if i>n.

Then for every ordered n-tuple (at, . . . ,an) of elements of a ring iniV we have

I(au ...,an) = n;\In(au ...,an)).

PROOF. Every polynomial a e F c a n be written in the form P+y, where ft involves
only xu ...,xn, while every term of y involves at least one xt with i>n. Then

a(a,, ...,an,0,0,0,...) = P(au ...,an,0,0,0, ...)+y(au...,an,0,0,0,...)

= P(ai,...,an,0,0,0).

If ae / (a 1 , . . . , a B ) , then Pel(a1,...,an) and so nn(<x) = nn(P)eIn(au ...,aj. Con-
versely, if nn(oi)eln(au ...,an), then nn(P)eIn(au...,an) and so

Thus Pel{au ...,aB) and so Pel(au...,aa).

LEMMA 2.6. IfJu...,Jm are ideals in a radical filter &, then Jxr\...r\

PROOF. Let 0t be the local radical class associated with &. Then Jx = I(a1, ...,ak)
for some au ...,akeAe9t, and so F/Jt = (au...,akye0t. Let <a1,...,aB> = 5 ^
Similarly, each other F/Jt is isomorphic to a finitely generated ring Bte0t. It
follows that F/Jln...nJm is isomorphic to a subring of B^.-.QB^ and so
FIJlr\...njme&l. Now each /,- contains almost all the free generators of F; so,
therefore, does • / 1 n . . . o j r

m , and we can write

Arguing as in the proof of Theorem 2.3, we see that

+ J1n...nJm,...,xu+J1n...nJm)e#r.

DEFINITION 2.7. For a subset S of a ring in if, /*(5) is the set of polynomials in
xl7 ...,xn which vanish on S.

THEOREM 2.8. Let 91 be a local radical class with radical filter fF. A ring A belongs
to 31 if and only if %~x(l'n(S)) e& for every finite subset Sof A and for every neZ+.

PROOF. Let A be a ring satisfying the second condition and let au ...,an be in A.
If a. = <x(xu ...,xn)el'n({au ...,an}), then, in particular, a(a t , ...,an) = 0, that is
/ '({aj, ...,a^)^In{au ...,an). By Lemma 2.5, we have
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264 B. J. Gardner [8]

I(au ...,an) = n;\In{au ...,an))^n;\rn{au ...,an))e&.

By condition (ii) for radical filters, /(a,, ...,an)e^. We conclude that A&01.
Conversely, let A be a ring in 01 and consider a finite subset S. It is easy to see

that
K(S) = f l W « i . - .«J | ( a i , . . . .aJeSx Sx ... x5(n factors)}.

Thus

by Lemmas 2.5 and 2.6.

DEFINITION 2.9. For a subset 5 of a ring /?, I*(S) is the set of polynomials which
vanish on S.

THEOREM 2.10. Let & be a local radical class, A a ring in if. Then A e 01 if and
only ifF/I*(S)e@ for each finite subset S of A.

PROOF. If F/I*(S)e®, then

FJftS) = FJ[FnnI*(S)] s [F.+I*(S)VI*(S) e ».

But Fjrn(S)^n-\Fn)ln;l(rn(S)) =Fln^(l'n(S)) and so since n;l(I'n(S)) contains
almost all the xt, a by now familiar argument shows that n~ 1(I^(S))e^', the radical
filter associated with 01. By Theorem 2.7, A belongs to # .

Conversely, if A is in ^ , then for every finite subset S of A, we have, by Theorem
2.8, n~1(ll(S))e&r, the radical filter associated with 0t. Hence for some

bu...,bmeBem,

we have n;l(I'n(S)) = I(bu ...,bm), so that

(Fn+I*(S))/I*(S)^FJ[FnnI*(S)] =

For a finite set X of positive integers, let Fx be the free ring on {xt\ieX}. Then
S) and

F//%S)= l){(Fx + I*(S))II*(S)\Xc=Z+,\

If /? is a finitely generated subring of F/I*(S), then R^(FX + I*(S))/I*(S) for some
Z, and so Rs0t. Since ^ is local, we have F/I*(S)e@.

DEFINITION 2.11. (Hu (1973).) Let si be a class of rings in "W which is closed under
finite direct sums. EL{s4) is the class

{AeW\ for every finite subset S of A, there exists a ring Best and a finite
subset T of B such that every polynomial identity of T is a
polynomial identity of 5},

and si is called locally equational if EL(si) = JJ/.
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[9] Local radicals 265

(The definition of EL(sf) given by Hu is actually a little more complicated than
this since si is not required to be closed under finite direct sums. However, we
always have EL(s/) = EL(EL(s/)) and locally equational classes are closed under
finite direct sums and so every such class has the form EL(sf) for a class with this
closure property.)

THEOREM 2.12. The following conditions are equivalent for a non-empty subclass
StofiT.

(i) £? is extension-closed and locally equational;
(ii) 0t is a local radical class.

PROOF, (i) *> (ii): Clearly 9& is homomorphically closed and strongly hereditary
(so in particular it contains, with any ring A, all finitely generated subrings of
A). Let R be a ring which is the union of a directed set {Rx\Xe A} of subrings, that is
R = [JXRX, and if A,/ie A, there exists pe A with Rx^Rp and R^R^ If each
Rxe&, then every finite subset of R is in an ^-ring and since ̂  is locally equational,
it follows that Re 01. A special case of this situation occurs when R is the union
of an ascending chain of ideals, each in t%. From this, and the fact that 0t is
extension-closed, we conclude that ^ is a radical class. Another special case occurs
when {Rx\Xe A) is the set of all finitely generated subrings of R. From this and the
strong heredity of 01, we conclude that ^ is a local radical class.

(ii) => (i): Since M is closed under extensions and direct sums, we need only show
that &^EL(0t). Let A be in EL{&) and let S be any finite subset of A. Then there
is a ring Be0t with a finite subset T such that every polynomial identity satisfied
by T is satisfied by S, that is I*(T)^I*(S). By Theorem 2.10, F/I*(T)e0t and so
FII*(S)^{Fll*(T)W*(S)II*(T))e&; by Theorem 2.10 again, 5 being an arbitrary
finite subset of S, we have Ae<%.

Locally equational classes are generalizations of varieties and so Theorem 2.12
is a generalization of the result (proved by Wiegandt (1974) for associative rings
and noted by the author (1975) in general) that a variety is a radical class if and only
if it is closed under extensions.

3. n-Radical classes

As before, for each positive integer «, we denote by FH a free ring (in if) on
generators xu...,xn.

DEFINITION 3.1. An n-radicalfilter is a set IF of ideals of Fn satisfying the following
conditions.

(i) K e &, K S J<\F implies that J e &.
(ii) Je&, pt pneFH implies that In{fix + J, ...
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(iii) K<\Fn, Je&; IH(}l + K,...,jH+K)e& for all (jlt...JJeJx ... x J implies
that Ke^.

(Here /„ has the same meaning as previously.) There is the same sort of connection
between n-radical classes and n-radical filters as between local radical classes
and radical filters. The relevant proofs closely parallel (and are often simpler than)
those of the corresponding results in Section 2. We therefore omit the details and
summarize the conclusions as follows.

THEOREM 3.2. The correspondences

^H.{/B(a,, ...,an)\au ...,aneAe0l},

&rh*(A\al,...,aneA implies that In(au ...,an)e^}

define bijections between the collections of n-radical classes in 'W and n-radical
filters of ideals of Fn, for each n. (Compare with Theorem 2.3.)

THEOREM 3.3. Let & be an n-radical class with n-radical filter &'. Then a ring
A belongs to @ if and only if /*(5) e & for every subset S of A with | S\ < n. (Compare
with Lemma 2.6 and Theorem 2.8.)

Note that for a set 5 with \S\ «Sn, 7^(5) is effectively the set of all polynomials
vanishing on S. In the case n = 1, of course, there is no distinction between poly-
nomials which annihilate sets and polynomials which annihilate «-tuples. Thus
Theorem 3.3 with n = 1 is the Theorem of Ryabukhin (1965).

4. Examples and miscellaneous comments

Whenever it is a radical class (and for some choices of if it is not, see Anderson
(1974)) the class of locally nilpotent rings is a local radical class. Some examples of
local radical classes of associative rings are given in Stewart ((1972a) and (1972b)),
for example, the class of rings in which every finitely generated subring is finitely
generated as a group, the class of rings in which every finitely generated subring
is artinian and the class of rings in which every finitely generated subring is anti-
simple. The precise relationship between the last-named and the classes of nil
and locally nilpotent rings is not known.

Let # denote the class of commutative associative rings and for a class X of
associative rings let tfoc€ = {A\A is associative and has an ideal / e J f with
A/IeW}. Freidman (1958) has shown that if 91 is a hereditary, supernilpotent
radical class of associative rings with the property that every ring which is the sum
of a directed system of subrings, each in 9t, is itself in 9t, then so is Stdtf. As a
special case, in effect, we have
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[11] Local radicals 267

PROPOSITION 4.1. / / 01 is a supernilpotent local radical class of associative rings,
so is 0to<€.

Examples of 1-radical classes are: the class of nil rings (any #"), the class of
rings satisfying the identity x2 = x (in any universal variety of power-associative
rings; (see Gardner (1975), Theorem 3.1); semi-simple radical classes of associative
rings . ;ee, for example, Gardner and Stewart (1975)).

It -; easy to see that every 1-radical class is an H-radical class, and every n-
radical class is a local radical class. On the other hand, the class of locally nilpotent
associative rings is an example of a local radical class which is not a 1-radical.
We have not given any examples so far of M-radical classes (n> 1) which are not
1-radical classes. Such things are a bit hard to get hold of, though we give a couple
of examples below. Before we do this, however, it is appropriate that we mention
another way of generating local radical classes.

PROPOSITION 4.2. (i) Let <S> be a set of polynomials in the free if-ring on one
generator x such that if p{x),q(x)e<$>, thenp(q(x))e®. Then

M^ = {Aeitr\aeA implies there existspe<!> withp(a) = 0}

is a 1-radical class.
(ii) Let *F be a set of polynomials in the free W-ring on generators x 1 ,x 2 ) . . .

satisfying either

Pl(xHl,l)> •••>xHl,ni))> •••>Pm(xHm,l)> •••» xi(m,nm

or

P l ( x U l , l ) > • • • > * i ( l , n i ) ) > • • • > P n k x i ( m , 1 ) » • • • > x l ( m , n m ) ) i < i \ x i i i •••>

^ < ] ( P l { X H l , l ) ' • • • ' * i ( l , n i ) ) > • • • > P m ( X i ( m , l ) > • • • » X i ( m , n m ) )

Then

3tv = {A e -W | for every finite subset S of A there is a polynomial in 4*

which vanishes on S)

is a local radical class.

PROOF. Everything is straightforward except possibly for closure under extensions
which is ensured by the conditions stated. We illustrate for the first case in (ii).
Let A be a ring with an ideal / such that /, A/Ie@y, and let S be a finite subset of
A. Then there is a polynomial p =p(xil,...,xil)e

y¥ such that every evaluation
of p in Sproduces an element of /. Thus there is a polynomial q = q(xtl, ...,
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which vanishes on {/>(.?!, ...,s,,)|.s1,...,sneS}. Then

which is in *P, vanishes on S and so A is in ^ .
For example, when O = {x"\n = 1,2,3,...}, dt^ is the class of nil rings and when

*F is the class of linear monomials, St^, for associative rings, is the class of locally
nilpotent rings. (The set of linear monomials satisfies the first condition mentioned
under (ii); the set of all monomials satisfies the second, and defines the nil radical
class.)

It is difficult to see exactly how, for n> 1, n-radical classes might be generated
by families of polynomials a la Proposition 4.2. The obvious way is via families
A satisfying the condition

pu...,pn,qeA implies that q{pu...,p^e A. (*)

Consider the class 2£ of rings in which every subset of cardinality ^ n is annihilated
by a polynomial in A, and let A be a ring with an ideal / such that I,A)Ie3C.
If au...,aneA then p(bu ...,bn)el for each (bt, . . . ,6n)e{a1, . . . ,aB}( n ) . It is to be
expected that \{p(bu ...,bn)\(bu ...,bn)e{au ...,an}("'}| >n in general and so there
is no guarantee that the set will satisfy a polynomial identity given by A. At the
same time, one can see how families of polynomials satisfying (*), for a finite
number (>1) of variables, could easily contain the zero polynomial (consider,
for example, the family of two-variable polynomials generated by (*) from
xi x2—x2xl) and thus correspond to a trivial radical class.

Local radical classes (including n-radical classes with n> 1) can be determined,
in the manner of Proposition 4.2, by sets of polynomials without any sort of
substitution-closure; we shall see some examples shortly. We first revert to con-
sideration of filters, however, to show that for ^-radicals a kind of polynomial sub-
stitution-closure property is always involved.

PROPOSITION 4.3. Let & be an n-radical filter, J,Ke^. Let L denote the ideal of
Fn generated by

PROOF. For any qu ...,qneK, pej, we havt p{qu ...,qn)eL, so that

In{qx +L, ...,qn+L)=>Je&, whence /„(?, +L, ...,qn+L)eSF.

It follows thatLeJ*".
Now to the other examples. The 1-radical class 3Sl of associative rings discussed

by Stewart (1970) consists of all rings for which every element satisfies an equation
x" = x. The family {x" — x\n = 1,2,3,...} is clearly not closed under composition.
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Another example: let if be the class of all Lie rings. Parfenov (1971) has defined
a local radical class in W as follows. Let pup2,... be the polynomials defined by

= xl,pi(x1,x2) = *! x2 pn+1(xl,..., x2~+>)

and let Zf, called the class of weakly solvable rings, be the class of rings in which
every finite subset satisfies a p n ; Sf is then a local radical class.

We now present some examples of n-radicals, with n > 1. The first of these is a
2-radical, based on an idea of Morse and Hedlund (1938).

EXAMPLE 4.4. Let * be a binary operation defined on the free iF-ring F2 on two
generators xux2. Let ao,bo,ai,bi,... be the following polynomials:

a0 = xlt b0 = x2,

at = xt*x2, Z>, = x2*xu

a2 = (x1*x2)*(x2*xl), b2 = (x2*Xi)*(*i**2)>

an+i = anixuxjb^x^xj, bn+1 = bn(xux2)aH(x1,x2).

A straightforward induction argument shows that

a«+m = ajan,bn) and bn+m = bm(an,bH)

for each m, n. Now let

implies there exists n with an(u,v) = 0 = bn(u,v)}.

If a ring AeiT has an ideal / e * ^ * such that A/IeJ?*, let M,D be in A . Then for
some n we have an(u,v),bn(u,v)el. But then for some w we have

0 = am(an(u, v), bn(u, «0) = an+Ju, v)

and

0 = bm(an(u, v), bn(u, v)) = bn+Ju, v),

whence it follows that A eJi^. Thus Jt^ is closed under extensions. It is straight-
forward now to complete the proof that M+ is a 2-radical class.

As a specific instance, take W to be the class of all associative rings and let
f*g = fg2—g2f for all f,geF2. A fairly routine induction argument establishes
that none of the polynomials an,bn, n = 0,1,2, . . . is zero and so F^M*. On the
other hand, every one-generator ring is in J(n, so M* is not a 1-radical class.

It would be of interest to determine what M+ looks like when f*g = fg (for
associative and other rings): for associative rings it is properly larger than the class
of locally nilpotent rings and contained in the class of nil rings.
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EXAMPLE 4.5. For the class of associative rings, we define, for n= 1,2,...,
the polynomials an, bn, cn, dn as follows

an(xUx2>x3<x4.) bn(x1,X2,X3,X4)

cn(xl>x2i -*3> **) dn(xu X2, X3, X4)

Let

& = {A\t,u,v,weA implies there exists n with an(t,u,v,w) = 0,

bn{t, u, v, w) = 0, cn(t, u, v, w) = 0, dn(t, u, v, w) = 0}.

Although there is no obvious composition closure for the set of aB's Z>B's cB's,
rfn's, & is in fact a radical class, and thus a 4-radical class, specifically,

A Al )
is nil >.

A A JA A

It has been shown by Krempa (1972) that & is the class of nil rings if and only if
the answer to Kothe's problem—do nil one-sided ideals always generate nil
two-sided ideals ?—is affirmative. Clearly also & is the class of nil rings if and only
if & is a 1-radical class. Thus we conclude that if Kothe's problem has a negative
answer then & is a 4-radical class which is not a 1-radical class.

EXAMPLE 4.6. By Freidman's result quoted earlier in this section Jfo<€ is a local
radical class of associative rings; in fact it is a 2-radical class. If AeJfo^,, then
A\Jf(A) is commutative, so its nilpotent elements form an ideal, /. But then
/ = 0 and so Jf{A) is the set of all nilpotent elements of A, and all commutators in
A are nilpotent. Conversely, any ring satisfying these two conditions is in Jfcf€.
Let A be a ring such that <a, by e JTo^ for all a, be A. If c, d are nilpotent elements
of A, then c, de <c, d} e Jfcffl and so c—d is nilpotent. Also, for any r e A, we have
rc,c/-6<c,r>eJ/"o<g' and so re and cr are nilpotent. Thus the set of nilpotent
elements of A is an ideal. Finally, for each a, be A, we have ab — bae <a, V)e Jf offl
and so ab — ba is nilpotent. It follows that A e ̂ Vo<€, and thus that ^o^ is a 2-
radical class. It is clearly not a 1-radical class.

It would be interesting to know which 1-radical classes (and local radical classes
in general) are representable by families of polynomials as in Proposition 4.2
(or as in the examples just considered) and if there is any sort of uniqueness about
the representing families. We close this section with some examples of Proposition
4.2-type representations which possibly are a little unexpected.

For each n, let Tn = Tn(x) denote the Chebyshev polynomial of the first kind
of degree n. Then Tm(Tn(x)) = Tmn(x) for all m,n (see, for example, Rivlin (1974),
pp. 1-5). The odd-degree 7Vs have zero constant terms so we can consider, inter
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alia, the classes

<& ={A\aeA implies that Tn(a) = 0 for some odd n},

<8/p = {A\aeA implies that Tp«(a) = 0 for some n)

of associative rings where p is an odd prime. It can be shown that 'Sf is the class
of 2-torsion-f ree, torsion nil rings, ̂ p the class of nil rings with /^-primary additive
groups. We do not know of any families of polynomials which determine either the
class of all torsion nil rings or the class of all nil 2-rings in this way.

5. The lower local radical construction

Every class (in every W) is contained in a smallest local radical class. We now
describe that local radical class. It is constructed in a manner which is reminiscent
of the construction given by Tangeman and Kreiling (1972) for the lower radical
class.

Let X be a class of rings which, in view of our aim, can be assumed to be strongly
hereditary and homomorphically closed. We define a class Xa for each ordinal
a as follows

# ! = X; ar,+1 = XjoX,, = {A|there exists I<\A with /, A/IeX,};

Xf = {A\A is the union of a directed system of subrings from \Ja<p Xa}

if fi is a limit ordinal.

THEOREM 5.1. The smallest local radical class containing X is \JXa.

PROOF. We first show that each Xa is strongly hereditary and homomorphically
closed. This is certainly true for Xx. If some Xa has these properties, consider a
ring AeXa+1; for some I<$A, we have I,A/IeXa. If B^A, then Bnl^I and
so BnleX., while BI(Br\I)^(B+I)II*kAIIeXa and so BeX.oX. = Xx+1. If
J<\A, then (I+J)IJ=*I/(InJ)eXa, while AI(I+J)^(AII)/(I+J/I)eXa. From the
exact sequence

we see that A/JeXa+l. Thus Xa+1 is strongly hereditary and homomorphically
closed.

If Xa is strongly hereditary and homomorphically closed for each a<a limit
ordinal /?, consider a ring AeXp. Let A be the union of a directed set {By\peP}
of subrings from \Ja<pXa . If C is a subring of A, then

C = CnA = CnUp5, = UP
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and each CnBp is in some 3CX and so C is in SCt. If K<\A, then

and so A/Ke 3Ct. Thus each #"„ is strongly hereditary and homomorphically closed
and so [Ja 3Ca has these properties also.

If a ring AeiT has an ideal / such that / and A/1 are in U S£a, there are ordinals
y,d with Ie$v A/IeSC* But then Ae&maxlytd)o&max{itS) =&max{y.i)+l

and so JJ #"„ is closed under extensions.
If a ring AfWis the union of a directed system {Bp\peP} of subrings from

U 3Ca, let i?p be in 3Ctp for each p. Then for any limit j5 which is greater than every
ap, we have A eSCf. Thus U 3Ca is closed under directed unions. Arguing as in the
proof of Theorem 2.11, we conclude that {J&a is a local radical class.

Let ^ be a local radical class containing 3C = 9Cr. If, for some limit ordinal /?,
Sfa £ M for all a < /?, let .4 be in #",,. Then ^ = Up E P Bp for some directed set of sub-
rings Bp from earlier # y s and thus from 0t. If S is any finitely generated subring of
A then S^BP for some p e P , so that Ssdi. Since ^ is a local radical class, it
follows that AeM. Hence 9£f<=,&. The induction at non-limit ordinals being
straightforward, we conclude that \j9Ca^&. This completes the proof.

EXAMPLE 5.2. For associative rings, the smallest local radical class containing all
commutative rings is :SPo#, where J5f is the class of locally nilpotent rings and <#
that of all commutative rings. As noted at the beginning of Section 4, jSfo<<f is
indeed a local radical class. Let A be a nilpotent ring. Then there is a series

with zerorings as factors. Since zerorings are commutative, it follows that all
nilpotent rings belong to U » < o ^ . so that i f £<€m and then jS?o"if £^o'ifra = <€m+,.
Since "Sfc-Sfo"!?, we conclude that ifo"^ is the smallest local radical class containing
<€.

EXAMPLE 5.3. Let 2£ denote the class of zerorings (associative). Then S£ = Za

is the smallest local radical class containing 2£.

It is worth noting that the lower radical class defined by a variety need not be
local—consider, for example, the variety of associative zerorings. Also, if 9C is
homomorphically closed and strongly hereditary, the smallest local radical class
containing 3C also contains all rings A for which there exists a transfinite series

where /„+ JIa e 3C for each a and Ip = \Ja<fi /„ when /} is a limit. However, the radical
class need not coincide with the class of rings having such series: Ryabukhin (1968)
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has shown that the class of rings having series like this when 3C is the class of zero-
rings (associative) is properly contained in S£.
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