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Specific classes of stochastic processes and their multidimensional counterparts,
known as random fields, often depend on several parameters that define their
behaviour. Therefore, obtaining estimates for these parameters can be valuable in
modelling and analysing the properties of these stochastic objects. For example,
Gaussian processes and Gaussian random fields can be defined entirely through their
mean and autocovariance functions [3]. As random fields have widespread applications
in numerous fields, including, but not limited to, earth sciences, machine learning and
physics [6], methods to estimate these parameters accurately are important and useful
not only from a theoretical perspective, but have also found numerous applications in
the analysis of real data.

Nonparametric estimation methods of the autocovariance function for random fields
found in the literature often have desirable theoretical properties, such as unbiasedness,
positive-definiteness and robustness. Also, some estimators can be computationally
slow, particularly in the context of spatial big data. Furthermore, the estimators
can struggle to provide a reasonable result when the autocovariance functions are
long range or cyclically dependent. For example, the standard method-of-moments
estimator for the isotropic autocovariance function C(τ) is given by

Ĉ(τ) =
1
|N(τ)|

∑
s,t∈N(τ)

(X(s) − X)(X(t) − X),

where N(τ) = {(s, t) : ‖s − t‖ = τ; s, t, ∈ Rd, τ ∈ R}, X(·) is a random field and X is the
sample mean. This estimator is not guaranteed to be positive-definite, meaning it
does not always produce a valid isotropic autocovariance function [8] and if spatial
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dependency is present, a bias may appear in the estimate of the mean, and thus in
the autocovariance function estimate [6]. Furthermore, finding the elements of N(τ)
can be computationally slow as the dimension d increases or if the number of sample
locations increases, such as in the case of spatial big data.

This thesis is split into three parts. The first introduces some basic concepts of time
series and estimates of the parameters of a Gegenbauer process (see [1]) which are then
applied to a simulated Gegenbauer process, where the parameters are chosen such that
the process has long memory.

The second part considers estimating and testing the normality of the first
Minkowski functional of homogeneous isotropic Gaussian random fields under
varying degrees of spatial dependency, continuing the research in [7]. The covariance
functions considered are the Gaussian, Bessel and Cauchy, which have short-range,
cyclical and long-range dependence, respectively. Also, we raised the random fields
to various powers to see how normality results changed. It was found that under the
Cauchy covariance function, for all tests, the first Minkowski functional was normal.

Several nonparametric autocovariance function estimators found in the literature
were compared. These nonparametric estimators mainly considered nonstandard
approaches, such as kernel regression, quantile-based estimators and estimators using
linear combinations of basis functions, such as B-splines. Some attention is also paid
to nonparametric estimators of the (semi-)variogram. Corrections of these estimators
were also considered, such as a kernel multiplier to remove estimation artefacts, or
making the estimate positive-definite and thus a valid autocovariance function. For
example, the kernel regression estimator, found in [4, 5], is of the form

ĈH(t) =
∑

i

∑
j

X̌ijK((t − tij)/b)
/∑

i

∑
j

K((t − tij)/b),

where X̌ij = (X(ti) − X)(X(tj) − X), tij = ti − tj, K(·) is a kernel and b is some bandwidth.
Estimates using the autocovariance function estimators were obtained in simulation

studies, where the same covariance functions as above were used, each giving its own
strength of spatial dependency, weak, cyclic and strong. The estimates were compared
using several metrics, such as the MSPE of Kriging predictions for out-of-sample
observations. It was demonstrated that certain estimators fail to capture the behaviour
of the covariance function, such as cyclicality, which was shown in these simulation
studies. Simulation studies were conducted for both the one-dimensional case, a
Gaussian process, and the two-dimensional case, an isotropic Gaussian random field,
which can be found in [2].

As these estimators can be computationally slow, particularly for large samples,
this motivated the proposal of new autocovariance function estimators, aiming to be
computationally faster without sacrificing too much accuracy. The proposed estimators
aimed to use the isotropy and stationarity of the considered random fields, and ideas
from time series analysis. For example, due to isotropy, estimates along different angles
can be averaged to obtain a single estimate, and due to stationarity, estimates do not
depend on spatial location, meaning, once again, many estimates can be combined
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to obtain a single estimate. Estimates are obtained and compared using simulated
two-dimensional isotropic Gaussian random fields. The Bessel and Cauchy covariance
functions and sample domains of varying size and density were considered when
performing estimation, mimicking spatial big data. In addition to comparing the
estimation errors, the time to compute the estimates was also considered.

The third part introduces an out-of-sample correction method based on scaling
features of objects, using genetic algorithms for variable and regression model
selection, and determining outliers through various methods. The use of a general
model, that is, a model trained on all available objects, has proven to be inappropriate
when performing prediction on anomalous objects. Typically, anomalous objects
are manually assessed which can be costly with regards to time and resources.
We aimed to create an automated correction process for predictions of anomalous
objects through a nonlinear out-of-sample correction model under the assumption of
scalable features. These ideas are applied to a housing data set provided by ANZ
Bank and CoreLogic. A report on these results by A. Bilchouris, I. Donhauzer,
A. Olenko and D. Ostapenko [‘Corrected out-of-sample prediction with property
pricing applications’] is in preparation.

We demonstrate that well-known autocovariance function estimators may not be
suitable under certain dependency structures, when dealing with spatial big data
or when computational time needs to be considered. Also, the thesis develops several
methodological approaches for the analysis of big spatial data and multidimensional
datasets.

We used R version 4.1.0 for all computations, and the source code can be found at
https://github.com/AdamBilchouris/MastersCode. The implementation of the results
obtained is currently being developed as an R package.
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