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Abstract

We give a new proof of Faltings’s p-adic Eichler–Shimura decomposition of the modular
curves via Bernstein–Gelfand–Gelfand (BGG) methods and the Hodge–Tate period
map. The key property is the relation between the Tate module and the Faltings
extension, which was used in the original proof. Then we construct overconvergent
Eichler–Shimura maps for the modular curves providing ‘the second half’ of the over-
convergent Eichler–Shimura map of Andreatta, Iovita and Stevens. We use higher
Coleman theory on the modular curve developed by Boxer and Pilloni to show that
the small-slope part of the Eichler–Shimura maps interpolates the classical p-adic Eich-
ler–Shimura decompositions. Finally, we prove that overconvergent Eichler–Shimura
maps are compatible with Poincaré and Serre pairings.

1. Introduction

Let p be a prime number, A∞
Q the finite adèles of Q, A

∞,p
Q the finite prime-to-p adèles, and

Zp the ring of p-adic integers. Let Cp be the p-adic completion of an algebraic closure of Qp,
and GQp = Gal(Cp/Qp) the absolute Galois group. From now on, we fix a neat compact open
subgroup Kp ⊂ GL2(A

∞,p
Q ). Given an open compact subgroup Kp ⊂ GL2(Qp), we denote by

Y alg
Kp

the modular curve over Spec Qp of level KpKp ⊂ GL2(A∞
Q ) = GL2(A

∞,p
Q )×GL2(Qp), and

by Xalg
Kp

its compactification by adding cusps. Let YKp and XKp be the rigid analytic varieties
attached to the modular curves, seen as adic spaces over Spa(Qp,Zp) (cf. [Hub96]). Letting
D = XKp\YKp be the cusp divisor, we endow XKp with the log-structure defined by D.

Given a fine and saturated (fs) log adic space Z and ? ∈ {an, ét, két,proét,prokét}, we denote
by Z? its analytic, étale, Kummer-étale, proétale and pro-Kummer-étale sites, respectively (see
[Sch13] and [DLLZ23b]).

In [Fal87], Faltings described the Hodge–Tate decomposition of the étale cohomology (with
coefficients) of the modular curve YKp . More precisely, let E be the universal elliptic curve over
YKp . This admits an extension to a semi-abelian adic space Esm over XKp (cf. [DR73]). Let
e : XKp → Esm be the unit section, ωE = e∗Ω1

Esm/X the modular sheaf and TpE = lim←−n
E[pn]

the Tate module over YKp . We have the following theorem.

Theorem 1.0.1 (Faltings). Let k ≥ 0. There exists a Galois and Hecke equivariant isomorphism

H1
ét(YKp,Cp ,Symk TpE)⊗Qp Cp(1) = H0

an(XKp,Cp , ω
k+2
E )⊕H1

an(XKp,Cp , ω
−k
E )(k + 1) (1)

called the Eichler–Shimura decomposition.
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p-adic Eichler–Shimura maps for the modular curve

The first result of this paper is a new proof of Faltings’s Eichler–Shimura decomposition
using Bernstein–Gelfand–Gelfand (BGG) methods and the Hodge–Tate period map. Our proof
is the proétale analogue of the BGG decomposition for the de Rham cohomology of Faltings and
Chai [FC90, Ch. 5 and Theorem 5.5]. Let us develop the ideas behind it.

Let X∞ := lim←−Kp
XKp be Scholze’s perfectoid modular curve and πHT : X∞ → P1

Qp
the

Hodge–Tate period map [Sch15]. The morphism πHT is GL2(Qp)-equivariant, where we see P1
Qp

as the left quotient of GL2 by the upper triangular Borel B. Let πKp : X∞ → XKp be the natural
map. We can see X∞ as a pro-Kummer-étale Kp-torsor over XKp . We let ÔXKp

denote the p-adic
completion of the structural sheaf over XKp,prokét. Let Zp(1) = lim←−n

μpn be the Tate twist and

ÔXKp
(i) the ith twist of ÔXKp

. By [DLLZ23b, Theorem 4.6.1], TpE admits a natural extension
to the pro-Kummer-étale site of XKp which we denote in the same way. From now on, we fix the
level Kp and write Y = YKp and X = XKp .

The map πHT is defined from the Hodge–Tate exact sequence

0→ ω−1
E ⊗OX

ÔX(1) HT∨
−−−→ TpE ⊗Zp ÔX

HT−−→ ωE ⊗OX
ÔX → 0, (2)

which is the variation in families of the Hodge–Tate decomposition for elliptic curves (cf. [Tat67]).
More precisely, let Ψ : Z2

p
∼−→ TpE be the universal trivialization over X∞; then (2) defines a line

subbundle of O⊕2
X∞ which induces the map πHT.

The GL2(Qp)-equivariance of πHT recovers (2) from a short exact sequence of GL2-equivariant
sheaves over P1

Qp
. Indeed, the presentation P1

Qp
= B\GL2 induces an equivalence between alge-

braic B-representations and GL2-equivariant vector bundles over P1
Qp

. More explicitly, let V be
a B-representation; then one defines the vector bundle V = GL2×BV = B\(GL2×V ), where
in the right-hand side term GL2×V , the group B acts diagonally. Let F be a Kp-equivariant
sheaf over P1

Qp
; we shall identify π∗HT(F ) with the pro-Kummer-étale sheaf over XKp obtained

by descent from the Kp-equivariant pullback over X∞.
Let T ⊂ B be the diagonal torus and let κ = (k1, k2) ∈ X∗(T) be a character. We denote

by Qp(κ) the representation defined by κ and consider it as a B-representation by letting the
unipotent radical act trivially. We say that κ = (k1, k2) is dominant if k1 ≥ k2. Given a dominant
character κ, we let Vκ = Symk1−k2 St⊗detk2 be the irreducible representation of GL2 of highest
weight κ, and we denote by Vκ,ét the associated pro-Kummer-étale sheaf obtained by descent
from X∞. Let W = {1, w0} be the Weyl group of GL2. We denote by L (κ) the GL2-equivariant
sheaf over P1

Qp
given by B\(GL2×w0(κ)). The standard representation St has a B-filtration

0→ Qp(1, 0)→ St→ Qp(0, 1)→ 0. (3)

By construction, the pullback of (3) by πHT is equal to the Hodge–Tate exact sequence (2). In
particular, π∗HT(St⊗OP1

Qp
) = TpE ⊗ ÔX and πHT(L (κ)) = ωk1−k2

E ⊗OX
ÔX(k2). A natural ques-

tion arises, namely, how to describe the pullbacks by πHT of the GL2-equivariant vector bundles
over P1

Qp
. We already know that the pullbacks of those vector bundles constructed from char-

acters of T are related to modular sheaves, and it remains to understand the GL2-equivariant
sheaves constructed from non-semi-simple representations of B.

Let O(B) be the ring of algebraic functions of B endowed with the right regular action;
note that any algebraic representation of B occurs in O(B). The presentation B = T � N as
a semidirect product gives an isomorphism O(B) = O(T)⊗ O(N), where B acts on the first
factor by the right regular action of T, and it acts on the second factor under the formula
(n, b) 	→ t−1

b ntbnb, with (n, b) ∈ N×B and b = (tb, nb) ∈ T � N. We have the following theorem.
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Theorem 1.0.2 (Theorem 4.1.2). Let O(N) be the GL2-equivariant quasi-coherent sheaf over
P1

Qp
associated to O(N). Let OBdR,log be the geometric de Rham period sheaf of [Sch13]

and [DLLZ23b], and let OClog = gr0 OBdR,log be the Hodge–Tate sheaf. We have a natural
isomorphism of pro-Kummer-étale sheaves over X,

π∗HT(O(N)) = OClog.

As a corollary one obtains the Eichler–Shimura decompositions.

Theorem 1.0.3 (Theorem 4.1.4). Let κ = (k1, k2) be a dominant character and set α =
(1,−1) ∈ X∗(T). Let BGG(κ) be the dual BGG complex of weight κ (Proposition 2.4.3),

0→ Vκ → V (κ)→ V (w0(κ)− α)→ 0.

We denote by BGG(κ) the associated GL2-equivariant complex over P1
Qp

. Then the pullback of

BGG(κ) by πHT is the short exact sequence

0→ Symk1−k2 TpE ⊗ ÔX(k2)→ ωk2−k1
E ⊗ OClog(k1)→ ωk1−k2+2

E ⊗ OClog(k2 − 1)→ 0.

Furthermore, let λ : XCp,prokét → XCp,an be the projection of sites. Then

Rλ∗(Symk TpE ⊗ ÔX(1)) = ω−k
E ⊗ Cp(k + 1)[0]⊕ ωk+2

E [−1].

TakingH1-cohomology in the analytic site ofXCp , we recover the Eichler–Shimura decomposition
of Theorem 1.0.1.

The proof of Theorem 1.0.2 follows from the isomorphism between Faltings extension
gr1 OB+

dR,log and the sheaf TpE ⊗ ÔX ⊗ ωE . This isomorphism was known to Faltings, and
used in his original proof of Theorem 1.0.1. Our new proof provides a more explicit definition
of the Eichler–Shimura maps in terms of cocycles and can be generalized to any Shimura
variety. Moreover, using this method, one easily deduces the degeneration of the spectral sequence
appearing in [Fal87], as well as its natural splitting using simple properties of the dual BGG
resolution. It is worth mentioning that the isomorphism between the twist of the Tate module
and the Faltings extension was used by Lue Pan in [Pan22] to compute the relative Sen operator
of the modular curve.

The second goal of this paper is the interpolation of the Eichler–Shimura decomposition
(1). The H0-map of the overconvergent Eichler–Shimura maps was previously constructed by
Andreatta, Iovita and Stevens in [AIS15]. The strategy followed in this paper is close to the
construction of the Eichler–Shimura map for Shimura curves in [CHJ17]. Roughly speaking, we
take pullbacks by πHT of certain locally analytic sheaves over P1

Qp
. In this way, we interpolate

all the terms appearing in the Hodge–Tate exact sequence (2): we get overconvergent modular
sheaves whose cohomology is the object of study in higher Coleman theory developed by Boxer
and Pilloni [BP21, BP22]. The interpolation of the symmetric powers of the Tate module will be
given by locally analytic principal series or locally analytic distributions as in [AS08]. Finally,
the Hodge–Tate maps HT and HT∨ can be put in families, obtaining the dlog map of [AIS15]
as a particular case.

Let us sketch the main steps of the construction. Let n ≥ 1 be an integer and let

Iwn :=
(

Z×
p Zp

pnZp Z×
p

)

be the Iwahori group modulo pn. From now on, we will take X = XIwn . Let ε ≥ δ ≥ n be ratio-
nal numbers and (R,R+) a uniform Tate algebra over Qp which we may assume to be sheafy

1216

https://doi.org/10.1112/S0010437X23007182 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007182


p-adic Eichler–Shimura maps for the modular curve

(i.e. such that the pre-sheaf of rational functions in Spa(R,R+) is an actual sheaf). Let T = T(Zp)
denote the Zp-points of the diagonal torus and χ = (χ1, χ2) : T → R+,× a δ-analytic character
(cf. Lemma 2.2.5). We let R⊗̂ÔX be the p-adically complete tensor product of R and the com-
pleted sheaf ÔX . Given a character λ : Z×

p → R+,×, we denote by R(λ) the GQp-module induced

by the composition GQp

χcyc−−→ Z×
p

λ−→ R×. Finally, we write ÔX(λ) := R(λ)⊗̂ÔX .
We begin with the construction of all the sheaves over P1

Qp
: for w ∈W = {1, w0} we define

a family of overconvergent neighbourhoods {Uw(ε) Iwn}ε≥n of w Iwn in P1
Qp

. The affinoid spaces
Uw(ε) Iwn admit sections of the quotient map GL2 → P1

Qp
. In particular, the natural T-torsor

N\GL2 → P1
Qp

, where N is the unipotent radical of B, has a trivialization over Uw(ε) Iwn. We
define a R⊗̂OP1

Qp
line bundle L (χ) in the analytic site of Uw(ε) Iwn in the same way we have

defined the line bundles L (κ) for κ ∈ X∗(T). Then we define the space of δ-analytic principal
series of weight χ to be the R-Banach space

Aδ
χ = Γ(Uw0(δ) Iwn,L (χ)).

We define the δ-analytic distributions Dδ
χ to be the continuous dual of Aδ

χ endowed with the weak
topology. The space Aδ

χ has a natural action of Iwn, so that it defines a constant Iwn-equivariant
sheaf on P1

Qp
. We let Aδ

χ,ét and Dδ
χ,ét denote the pro-Kummer-étale sheaves over X obtained by

descent from the topological Kp-equivariant sheaves over X∞.
In Proposition 2.4.4 we construct maps

R(χ) ι−→ Aδ
χ equivariant for the action of B(Zp) ∩ Iwn,

Aδ
χ

evw0−−−→ R(χ) equivariant for the action of w−1
0 B(Zp)w0 ∩ Iwn,

with ι being the highest weight vector, and evw0 the evaluation at w0. We prove that these maps
give rise morphisms of Iwn-equivariant sheaves

L (w0(χ))→ Aδ
χ⊗̂QpOP1

Qp
over U1(ε) Iwn,

Aδ
χ⊗̂QpOP1

Qp
→ L (χ) over Uw0(ε) Iwn .

(4)

The next step is to translate all the previous constructions to the modular curve X. We
start by defining the strict neighbourhoods of the w-ordinary locus {Xw(ε)}ε>n; they are equal
to πIwn(π−1

HT(Uw(ε) Iwn)). The second object we descend to X are the overconvergent modular
sheaves ωχ

E ; they are R⊗̂OX -line bundles in the étale or analytic site of Xw(ε). We refer to [BP21]
for the general construction of these sheaves. The dictionary provided by πHT then gives (see
Corollary 3.2.11)

π∗HT(L (χ)) = ωχ
E ⊗ ⊗̂ÔX(χ2). (5)

We continue with the pullback of the δ-analytic principal series and distributions, seen as
Iwn-equivariant sheaves over P1

Qp
. By definition one has π∗HT(Aδ

χ⊗̂OP1
Qp

) = Aδ
χ,ét⊗̂ÔX (and simi-

larly for Dδ
χ). Finally, we pullback the maps (4) obtaining overconvergent Hodge–Tate maps of

pro-Kummer-étale sheaves

ω
w0(χ)
E ⊗̂ÔX(χ1)

HT∨
−−−→ Aδ

χ,ét⊗̂ÔX over X1(ε),

Aδ
χ,ét⊗̂ÔX

HT−−→ ωχ
E⊗̂ÔX(χ2) over Xw0(ε)

(and similarly forDδ
χ). Taking pro-Kummer-étale cohomology, one obtains the following theorem.
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Theorem 1.0.4 (Theorem 4.2.2). There are overconvergent Eichler–Shimura maps

0→ H1
1,c(XCp , ω

w0(χ)
E )ε(χ1)

ES∨
A−−−→ H1

prokét(XCp , A
δ
χ,ét⊗̂ÔX) ESA−−−→ H0

w0
(XCp , ω

χ+α
E )ε(χ2 − 1)→ 0

(6)
satisfying the following properties.

(i) The composition ESA ◦ ES∨
A is zero.

(ii) Assume that V = Spa(R,R+) is an affinoid subspace of the weight spaceWT of T = T(Zp),
and let κ = (k1, k2) ∈ V be a dominant weight of T. Let α = (1,−1) ∈ X∗(T) and let χ =
χun
V be the universal character of V. Then we have the following commutative diagram.

(iii) The maps of (ii) are Galois and U t
p-equivariant with respect to the good normalizations of

the U t
p-operators. In particular, the above diagram restricts to the finite slope part with

respect to the U t
p-action.

(iv) Let h < k1 − k2 + 1. There exists an open affinoid V ′ ⊂ V containing κ such that the
(≤ h)-slope part of the restriction of (6) to V ′ is a short exact sequence of finite free
Cp⊗̂QpO(V ′)-modules.

(v) Keep the hypothesis of (iv), and let χ be the universal character of V ′. Let χ̃ = χ1 − χ2 + 1 :
Z×

p → R+,×, and b = d/dt|t=1χ̃(t). Then we have a Galois equivariant split after inverting b

H1
prokét(XCp , A

δ
χ,ét⊗̂ÔX)≤h

b = [H1
1,c(XCp , ω

w0(χ)
E )≤h

ε (χ1)]b ⊕ [H0
w0

(XCp , ω
χ+α
E )≤h

ε (χ2 − 1)]b.

Remark 1.0.5.

(i) The group H0
w(XCp ,−)ε is the overconvergent cohomology and H1

w,c(XCp ,−)ε the overcon-
vergent cohomology with compact support around the w-ordinary locus of X (see [BP22]
and Definition 3.2.12 below).

(ii) A similar statement holds for the distribution sheaves Dδ
χ,ét, in this case the overconvergent

Eichler–Shimura map of [AIS15] is ESD.
(iii) We also prove the theorem for the proétale cohomology with compact support of Aδ

χ,ét

and Dδ
χ,ét.

(iv) Note that if κ = (k1, k2) with k1 + 1 
= k2 (i.e. when the Hodge–Tate weights are not equal),
one can choose V ′ small enough such that b 
= 0.

We finish with the compatibility of the oveconvergent Eichler–Shimura maps (6) with the
Poincaré and Serre pairings. One can define a Poincaré pairing between the overconvergent
proétale cohomologies

〈−,−〉P : H1
proét,c(YCp , D

δ
χ,ét(1))×H1

proét(YCp , A
δ
χ,ét)→ O(V ′) (7)
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where the left-hand side term is the proétale cohomology with compact support. On the other
hand, one also has Serre pairings between overconvergent coherent cohomologies

〈−,−〉S : H1
w,c(X,ω

−χ
E (−D))ε ×H0

w(X,ωχ+α
E )ε → O(V ′),

〈−,−〉S : H1
w,c(X,ω

w0(χ)
E )ε ×H0

w(X,ω−w0(χ)+α
E (−D))ε → O(V ′).

(8)

We have the following theorem.

Theorem 1.0.6 (Theorem 4.2.3).

(i) The Poincaré and Serre pairings (7) and (8) are compatible with the Up-operators and the
overconvergent Eichler–Shimura maps.

(ii) Let WT be the weight space of T = T(Zp), let V ⊂ WT be an open affinoid and χ the uni-
versal character of V. Let κ = (k1, k2) ∈ V be a dominant weight and fix h < k1 − k2 + 1.
There exists an open affinoid V ′ ⊂ V containing κ such that the (≤ h)-parts of the pair-
ings (7) and (8) are perfect pairings of finite free Cp⊗̂O(V ′)-modules compatible with the
Eichler–Shimura decomposition.

The outline of the paper is as follows. In § 2 we develop the overconvergent theory over the
flag variety. We define the affinoid subspaces Uw(ε) Iwn and the sheaves L (χ). We construct the
δ-analytic principal series Aδ

χ and the maps (4). We recall some facts of the BGG theory for
irreducible representations of GL2; in particular, we define the dual BGG complex BGG(κ).

Then in § 3, we translate all the previous constructions from P1
Qp

to the modular curves
via πHT. We define the strict neighbourhoods of the w-ordinary locus, the overconvergent mod-
ular sheaves and the overconvergent Hodge–Tate maps. We give the good normalizations of
the Hecke operators and show that the Hodge–Tate maps are compatible with the normalized
Up-correspondence.

Finally, in § 4, we show how to obtain the classical Eichler–Shimura decomposition from
the dual BGG complex, proving Theorems 1.0.3 and 1.0.1, in the process we also prove the
theorem for the cohomology with compact support. Next, we construct the overconvergent
Eichler–Shimura maps and obtain Theorem 1.0.4. Finally, we show the compatibility of Poincaré
and Serre duality for the overconvergent Eichler–Shimura maps, obtaining Theorem 1.0.6.

Notation
Throughout this paper we fix a prime number p, we fix an algebraic closure of Qp and denote by
Cp its p-adic completion. We will work with adic spaces over Spa(Qp,Zp) which are either locally
topologically of finite type over a non-archimedean extension K of Qp, or perfectoid spaces.

Let X be a log adic space over Qp; we will work with the proétale and pro-Kummer-
étale site of X as introduced in [Sch13] and [DLLZ23a, DLLZ23b]. We denote by X?, with
? ∈ {an, ét, két,proét,prokét}, the analytic, étale, Kummer-étale, proétale and pro-Kummer-
étale sites of X, respectively. A space without an underlying log structure will be endowed with
the trivial one. Fibre products are always fibre products of fs log adic spaces unless otherwise
specified (cf. [DLLZ23b, Proposition 2.3.27]).

Finally, we will denote by O
(+)
X the uncompleted structural sheaves over Xprokét, and by

Ô
(+)
X their p-adic completion, omitting the index X if the space is clear in the context. Let V be

a topological Zp-module. By an abuse of notation we also denote by V the pro-Kummer-étale
sheaf over Xprokét whose points at an object U are equal to the space of continuous functions
Cont(|U |, V ), where |U | is the underlying topological space attached to U .
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2. Overconvergent sheaves over the flag variety

Let GL2 be the algebraic group of invertible 2× 2 matrices. Let B and T respectively be the
upper triangular Borel and the diagonal torus of GL2, and let N ⊂ B be the unipotent radical
consisting of upper triangular unipotent matrices. We also let B and N be the lower triangular
Borel and its unipotent radical, respectively. Let W = {1, w0} be the Weyl group of GL2. Given
n ≥ 1, we let Iwn ⊂ GL2(Zp) denote the Iwahori subgroup of level pn, that is, the subgroup of
invertible matrices

(
a b
c d

)
such that c ≡ 0 mod pn. We let FL = B\GL2 be the flag variety and

F� its analytification to an adic space over Spa(Qp,Zp). From now on, we see all the previous
schemes as living over Qp.

The goal of this section is to introduce a family of Iwn-stable overconvergent neighbourhoods
of the Iwn-orbit of w ∈W in F�. Then we introduce some Iwn-equivariant line bundles which
play the role of the overconvergent modular sheaves over F�. Finally, we construct some weight
vector morphisms, which will be translated into the overconvergent Hodge–Tate maps over the
modular curve.

For future reference we make the following convention.

Convention 2.0.7. Let H be an algebraic group scheme over Spec Zp. We denote by H0 the rigid
generic fibre of the p-adic completion of H, and by H the analytification of the schematic generic
fibre of H (see [Hub96]). Given a rational number δ > 0, we let H(δ) ⊂ H0 ⊂ H denote the open
subgroup whose (R,R+)-points are

H(δ)(R,R+) = ker(H(R+)→ H(R+/pδR+)).

We call H(δ) the δ-neighbourhood of the identity in H.

It will be useful to introduce some particular open subgroups of GL2.

Definition 2.0.8. Let ε ≥ δ be positive rational numbers.

(i) We let
GL2(ε, δ) := N (δ)× T (δ)×N (ε) ⊂ GL2 .

(ii) Suppose that δ ≥ n. The δ-neighbourhood of Iwn in GL2 is the open subgroup

Iwn(δ) := Iwn GL2(δ) = GL2(δ) Iwn .

We refer to Iwn(δ) as an affinoid Iwahori subgroup of GL2.
(iii) We let T , B, N , etc. denote the Zp-points of T, B, N, etc. Let n ≥ 1. We define the following

subgroups of T , N and N

Tn =
(

1 + pnZp 0
0 1 + pnZp

)
, Nn =

(
1 pnZp

0 1

)
, Nn =

(
1 0

pnZp 1

)
.

2.1 GL2-equivariant sheaves over the flag variety
In this subsection we fix notation for the representation theory of GL2. Let X∗(T) be the
character group of the diagonal torus; we identify X∗(T) ∼= Z2 via the presentation

T =
(

Gm 0
0 Gm

)
.

A weight κ ∈ X∗(T), written as κ = (k1, k2), is said to be dominant if k1 ≥ k2. We denote by
X∗(T)+ the cone of dominant weights. Given κ ∈ X∗(T)+, we let Vκ denote the irreducible alge-
braic representation of GL2 of highest weight κ. Letting St and det respectively be the standard
and the determinant representations of GL2, explicitly one has that Vκ

∼= Symk1−k2 St⊗detk2 .
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Since FL = B\GL2, there is an equivalence between the category of algebraic representa-
tions of B and the category of GL2-equivariant vector bundles over FL. Explicitly, given W a
representation of B, one forms the GL2-equivariant vector bundle

W := GL2×BW := B\(GL2×W ),

where in the right-hand-side term the group B acts diagonally.

Definition 2.1.1. Let κ ∈ X∗(T). We define L (κ) to be the GL2-equivariant line bundle given
by GLw×Bw0(κ).

Remark 2.1.2. (i) The line bundle L(κ) can be described in the following way. Let F̃L = N\GL2

be the natural T-torsor over FL and π : F̃L→ FL the projection map. Then π∗OF̃L
is endowed

with a left regular action of T. One can construct the line bundle L(κ) as the following isotypic
component:

L(κ) = π∗OF̃L
[−w0(κ)]

= {f ∈ π∗OF̃L
: f(tx) = w0(κ)(t)f(x), for t ∈ T}.

The previous description shows that

F̃L = Isom(OFL,L (0,−1))× Isom(OFL,L (−1, 0)).

(ii) The convention on the weight is made such that, if κ is dominant, then Γ(FL,L(κ)) is
isomorphic to Vκ as a GL2-representation.

2.2 Overconvergent line bundles over the flag variety
In order to define the overconvergent line bundles we first need to introduce some affinoid
neighbourhoods of w ∈W .

Definition 2.2.1. Let ε > 0 be a rational number, w ∈W and w GL2(ε) the ε-neighbourhood
of w in GL2. We denote by Uw(ε) its image in F�.

Lemma 2.2.2.

(i) The collection {Uw(ε)}ε>0 is a basis of open affinoid neighbourhoods of w ∈ F�. Moreover,
we have a natural isomorphism

N (ε)w ∼−→ Uw(ε).

(ii) The Iwahori subgroups admit Iwahori decompositions

Iwn(ε) = (NnN (ε))× (TT (ε))× (NN (ε)).

(iii) Let ε ≥ δ ≥ n ≥ 1. We have decompositions

GL2(ε, δ) Iwn = (NN (δ))× (TT (δ))× (NnN (ε)),

GL2(ε, δ)w0 Iwn = (NnN (δ))× (TT (δ))× (NN (ε))w0.

Proof. The collection {Uw(ε)}ε>0 is a basis of neighbourhoods of w since F� is a locally spectral
space and

⋂
ε>0 Uw(ε) = {w}. The isomorphism Uw(ε) ∼= N (ε)w is obvious. Next we prove (ii);

part (iii) is proved in a similar way. It suffices to show the equality at (R,R+)-points, with
(R,R+) a uniform affinoid Qp-algebra. By definition we have

Iwn(ε) =
(Z×

p (1 + pεD1
Qp

) Zp + pεD1
Qp

pnZp + pεD1
Qp

Z×
p (1 + pεD1

Qp
)

)
,
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where D1
Qp

= Spa(Qp〈T 〉,Zp〈T 〉) is the closed affinoid disc. Then

Iwn(ε)(R,R+) =
(

Z×
p (1 + pεR+) Zp + pεR+

pnZp + pεR+ Z×
p (1 + pεR+)

)

Let g ∈ Iwn(ε)(R,R+). Writing

g =
(

1 x2

0 1

)(
x1 0
0 x4

)(
1 0
x3 1

)

and solving the equations, one finds x3 ∈ pnZp + pεR+, x1 and x4 ∈ Z×
p (1 + pεR+), and x2 ∈

Zp + pεR+ which gives (ii). �

Remark 2.2.3. Let us identify F� ∼= P1
Qp

by taking [0 : 1] ∈ P1
Qp

as the marked point, and where
GL2 acts by

[x : y]
(
a b
c d

)
= [ax+ cy : bx+ dy].

Let T = x/y be the canonical coordinate and ε = p−n. In the notation of [AI22, § 4.2] we have

U1(ε) = U
(n)
0,0 = {[x : y] ∈ P1

Qp
: |T/pn| ≤ 1},

Uw0(ε) = U (n)
∞ = {[x : y] ∈ P1

Qp
: |1/(pnT )| ≤ 1}.

Lemma 2.2.4 describes the dynamics of the element � = diag(1, p) over F�. This action has
only two fixed points represented by the elements of W , and expands or shrinks neighbourhoods
of 1 and w0, respectively.

Lemma 2.2.4. Let � = diag(1, p). The following assertions hold.

(i) U1(ε)� = U1(ε− 1) and Uw0(ε)� = Uw0(ε+ 1).
(ii) Let ε ≥ n ≥ 1. Then U1(ε) Iwn� = U1(ε− 1) Iwn−1 and Uw0(ε) Iwn� = Uw0(ε+ 1)N1.

Proof. The proof follows from Lemma 2.2.2 and the computation(
1 0
0 p−1

)(
a b
c d

)(
1 0
0 p

)
=

(
a pb

p−1c d

)
. �

Let Γ be a finite Zp-module. Abstractly, Γ is isomorphic to Zs
p

⊕
Γtor where s ∈ N and

Γtor ⊂ Γ is the torsion subgroup; we call such an isomorphism a chart of Γ. Let V = Spa(R,R+)
be an affinoid adic space with R an uniform Tate Qp-algebra, and χ : Γ→ R+,× a continuous
character.

Lemma 2.2.5 [Urb11, Lemma 3.4.6]. Let ψ : Γ ∼= Zs
p × Γtor be a chart. There exists δ > 0 such

that χ extends to a character

χ : (Zp + pδD1
Qp

)s × Γtor × V → Gm. (9)

We say that χ is a δ-analytic character of Γ with respect to the chart ψ.

Remark 2.2.6. In the following we will take Γ = T , and we say that χ is δ-analytic if it extends
to a character of TT (δ). Let WT = Spf Zp[[T ]] be the weight space of T andWT its rigid generic
fibre, in practice we will take V = Spa(R,R+) ⊂ WT an affinoid subspace and χ = χuniv the
universal character over V.
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Definition 2.2.7. Let ε ≥ δ ≥ n ≥ 1, w ∈W , and F̃� = N\GL2 the natural T -torsor over F�.

(i) We define the following neighbourhood of w in F̃�:

Ũw(ε, δ) = N (δ)\GL2(ε, δ)w.

Let pr : Ũw(ε, δ) Iwn → Uw(ε) Iwn denote the natural projection, Lemma 2.2.2(iii) implies
that pr is a trivial TT (δ)-torsor.

(ii) Let χ : T → R× be a δ-analytic character. We define the OF	⊗̂R-line bundle

L(χ) = pr∗ O
Ũw(ε,δ)

⊗̂R[−w0(χ)].

In other words, L(χ) is the line bundle whose sections over U ⊂ Uw(ε) Iwn are

L(χ)(U) = {f ∈ OF	(pr−1(U))⊗̂R : f(tx) = w0(χ)(t)f(x), for t ∈ TT (δ)}.
Remark 2.2.8. Let � = diag(1, p), c = diag(p, p), and Λ = 〈�, c〉 ⊂ T(Qp). The natural map
F̃�→ Λ\F̃� identifies Ũw(ε, δ) with an open affinoid of the quotient, namely, the Λ orbit of
Ũw(ε, δ) in F̃� is the disjoint union ⊔

γ∈Λ

Ũw(ε, δ)γ.

By construction, the sheaves L(χ) are independent of δ and ε. They fit in a Up-correspondence
as follows. Let � = diag(1, p) and consider the double coset Iwn� Iwn. Then one has that

Iwn� Iwn =
p−1⊔
a=0

Iwn

(
1 −a
0 p

)
.

Let us denote Up,a =
(

1 −a
0 p

)
.

Definition 2.2.9. We define the Up-correspondence of F̃� (respectively, the normalized
Up-correspondence of Λ\F̃�) to be the diagram

(10)

(respectively, for Λ\F̃�), where F̃�a = F̃�, p1|F̃	a
= idF	, and p2|F	a = RU−1

p,a
is right multiplica-

tion by U−1
p,a .

Remark 2.2.10. The correspondence (10) is equivariant for the natural action of Iwn, namely,
the group acts by right multiplication on the bottom spaces, and it acts on the disjoint union⊔p−1

a=0 F̃� as follows. Let γ ∈ Iwn and a, a′ ∈ {0, . . . , p− 1} such that

Up,aγ ∈ Iwn Up,a′ .

Then, given x ∈ F�a, we define x · γ to be xγ ∈ F�a′ . This action satisfies the following
properties.

(i) The map p1 is Iwn-equivariant.
(ii) The map p2 preserves Iwn-orbits, that is, the composition

⊔p−1
a=0 F̃�

p2−→ F̃�/ Iwn onto the
quotient stack1 factors through (

⊔p−1
a=0 F̃�)/ Iwn.

1 By considering the quotient as a v-stack (see [Sch17]).
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The previous points show that we have a correspondence of stacks

(11)

In § 3 we will relate this diagram to the Up-correspondence of modular curves.

The following lemma describes the dynamics of the correspondence on neighbourhoods of 1
and w0.

Lemma 2.2.11. The following assertions hold.

(i) p2(p−1
1 (Ũw0(ε, δ) Iwn)) ⊃ Ũw0(ε− 1, δ) Iwn.

(ii) p2(p−1
1 (Ũ1(ε, δ) Iwn)) ⊂ Ũ1(ε+ 1, δ) Iwn.

(iii) p1(p−1
2 (Ũw0(ε, δ) Iwn)) ⊂ Ũw0(ε+ 1, δ) Iwn.

(iv) p1(p−1
2 (Ũ1(ε, δ) Iwn)) ⊃ Ũ1(ε− 1, δ) Iwn.

Proof. These assertions follow from the definition of the correspondence and Lemma 2.2.4. �

Definition 2.2.12.

(i) Let κ ∈ X∗(T). We define the Up,κ- and U t
p,κ-correspondences of L (κ)

Up,κ : p∗2L (κ)→ p∗1L (χ) and U t
p,κ : p∗1L (κ)→ p∗2L (χ),

to be the maps constructed by taking (−w0(κ))-isotypic components of the structural
sheaves of diagram (10).

(ii) Let χ be a δ-analytic character of T . We define the normalized Up- and U t
p-correspondences

of L (χ),

Up : p∗2L (χ)→ p∗1L (χ) and U t
p : p∗1L (χ)→ p∗2L (χ),

to be the maps constructed by taking (−w0(χ))-isotypic components of the structural
sheaves of the diagrams

obtained from the normalized diagram (10) and Lemma 2.2.11.
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Remark 2.2.13. Let κ be a classical weight. The relation between the classical and the normalized
Up-operators for L (κ) is given by the formulas

Up =
1

w0(κ)(�−1)
Up,κ and U t

p =
1

w0(κ)(�)
U t

p,κ over U1(ε) Iwn,

Up =
1

κ(�−1)
Up,κ and U t

p =
1

κ(�)
U t

p,κ over Uw0(ε) Iwn .

2.3 Analytic principal series and distributions
In this subsection we introduce some non-archimedean spaces interpolating the finite-dimensional
representations of GL2. Let V = Spa(R,R+) be a uniform affinoid adic space over Qp and χ :
T → R+,× a δ-analytic character.

Definition 2.3.1. Let δ ≥ n.

(i) We define the δ-analytic principal series of weight χ to be the Iwn-module

Aδ
χ = Γ(Uw0(δ) Iwn,L (χ)),

seen as a Banach space over R. Equivalently, we have that

Aδ
χ = {f : w0 Iwn(ε, δ)→ A1

R|f(bw0x) = w0(χ)(b)f(w0x), for b ∈ B ∩ w0 Iwn(ε, δ)w−1
0 }.

(ii) We define the δ-analytic distributions of weight χ to be the continuous weak dual

Dδ
χ = Hom0

R(Aδ
χ, R).

Remark 2.3.2. It will come in handy to define lattices in the principal series and distribu-
tions, namely, let L +(χ) = f∗O

+

Ũw(ε,δ) Iwn
[−w0(χ)], Aδ,+

χ = Γ(Uw0(ε) Iwn,L +(χ)), and Dδ,+
χ =

HomR+(Aδ,+
χ , R+). The spaceNN (δ) is a disjoint union of closed discs; in particular, O+(NN (δ))

is an orthonormalizable Zp-algebra. Let {ei}i∈I be an orthonormalizable basis of O+(NN (δ)).
Using the Iwahori decomposition, one has isomorphisms of R+-modules

Aδ,+
χ
∼=

⊕̂
i∈I

R+ei and Dδ,+
χ
∼=

∏
i∈I

R+e∨i .

Remark 2.3.3. It is easy to compare the δ-analytic principal series and distributions defined above
with those used in [AIS15]. Let χ : T → R+,× be a δ-analytic character written as χ = (χ1, χ2).
Consider the set Z×

p × Zp endowed with right multiplication by Iwn and left multiplication by Z×
p .

We letAδ,+
χ1−χ2

be the space of functions f : Z×
p × Zp → R+,× satisfying the following conditions.

(i) f |1×Zp extends to an analytic function of Zp + pδD1
Qp

.
(ii) f(tx) = (χ1 − χ2)(t)f(x) for t ∈ Z×

p and x ∈ Z×
p × Zp.

Note that Z×
p × Zp endowed with the action of Iwn and Z×

p is isomorphic to the quotient

Z×
p × Zp =

(
1 0

pnZp Z×
p

)∖(
Z×

p Zp

pnZp Z×
p

)
=

(
1 0

pnZp Z×
p

)∖
Iwn .

Thus, we have an isomorphism

Aδ,+
χ = Aδ,+

χ1−χ2
⊗ (det)χ2 .

Remark 2.3.4. Let δ′ > δ ≥ n. The inclusion Uw0(δ
′) Iwn ⊂ Uw0(δ) Iwn induces maps Aδ,+

χ →
Aδ′,+

χ and Dδ′,+
χ → Dδ,+

χ . Furthermore, let Âδ,+
χ be the completion of Aδ,+

χ in Aδ′,+
χ . Since the
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inclusion of affinoids above is strict, one has that

Âδ,+
χ =

∏
i∈I

R+ei,

endowed with the product topology. Let Dδ,b,+
χ be the continuous R+-dual of Âδ,+

χ endowed with
the p-adic topology. Then the arrow Dδ′,+

χ → Dδ,+
χ factors through Dδ,b,+

χ . Moreover, we have
that

Dδ,b,+
χ

∼=
⊕̂
i∈I

R+e∨i .

The previous discussion shows that the directed (respectively, inverse) systems {Aδ,+
χ }δ≥n and

{Âδ,+
χ }δ≥n (respectively, {Dδ,+

χ }δ≥n and {Dδ,b,+
χ }δ≥n) are isomorphic as systems of topological

R+-modules.

For future reference we will prove a devisage of Aδ
χ and Dδ

χ in terms of finite Iwn-modules.
We need the following lemma.

Lemma 2.3.5. Let (F,OF ) be a non-archimedean field. Let H = Spa(A,A+) be an affinoid adic
analytic group over F , and Z = Spa(R,R+) be an affinoid adic space topologically of finite
type over Spa(F,OF ). Let Θ : H× Z → Z be an action of H over Z. Then for all N > 0 there
exists a neighbourhood 1 ∈ U ⊂ H such that for all g ∈ U , z ∈ Z and f ∈ O+(Z), we have
|f(z)− f(gz)| ≤ |p|N .

Proof. As O+(Z) = R+ is topologically of finite type over OF , it suffices to prove the proposition
for a single f ∈ R+. Let Θ∗ : R+ → (A+⊗̂OK

R+)+ be the pullback of the multiplication map.
Let V ⊂ H× Z be the open affinoid subspace defined by the equation

|1⊗ f −Θ∗(f)| ≤ |p|N .

As V contains 1× Z and this is a quasi-compact closed subset of H× Z, there exists 1 ∈ Uf ⊂ U
such that Uf × Z ⊂ V . Therefore, for all g ∈ Uf and z ∈ Z we have |f(z)− f(gz)| ≤ |p|N . �

Corollary 2.3.6. Let s ≥ 1. There exists an open subgroup H ⊂ Iwn, depending on s, which
acts trivially on Aδ,+

χ /ps. In particular, we can write Aδ,+
χ /ps as a colimit of finite R/ps[Iwn]-

modules (dually, we can write Dδ,+
χ /ps as a projective limit of finite R/ps[Iwn]-modules).

Proof. The affinoid group Iwn(δ) acts on the space Ũw0(δ, δ) by right multiplication. The
corollary follows by Lemma 2.3.5 since Aδ,+

χ is by definition an isotypic component of the
global functions of Ũw0(δ, δ). Dually, consider the map Dδ,+

χ → Dδ−1,+
χ and define FilsDδ,+

χ =
Dδ,+

χ ∩ psDδ−1,+
χ . Then the quotients Dδ,+

χ /FilsDδ,+
χ are finite R+/ps-modules and the weak

topology of Dδ,+
χ is the same as the inverse limit topology (see [AIS15, Proposition 3.10])

Dδ,+
χ = lim←−

s

Dδ,+
χ /FilsDδ,s

χ .

The corollary follows. �

Definition 2.3.7. Let V be a Banach space over Qp and V + ⊂ V a lattice. We define the
completed tensor products

Aδ
χ⊗̂V =

(
lim←−

s

Aδ,+
χ /ps ⊗ V +/ps

)[
1
p

]
and Dδ

χ⊗̂V =
(

lim←−
s

Dδ,+
χ /FilsDδ,+

χ ⊗ V +/ps
)[

1
p

]
.
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Next, let us explain how Aδ
χ and Dδ

χ interpolate the finite-dimensional representations
of GL2.

Proposition 2.3.8. Let κ ∈ X∗(T) be a dominant weight and δ ≥ n. There is a natural
Iwn-equivariant inclusion Vκ → Aδ

κ. Dually, there is a natural Iwn-equivariant surjective map
Dδ

κ → V ∨
κ = V−w0(κ).

Proof. The second map is just the dual of the first, and the arrow Vκ → Aδ
κ arises from the global

sections functor applied to the inclusion Uw0(δ) Iwn ⊂ F� and to the line bundle L (κ). �

Finally, let us briefly discuss the Up-correspondence of the principal series and distributions.
We let Aδ

χ⊗̂OF	 and Dδ
χ⊗̂OF	 be the constant Iwn-equivariant quasi-coherent sheaves over F�

induced by Aδ
χ and Dδ

χ. We have isomorphisms of OF	-sheaves

Aδ
χ⊗̂OF	 =

⊕̂
i∈I

(
R⊗̂OF	

)
ei and Dδ

χ⊗̂OF	 =
∏
i∈I

(
R+⊗̂O+

F	

)
e∨i

[
1
p

]
.

By Remark 2.2.8 one can endow Aδ
χ with an action of � commuting with Iwn (dually, one can

endow Dδ
χ with an action of �−1). Moreover, the multiplication by � on Aδ

χ (respectively, Dδ
χ)

factors through Aδ−1
χ (respectively, Dδ+1

χ ) in accordance with Lemma 2.2.4. Using this action
and diagram (10), one defines maps

U t
p : p∗1(A

δ
χ⊗̂OF	)→ p∗2(A

δ−1
χ ⊗̂OF	) and Up : p∗2(D

δ
χ⊗̂OF	)→ p∗1(D

δ+1
χ ⊗̂OF	) (12)

(see [AI22, §§ 3.5.2 and 4.5] for more details). We highlight that the previous Up-correspondence
is compatible with the maps of Proposition 2.3.8, after normalizing the action of � and c on Vκ

(see Remark 2.2.13 and the first remark of [AS08, § 3.11]).

2.4 The dual BGG complex and the weight vector maps
Let W = {1, w0} be the Weyl group of GL2 and Bw0N ⊂ GL2 the big cell. We have a
commutative diagram of torsors as follows.

(13)

Let κ ∈ X∗(T) be a character and L (κ) the associated GL2-equivariant line bundle over FL
(see Definition 2.1.1). Recall that, if κ is dominant, the global sections of L (κ) are isomorphic
to Vκ.

Definition 2.4.1. We define the (g,B)-representation V (κ) := Γ(B\Bw0N,L (κ)), where the
action of (g,B) is induced by the right regular action on the big cell.

As a B-module, V (κ) is a twist of the algebra of regular functions of N. Indeed, there is an
isomorphism of affine schemes B\Bw0N ∼= N, and one has

V (κ) ∼= κ⊗ V (1) ∼= κ⊗ O(N), (14)

where the action of B = T � N on O(N) is induced from the map (n, b) 	→ t−1
b ntbnb for (n, b) ∈

N×B and b = (tb, nb) ∈ T � N.

Remark 2.4.2. The (g,B)-module V (κ) is in fact the admissible dual of the Verma module of
highest weight −w0(κ) (see § 3.10 of [AS08]).
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Let κ be a dominant weight. Taking the global sections of L (κ) in the bottom arrow of
diagram (13), one obtains a map

Vκ → V (κ).

Writing κ = (k1, k2) ∈ Z2, and Ga
∼= N via X 	→

(
1 X
0 1

)
, the map of Vκ in V (κ) is identified in

(14) with the inclusion Qp[X]k1−k2 ⊂ Qp[X] ∼= O(N) of polynomials of degree at most k1 − k2.
We have the following proposition.

Proposition 2.4.3. Let α = (1,−1) ∈ Z2 ∼= X∗(T) and let κ = (k1, k2) be a dominant weight.
There is a short exact sequence of (g,B)-representations

BGG(κ) :
[
0→ Vκ → V (κ)→ V (w0(κ)− α)→ 0

]
called the dual BGG complex of weight κ. As such it is identified with the short exact sequence

0→ κ⊗Qp[X]≤k1−k2 → κ⊗Qp[X]
( d

dX
)k1−k2+1

−−−−−−−−→ (w0(κ)− α)⊗Qp[X]→ 0, (15)

where Qp[X] = O(N).

Proof. We have a weight decomposition of V (κ) with respect to T,

V (κ) =
⊕
n≥0

(κ− nα)Qp,

where (κ− nα)Qp is identified with κ⊗QpX
n under the isomorphism (14). As Vκ is the irre-

ducible representation of highest weight κ, it has a weight decomposition Vκ
∼=

⊕
0≤n≤k1−k2

(κ−
nα)Qp. This shows that Vκ ⊂ V (κ) is identified with the inclusion κ⊗Qp[X]≤k1−k2 ⊂ κ⊗
Qp[X]. As κ⊗Xk1−k2+1 has weight (w0(κ)− α), the isomorphism of BGG(κ) with (15) as
B-representations is clear. �

The representation Vκ has a B-filtration whose highest and lowest weight vectors are Qp(κ)→
Vκ and Vκ → Qp(w0(κ)), respectively. Taking the associated GL2-equivariant vector bundles
over FL, one finds morphisms Ψ∨

−w0(κ) : L (w0(κ))→ OFL ⊗ Vκ and Ψκ : OF	 ⊗ Vκ → L (κ). In
Propositions 2.4.4 and 2.4.5 we interpolate these maps on neighbourhoods of w ∈W .

Proposition 2.4.4. Let ε ≥ δ ≥ n. Let (R,R+) be a uniform Tate Qp-algebra and χ : T =
T(Zp)→ R×,+ a δ-analytic character.

(i) There is a B ∩ Iwn(δ)-equivariant map ι : R(χ)→ Aδ
χ (the highest weight vector map). It

induces a morphism of Iwn-equivariant sheaves over U1(ε) Iwn,

ΨA,∨
−w0(χ) : L (w0(χ))→ Aδ

χ⊗̂OU1(ε) Iwn
.

Dually, we have equivariant maps Dδ
χ → R(−χ) and ΨD

−w0(χ) : Dδ
χ⊗̂OU1(ε) Iwn

→
L (−w0(χ)).

(ii) There is a B ∩ Iwn(δ)-equivariant map evw0 : Aδ
χ → R(χ) (the lowest weight vector

quotient). Moreover, it induces a morphism of Iwn-equivariant sheaves over Uw0(ε) Iwn,

ΨA
χ : Aδ

χ⊗̂OUw0 (ε) Iwn
→ L (χ).

Dually, we have equivariant maps R(−χ)→ Dδ
χ and ΨD,∨

χ : L (−χ)→ Dδ
χ⊗̂OUw0 (ε) Iwn

.

Moreover, the morphisms of sheaves above are compatible with the Up-correspondence (10).

Proof. It is enough to prove the statements for the principal series. Recall that Aδ
χ =

O
Ũw0 (ε,δ)

[−w0(χ)], where one takes isotypic components with respect to the left regular action
of TT (δ).
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(i) By Lemma 2.2.2(iii) we have an isomorphism of R-modules Aδ
χ
∼= O(NN (δ)w0); this shows

that the NN (δ)-invariants of Aδ
χ are isomorphic to the B ∩ Iwn(δ)-module R(χ), and thus

provides the first arrow. The map ΨA,∨
−w0(χ) : L (w0(χ))→ Aδ

χ⊗̂OU1(ε) Iwn
is constructed from

the arrow R(χ)→ Aδ
χ via the presentation Uw0(ε) Iwn = B ∩ Iwn(δ)\GL2(ε, δ) Iwn. Indeed,

one has that

L (w0(χ)) = GL2(ε, δ)w0 Iwn×BR(χ) and Aδ
χ⊗̂OU1(ε) Iwn

= GL2(ε, δ)w0 Iwn×BAδ
χ.

(ii) By Lemma 2.2.2 we have the presentation

Ũw0(ε, δ) Iwn = NnN (δ)\(NnN (δ)× TT (δ)×NN (ε)w0).

Then a straightforward computation shows that the evaluation map evw0 : Aδ
χ → R(χ) is

B ∩ Iwn(δ)-equivariant. The arrow ΨA
χ : Aδ

χ⊗̂OUw0 (ε) Iwn
→ L (χ) is just the natural map

induced by the global sections since Aδ
χ = Γ(Uw0(ε) Iwn,L (χ)). Notice that it factors

through the co-invariants of Aδ
χ by the action of NnN (δ).

By definition of the Up-correspondence, it is enough to show that the maps ΨA,∨
−w0(χ) and

ΨA
χ are equivariant for the action of � = diag(1, p); this is clear since the multiplication by �

on L (χ) and Aδ
χ is induced by the right multiplication of � on Λ\F̃� (see Remark 2.2.8 and

Definition 2.2.12). �
Proposition 2.4.5. Let κ ∈ X∗(T) be a dominant character. There are commutative diagrams
of Iwn-equivariant sheaves

A dual statement holds for Dδ
κ. Moreover, these diagrams are compatible with the (normalized)

Up-correspondence (Definition 2.2.9).

Proof. The commutativity of the diagrams is obvious from the definition of the maps ΨA
κ and

ΨA,∨
−w0(κ) of Proposition 2.4.4, and the fact that Ψ∨

−w0(κ) and Ψκ are induced by the invariants
and co-invariants for the action of N on Vκ, respectively. The compatibility with the (nor-
malized) Up-correspondence follows from the fact that the (normalized) action of � on any of
the sheaves involved is induced by the right multiplication on Λ\F̃� (see Remark 2.2.8 and
Definition 2.2.12). �
Remark 2.4.6. In [AI22, §§ 4.7 and 4.8] the authors define some filtrations attached to the sheaves
of modular symbols over the modular curves; it turns out that these can be constructed directly
from the flag variety. Indeed, Andreatta and Iovita use the formalism of vector bundles with
marked sections to define the filtrations (see [AI21, Corollary 2.6]), and the data of a vector
bundle with marked section lives over affinoid neighbourhoods of w ∈W . For example, let St
be the standard representation of GL2 and St+ ⊂ St its natural lattice, and let us denote by
e1, e2 the canonical basis of St+. Over U1(ε) the natural map L +(0, 1)→ St+⊗OU1(ε) induces
an isomorphism L +(0, 1)/pε = e1 ⊗ O+

U1(ε)/p
ε. Therefore, we have the data of a vector bundle

with marked sections (St+⊗OU1(ε),L (0, 1), e1). The previous discussion shows in particular that
the map of [AI22, Proposition 4.15 ii.] is ΨD

χ .
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Following the work of Pan [Pan22], there is a better way to study the filtrations above. Let
gl02 = gl2 ⊗ OF	 be the constant Lie algebroid over F�, and let n0 ⊂ gl02 be the GL2-equivariant
line bundle whose fibre at a point x ∈ F� is n0(x) = LiexNx−1, that is, the Lie algebra of the
unipotent group fixing x. Then n0 is an ideal of gl02, and the natural action of n0 on Aδ

χ⊗̂OF	

induced by derivations of gl02 defines the filtrations of Andreatta and Iovita.

3. Overconvergent sheaves over the modular curve

Let A∞
Q and A

∞,p
Qp

be the rings of finite and finite prime-to-p adèles of Q, respectively. From now
on, we fix a neat compact open subgroup Kp ⊂ GL2(A

∞,p
Q ). Letting n ≥ 0, we denote by Γ(pn),

Γ1(pn) and Γ0(pn) the principal congruence subgroups

Γ(pn) = {g ∈ GL2(Zp) : g ≡ 1 mod pn},

Γ1(pn) =
{
g ∈ GL2(Zp) : g ≡

(
1 ∗
0 1

)
mod pn

}
,

Γ0(pn) =
{
g ∈ GL2(Zp) : g ≡

(
∗ ∗
0 ∗

)
mod pn

}
.

Let Kp ⊂ GL2(Qp) be a compact open subgroup. We denote by Y alg
Kp

and Xalg
Kp

the affine and com-

pact modular curves of level KpKp over Spec Qp (cf. [DR73]). We let Y alg(pn), Y alg
1 (pn) and

Y alg
0 (pn) be the modular curves of level KpΓ(pn), KpΓ1(pn) and KpΓ0(pn), respectively (and

similarly for the compact modular curves). We let YKp and XKp denote their p-adic analytifica-
tion to adic spaces over Spa(Qp,Zp) (see [Hub96]). We endow XKp with the log structure defined
by the cusp divisor D = XKp\YKp .

Let Ealg/Y alg
Kp

be the universal elliptic curve and Ealg,sm/Xalg
Kp

its extension to a semi-abelian

scheme. Let e : Xalg
Kp
→ Ealg,sm be the unit section and ωE = e∗Ω1

Ealg,sm/Xalg the modular sheaf.

Given an integer k ∈ Z, we denote by ωk
E = ω⊗k

E the modular sheaf of weight k. We define the
modular torsor to be the T -torsor over XKp defined by

Tmod = Isom(OX , ωE)× Isom(OX , ω
−1
E ). (16)

Let E[pn]/YKp be the étale local system of pn-torsion points of the universal elliptic curve.
By [DLLZ23b, Theorem 4.6.1], the sheaf E[pn] has a natural extension to a Kummer-étale local
system over XKp , which by an abuse of notation we also write as E[pn]. We let TpE = lim←−n

E[pn]
be the Tate module of E, seen as a pro-Kummer-étale local system over XKp . Given a dominant
weight κ ∈ X∗(T)+, we let Vκ,ét denote the pro-Kummer-étale local system over XKp attached
to the Kp-representation Vκ. We let RΓproét(YCp , Vκ,ét) and RΓproét,c(YCp , Vκ,ét) respectively be
the étale cohomology and the étale cohomology with compact support of Vκ,ét.

3.1 The Hodge–Tate period map
Let Q

cyc
p be the p-adic completion of the p-adic cyclotomic field Qp(μp∞). Scholze proved

in [Sch15] that the inverse limit X(p∞) = lim←−n
X(pn) has a natural interpretation as a perfectoid

space. Furthermore, he constructed a Hodge–Tate period map πHT : X(p∞)→ P1
Qp

parametriz-
ing the Hodge–Tate filtration of elliptic curves at geometric points; let us briefly recall how
it is constructed. The Hodge–Tate exact sequence is the following short exact sequence of
pro-Kummer-étale sheaves over XKp :

0→ ω−1
E ⊗O Ô(1)→ TpE ⊗Zp Ô → ωE ⊗O Ô → 0. (17)
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On the other hand, the perfectoid space X(p∞) parametrizes trivializations of TpE. If ψ : Z2
p
∼=

TpE denotes the universal trivialization of the Tate module, the pullback of (17) by ψ gives rise
a line subbundle of O⊕2

X(p∞) which defines the map πHT : X(p∞)→ F� = P1
Qp

. Let us summarize
the previous discussion and some properties of πHT in the following theorem.

Theorem 3.1.1 [Sch15, Theorem III.3.18]. There exists a perfectoid space X(p∞) over Q
cyc
p

satisfying the tilde limit property [SW13, Definition 2.4.1]

X(p∞) ∼ lim←−
n

X(pn).

Moreover, let [x : y] ∈ F� = P1
Qp

denote the projective coordinates of the projective space. There

is a GL2(Qp)-equivariant Hodge–Tate period map

πHT : X(p∞)→ F�

such that for any open rational subset U of U1 = {[x : y]||x/y| ≤ 1} or U∞ = {[x : y]||y/x| ≤ 1}
of F�, the inverse image π−1

HT(U) ⊂ X(p∞) is an affinoid perfectoid subspace, and there exist
n� 0 and an open affinoid Vn ⊂ X(pn) whose inverse image to X(p∞) is equal to π−1

HT(U).

Another feature of the Hodge–Tate period map is that it encodes the modular sheaves
in terms of GL2-equivariant line bundles over F�. More precisely, letting St be the standard
representation, we have an exact sequence of B-modules

0→ Qp(1, 0)→ St→ Qp(0, 1)→ 0.

Taking the associated GL2-equivariant vector bundles over F�, we have a short exact sequence

0→ L (0, 1)→ St⊗OF	 → L (1, 0)→ 0. (18)

Now the map πHT induces a GL2(Qp)-equivariant morphism of ringed sites

πHT : (X(p∞)prokét, ÔX)→ (F�,OF	).

In particular, we can take pullbacks of GL2-equivariant OF	-vector bundles over F� to GL2(Qp)-
equivariant ÔX -vector bundles over X(p∞)prokét.

Convention 3.1.2. Given a Kp-equivariant sheaf F over F�, we will identify π∗HT(F ) with
the pro-Kummer-étale sheaf over XKp defined by descent from the Kp-equivariant sheaf over
X(p∞)prokét.

Remark 3.1.3. Essentially by definition, the pullback of (18) by πHT is the Hodge–Tate exact
sequence (17). Our convention differs from that of [AI22, § 4.3], where the pullback of the standard
representation by πHT is identified with the dual of TpE.

Let κ ∈ X∗(T)+ be a dominant weight and Vκ the irreducible representation of GL2 of
highest weight κ. Treating Vκ as a constant GL2(Qp)-equivariant sheaf over F�, one has that
π∗HT(Vκ) = Vκ,ét as pro-Kummer-étale sheaves. This implies that the pullback by πHT of the
GL2-equivariant vector bundle Vκ ⊗ OF	 is equal to Vκ,ét ⊗ ÔX . Concerning the GL2-equivariant
line bundles over F�, one has the following result (cf. [CS17, Proposition 2.3.9]).

Proposition 3.1.4. Let κ = (k1, k2) ∈ X∗(T) be an algebraic weight and L (κ) the GL2-
equivariant line bundle over F� of weight κ. There is a natural isomorphism of pro-Kummer-étale
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sheaves over XKp ,

π∗HT(L (κ)) = ωk1−k2
E ⊗O Ô(k2).

Equivalently, let F̃� = N\GL2 and πKp : X(p∞)→ XKp . We have an isomorphism of GL2(Qp)-
equivariant T -torsors over X(p∞),

π∗HT(F̃�) = π∗Kp
(Tmod)(−1, 0),

where Tmod(−1, 0) is a Tate twist in the first component of the modular torsor (16).

Proof. We only need to show the isomorphism of torsors; this follows from Remark 2.1.2(i)
and the definition of the modular torsor. In fact, since the pullback of (18) is the Hodge–Tate
exact sequence, one has that π∗HT(L (1, 0)) = ω1

E ⊗ ÔX and π∗HT(L (0, 1)) = ω−1
E ⊗ Ô(1), and the

proposition follows since L (κ) = L (1, 0)⊗k1 ⊗L (0, 1)⊗k2 . �

3.2 Overconvergent modular forms
Throughout the rest of this section we fix n ≥ 1 and write X∞ = X(p∞) and X = X0(pn). Let
πIwn : X∞ → X be the natural projection and πHT : X∞ → F� ∼= P1

Qp
the Hodge–Tate period

map. Let Xord
∞ = π−1

HT(F�(Qp)) be the closure of the ordinary locus at infinite level [Sch15,
Lemma III.3.6.], and Xord = πIwn(Xord

∞ ) the closure of the ordinary locus of X.
Let Ccan

n ⊂ E[pn] be the canonical subgroup over Xord and w ∈W = {1, w0}. We let Xord
w ⊂

X
ord denote the w-ordinary locus, that is, the ordinary locus where Ccan

n has relative position
w with respect to the universal subgroup Hn ⊂ E[pn]. In other words, Xord

1 is the ordinary
locus where Ccan

n = Hn and X
ord
w0

the locus where Ccan
n ∩Hn = 0. We can also write X

ord
w =

πIwn(π−1
HT(w Iwn)).

Let ε ≥ n ≥ 1 and w ∈W = {1, w0}. In § 2.2 we defined affinoid neighbourhoods
{Uw(ε) Iwn}ε≥n of w ∈ F�. By Theorem 3.1.1 their pullback to X∞ is an affinoid perfectoid
arising from some finite level modular curve XKp . Furthermore, as π−1

HT(Uw(ε) Iwn) is Iwn-stable,
we can take Kp = Iwn. The previous discussion leads to the following definition.

Definition 3.2.1. There exists a unique open affinoid subspace Xw(ε) ⊂ X such that
π−1

Iwn
(Xw(ε)) = π−1

HT(Uw(ε) Iwn).

Remark 3.2.2. The following properties are deduced from Lemma 2.2.2.

(i) Xw(ε′) ⊂ Xw(ε) is a strict immersion for ε′ > ε.
(ii) {Xw(ε)}ε≥n is a basis of strict neighbourhoods of Xord

w , namely,
⋂

ε≥nXw(ε) = X
ord
w .

The affine modular curve Y ⊂ X parametrizes triples (E,Hn, ψN ) where E is an elliptic
curve E, ψN is some prime-to-p level structure, and Hn ⊂ E[pn] is a cyclic subgroup of order pn.
Let � = diag(1, p). In the following we study the dynamics of the Up-correspondence (cf. [BP22,
§ 5.3]).

Definition 3.2.3. The Up-correspondence of X is the finite flat correspondence C fitting into
the diagram

(19)

and parametrizing tuples (E,Hn, ψN , H
′) where (E,Hn, ψN ) defines a point in X, and H ′ ⊂ E[p]

is a cyclic subgroup of order p such thatHn ∩H ′ = 0. We define p1(E,Hn, ψN , H
′) = (E,Hn, ψN )
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and p2(E,Hn, ψN , H
′) = (E/H ′, Hn, ψN ), where ψN and Hn are the images of ψN and Hn in

the quotient E/H ′. Let π : p∗1E → p∗2E be the universal isogeny over C and π∨ : p∗2E → p∗1E its
dual. For a subspace Z ⊂ X let us denote Up(Z) = p1(p−1

2 (Z)) and U t
p(Z) = p2(p−1

1 (Z)).

The following lemma uses the same strategy as [AI22, § 4.5]. Notice, however, that the
convention on πHT differs (see Remark 3.1.3).

Lemma 3.2.4. Let ε ≥ n. The following assertions hold.

(i) U t
p(X1(ε)) ⊂ X1(ε+ 1) and Up(X1(ε)) ⊃ X1(ε− 1) if ε ≥ n+ 1.

(ii) Up(Xw0(ε)) ⊂ Xw0(ε+ 1) and U t
p(Xw0(ε)) ⊃ Xw0(ε− 1) if ε ≥ n+ 1.

Proof. The perfectoid modular curve X∞ parametrizes triples (E,ψN , (e1, e2)) where E is an
elliptic curve, ψN a prime-to-p level structure, and (e1, e2) a basis of TpE. Let C∞ = X∞ ×X,p1 C.
The perfectoid curve C∞ parametrizes (E,ψN , (e1, e2), H ′), where (E,ψN , (e1, e2)) ∈ X∞ and
H ′ ⊂ E[pn] is a cyclic subgroup of order p such that 〈e1〉 ∩H ′ = 0 mod p. Write C∞ =⊔

a∈Fp
C∞,a, with C∞,a the locus where H ′ = 〈e2 + ae1〉. Note that the map p1 : C∞,a → X∞

is an isomorphism for all a. We have a diagram

with p1(E,ψN , (e1, e2), H ′) = (E,ψN , (e1, e2)) and p2(E,ψN , (e1, e2), H ′) = (E/H ′, ψN , (π(e1),
ẽ2)), such that the restriction of p2 to C∞,a is given by ẽ2 = (1/p)(π(e2) + aπ(e1)) for 0 ≤ a < p
lifting a. Let Up,a :=

(
1 −a
0 p

)
. Composing with the Hodge–Tate period map πHT : X∞ → F�, we

have a commutative diagram of correspondences (see diagram (10))

(20)

where the map p2,a : F�a → F� is the right multiplication by U−1
p,a . Indeed, if e1, e2 is the canonical

basis of the standard representation of GL2 we have that p∗2,a(e1) = e1 and p∗2,a(e2) = (1/p)
(e2 + ae1). The lemma follows by Lemma 2.2.11 and the definition of the affinoids Xw(ε). �
Remark 3.2.5. Taking Iwn-quotients in (20), one obtains the morphism of correspondences

where the bottom correspondence is that of (11). Therefore, the Up-correspondence ofX is simply
the pullback of the Up-correspondence of the stack F� / Iwn.

Let T 0 ⊂ T be the affinoid bounded torus given by the generic fibre of the p-adic completion
of T. Let Tmod,ét be the base change of Tmod to a T -torsor over the étale site of X. In order
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to construct overconvergent modular sheaves we have to find refinements of the torsor Tmod. It
turns out that the torsor Tmod admits an integral reduction to an étale torsor.

Theorem 3.2.6 [BP22, § 4.6]. Let F̃�
0

= N 0\GL0
2 be the natural GL0

2-equivariant T 0-torsor over
F�. There exists an étale T 0-torsor T 0

mod,ét over X such that

Tmod,ét = T ×T 0 T 0
mod,ét and π∗HT(F̃�

0
) = π∗Iwn

(T 0
mod,ét)(−1, 0).

Remark 3.2.7. The existence of the integral torsor holds in greater generality for any Shimura
variety. The theorem follows from the fact that π∗HT(F̃�

0
) is a GL(Zp)-equivariant open subspace

of the twisted torsor πIwn(Tmod)(−1, 0) over X∞, and it follows that this open subspace descends
to some finite level providing, locally étale on X, an integral trivialization of Tmod.

The following definition is justified by the proof of Theorem 3.2.6 (see [BP21,
Proposition 4.6.12] or [BP22, Proposition 5.15]).

Definition 3.2.8. Let ε ≥ δ ≥ n ≥ 1 and w ∈W = {1, w0}. Consider the Iwn-equivariant
TT (δ)-torsor of Definition 2.2.7,

Ũw(ε, δ) Iwn → Uw(ε) Iwn .

The restriction of T 0
mod,ét to Xw(ε) admits a reduction to an étale TT (δ)-torsor Tmod(δ)

determined by the equality

π∗HT(Ũw(ε, δ) Iwn) = π∗Iwn
(Tmod(δ))(−1, 0) (21)

as open subspaces of π∗HT(F̃�) = π∗Iwn
(T )(−1, 0).

Definition 3.2.9. Let (R,R+) be a uniform affinoid Tate Qp-algebra, and χ : T = T(Zp)→
R+,× a δ-analytic character. Let OTmod(δ) be the algebra of regular functions of Tmod(δ), seen as
an étale Banach OX -algebra over Xw(ε). The sheaf of overconvergent modular forms of weight
χ is given by

ωχ
E = OTmod(δ)⊗̂R[−w0(χ)]

= {f ∈ OTmod(δ)⊗̂R : f(tx) = w0(χ)(t)f(x) for t ∈ TT (δ)}.

Remark 3.2.10. In [BP21, Proposition 4.6.15] it is shown that the torsor Tmod(δ) is trivial in a
finite étale covering of Xw(ε). This implies that the étale sheaf ωχ

E is locally in the étale topology
an orthonormalizable OX -sheaf, and equal to the pullback to the étale site of an OXw(ε)⊗̂R-line
bundle over the analytic site of Xw(ε).

From Definition 3.2.8 we deduce the following overconvergent analogue of Proposition 3.1.4.

Corollary 3.2.11. Let (R,R+) and δ be as in Definition 3.2.9, and write χ = (χ1, χ2).
Let χcyc : GQp → Z×

p be the cyclotomic character and χ2 ◦ χcyc : GQp → R+,× its composition

with χ2. We set ÔX(χ2) := R(χ2 ◦ χcyc)⊗̂ÔX . There is a Galois equivariant isomorphism of
pro-Kummer-étale sheaves over Xw(ε),

π∗HT(L (χ)) = ωχ
E⊗̂R⊗̂OX

ÔX(χ2).

We can finally define the overconvergent modular forms and the overconvergent cohomology
classes appearing in higher Coleman theory. We refer to [Urb11] for the notion of perfect Banach
complexes and compact operators of perfect Banach complexes. See [Sta20, Tag 0A39] for the
definition of cohomology with supports in a closed subspace.
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Definition 3.2.12. Let w ∈W = {1, w0} and let F be a sheaf over Xw(ε)an. Denote
Xw(> ε) :=

⋃
ε′>εXw(ε). We define the cohomology complexes

RΓw(X,F )ε := RΓan(Xw(ε),F ) and RΓw,c(X,F )ε := RΓ
an,Xw(>ε+1)

(Xw(ε),F ).

Set H0
w(X,F ) := H0(RΓw(X,F )ε) and H1

w,c(X,F ) = H1(RΓw,c(X,F )ε). When F = ωχ
E , we

call H0
w(X,ωχ

E)ε and H1
w,c(X,ω

χ
W )ε the space of overconvergent modular forms and the

overconvergent cohomology with compact support of weight χ, respectively.

3.2.1 Hecke operators. We end this subsection with the definition of the Up-operators for the
overconvergent modular forms. First, let us recall the definition for the classical modular sheaves.
Let X

p1←− C p2−→ X be the Up-correspondence. We let π : p∗1E → p∗2E be the universal isogeny
over C and π∨ : p∗2E → p∗1E its dual. We denote by π∗ : p∗2ωE → p∗1ωE and π∗ : p∗1ω

−1
E → p∗2ω

−1
E

the pullback and pushforward maps of π (respectively, for π∨). For a quasi-coherent sheaf F over
X we let Trpi : pi,∗p∗i F → F be the trace map of pi. Let κ = (k1, k2) ∈ X∗(T) be a character of
T, and recall that we have made the convention ωκ

E = ωk1
E ⊗ ω

−k2
E = ωk1−k2

E .

Definition 3.2.13. The Hecke operator Up,κ acting over RΓan(X,ωκ
E) is the composition

.

We define the U t
p,κ operator by shifting the roles of p1 and p2, and by composing with the map

(π∨,∗)⊗k1 ⊗ (π∗)⊗k2 .

Remark 3.2.14. The Up,κ above is equal to the operator p−k1Unaive
p,k1−k2

of [BP22]. Indeed,
(π∨,∗,−1)⊗k1 = p−k1(π∗)⊗k1 and (π−1

∗ )⊗k2 = (π∗)⊗−k2 . In other words, Unaive
p,k = Up,(0,−k).

Let us explain the normalization of the Hecke operator Up,κ of the previous definition. It
turns out that it is induced from the Up,κ-correspondence of the sheaf L (κ) over F� (see
Definition 2.2.12(i)). Recall that the Hodge–Tate exact sequence

0→ ω−1
E ⊗ ÔX(1)→ TpE ⊗ Ô → ωE ⊗ Ô → 0

is the pullback by πHT of the exact sequence of GL2-equivariant vector bundles

0→ L (0, 1)→ St⊗OF	 → L (1, 0)→ 0.

By the proof of Lemma 3.2.4, the Up-correspondence of X at level X∞ commutes with the
Up-correspondence of F� defined in (10). Then the natural Up-correspondence of π∗HT St⊗OF	 =
TpE ⊗ OX∞ induced by the GL2(Qp)-equivariant structure of St is compatible with the natural
Up-correspondence of π∗HT(L(0, 1)) = ω−1

E ⊗ OX∞(1) and π∗HT(L(1, 0)) = ωE ⊗ OX∞ . But the cor-
respondence of TpE is just the natural isogeny π : p∗1(TpE)→ p∗2(TpE) and we have the following
commutative diagram.

Then the natural Up correspondences of ωE ⊗ OX∞ and ω−1
E ⊗ OX∞(1), defined by L (1, 0) and

L (0, 1) respectively, are given by the maps

π∨,∗ : p∗1ωE → p∗2ωE and π∗ : p∗1ω
−1
E ⊗ OX∞(1)→ p∗2ω

−1
E ⊗ OX∞(1).
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With the previous explanation in mind, we can now define the Up-correspondence for the
overconvergent modular forms. We refer to [BP22, Proposition 5.8] for the details.

Definition 3.2.15. Consider the Up-correspondence (19) and its restriction to the overconver-
gent neighbourhoods of Xord

w (see Lemma 3.2.4):

(i) We define the maps

Up : p∗2ω
χ
E → p∗1ω

χ
E and U t

p : p∗1ω
χ
E → p∗2ω

χ
E

to be the unique maps whose base changes to ÔX -modules coincide with the pullback by
πHT of the Up-correspondence of Definition 2.2.12(ii).

(ii) The Up operator on RΓ1(X,ω
χ
E)ε and RΓw0,c(X,ω

χ
E)ε is the one induced by the map Up

above.
(iii) The U t

p operator on RΓw0(X,ω
χ
E)ε and RΓ1,c(X,ω

χ
E)ε is the one induced by the map U t

p

above.

In order to state the classicality result we need to normalize the Up-operators.

Definition 3.2.16. Let (R,R+) be a uniform Tate Qp-algebra and χ : T → R+,× be a δ-analytic
character. Let κ ∈ X∗(T). We define normalizations of Up and U t

p:

Ugood
p =

⎧⎪⎪⎨
⎪⎪⎩

1
p
Up over RΓ1(X,ω

χ
E)ε,

Up over RΓw0,c(X,ω
χ
E)ε,

p−min{1−k1,−k2}Up,κ over RΓan(X,ωk),

U t,good
p =

⎧⎪⎪⎨
⎪⎪⎩

1
p
U t

p over RΓw0(X,ω
χ
E)ε,

U t
p over RΓ1,c(X,ω

χ
E)ε,

p−min{1−k1,−k2}U t
p,κ over RΓan(X,ωκ

E).

We shall need the following classicality theorem for overconvergent cohomologies.

Theorem 3.2.17 [BP22, Theorem 5.13]. Let κ = (k1, k2) ∈ X∗(T) be an algebraic weight.

(i) The Ugood
p operator has non-negative slopes on H0

1 (X,ωκ
E)ε and H1

w0,c(X,ω
κ
E)ε.

(ii) The U t,good
p operator has non-negative slopes on H0

w0
(X,ωκ

E)ε and H1
1,c(X,ω

κ
E)ε.

Furthermore, we have isomorphisms of small-slope cohomologies

H0
1 (X,ωκ

E)Ugood
p <k1−k2−1

ε = H0
an(X,ω

κ
E)Ugood

p <k1−k2−1,

H1
w0,c(X,ω

κ
E)Ugood

p <1+k2−k1
ε = H1

an(X,ω
κ
E)Ugood

p <1+k2−k1 ,

H0
w0

(X,ωκ
E)Ut,good

p <k1−k2−1
ε = H0

an(X,ω
κ
E)Ut,good

p <k1−k2−1,

H1
1,c(X,ω

κ
E)Ut,good

p <1+k2−k1
ε = H1

an(X,ω
κ
E)Ut,good

p <1+k2−k1 .
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3.3 Overconvergent modular symbols
Let (R,R+) be a uniform affinoid Tate algebra over Qp, and χ : T → R+,× a δ-analytic character.
Let Aδ

χ andDδ
χ = Hom0

R(Aδ
χ, R) be the principal series and distributions of Definition 2.3.1. These

are topological Qp-vector spaces, Aδ
χ being a Banach space and Dδ

χ endowed with the weak
topology. Consider the constant Iwn-equivariant quasi-coherent sheaves Aδ

χ⊗̂OF	 and Dδ
χ⊗̂OF	

over F�, where the completed tensor products are as in Definition 2.3.7. Their pullbacks by πHT

are identified with pro-Kummer-étale sheaves Aδ
χ,ét⊗̂ÔX and Dδ

χ,ét⊗̂ÔX , where Aδ
χ,ét and Dδ

χ,ét

are the sheaves over Xprokét obtained by descent from the Iwn-equivariant constant sheaves over
X∞ induced by the corresponding topological Iwn-modules.

Before introducing the spaces of overconvergent modular symbols, let us define the proétale
cohomology with compact support.

Definition 3.3.1. Let F be a proétale sheaf over Y = Y0(pn), and let jprokét : Yproét → Xprokét

be the natural morphism of sites. The proétale cohomology with compact support of F is the
complex

RΓproét,c(YCp ,F ) = RΓprokét(XCp , jprokét,!F ).

Remark 3.3.2. Let jproét : Yproét → Xproét be the natural morphism of sites and let L be a proétale
Zp-local system over Y . The proétale cohomology with compact support of L is usually defined
as RΓproét,c(YCp ,L) := RΓproét(XCp , jproét,!L). On the other hand, [DLLZ23b, Lemma 4.4.27]
implies that this cohomology can be computed in the pro-Kummer-étale site, that is, that we
have a quasi-isomorphism

RΓproét(XCp , jproét,!L) = RΓprokét(XCp , jprokét,!L).

In other words, if F = L is a proétale local system over Y . The cohomology with compact
support of Definition 3.3.1 coincides with the classical one.

Definition 3.3.3. We define the overconvergent modular symbols as the cohomology complexes

RΓproét(YCp , A
δ
χ,ét) and RΓproét(YCp , D

δ
χ,ét).

We also define the overconvergent modular symbols with compact support in the obvious way.

Remark 3.3.4. By purity on p-torsion local systems [DLLZ23b, Theorem 6.4.1] and the devisage
of Aδ,+

χ and Dδ,+
χ of Corollary 2.3.6, one has quasi-isomorphisms

RΓproét(YCp , A
δ
χ,ét) = RΓprokét(XCp , A

δ
χ,ét),

RΓproét(YCp , D
δ
χ,ét) = RΓprokét(XCp , D

δ
χ,ét).

The primitive comparison theorem also applies for the modular symbols as follows.

Lemma 3.3.5. Let ι : D ⊂ X be the cusp divisor endowed with the log structure induced
by X. Let ι : Dprokét → Xprokét be the natural morphism, and let Î + = ker(Ô+

X → ι∗Ô
+
D) be the

ideal defining the cusps. Then (jprokét,!A
δ,+
χ,ét)⊗̂Ô+

X = Aδ,+
χ,ét⊗̂Î +. Furthermore, we have almost

quasi-isomorphisms

RΓprokét(XCp , A
δ,+
χ,ét)⊗̂OCp =a RΓprokét(XCp , A

δ,+
χ,ét⊗̂Ô+

X),

RΓprokét(XCp , jprokét,!A
δ,+
χ,ét)⊗̂OCp =a RΓprokét(XCp , A

δ,+
χ,ét⊗̂Î +).

(22)

An analogous statement holds for the sheaf Dδ
χ,ét.
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J. E. Rodŕıguez Camargo

Proof. We only give the proof for Aδ,+
χ,ét, the other being identical. By Corollary 2.3.6 we can

write Aδ,+
χ,ét = R lim←−i

(lim−→j
Li,j), where Li,j are finite Kummer-étale local systems over X. Then,

by the primitive comparison theorem for finite local systems, one has that

RΓprokét(XCp , A
δ,+
χ,ét)⊗̂OCp = R lim←−

i

hocolimj(RΓkét(XCp ,Li,j)⊗OCp)

=a R lim←−
i

hocolimj(RΓkét(XCp ,Li,j ⊗ O+
X))

= RΓprokét(XCp , A
δ,+
χ,ét⊗̂Ô+

X).

To prove the case of cohomology with compact support we need the following observation.
Consider the exact sequence of Kummer-étale sheaves over X,

0→ jkét,!Z/p
s → Z/ps → ι∗Z/p

s → 0.

Tensoring with O+
X and taking projective limits on s, one obtains the short exact sequence

0→ Î + → Ô+
X → ι∗ÔD → 0.

Therefore, tensoring with Aδ,+
χ,ét, one gets a short exact sequence

0→ Aδ,+
χ,ét⊗̂Î + → Aδ,+

χ,ét⊗̂Ô+
X → Aδ,+

χ,ét⊗̂ι∗Ô
+
D → 0. (23)

It is easy to see that (23) is the (completed) Ô+
X -scalar extension of the short exact sequence

0→ jprokét,!A
δ,+
χ → Aδ,+

χ,ét → ι∗ι
∗Aδ,+

χ,ét → 0.

In particular, from the previous two short exact sequences one deduces that jprokét,!A
δ,+
χ,ét⊗̂Ô+

X =

Aδ,+
χ,ét⊗̂Î +. Moreover, the second almost equality of (22) holds after taking pro-Kummer-étale

cohomology of the triangle (23), by applying the primitive comparison theorem for both X and
D (see [LLZ23, Theorem 2.2.1]). �

Next, we define the Up-operators for overconvergent modular symbols. These are obtained
by pulling back the maps of (12).

Definition 3.3.6. Consider the Up-correspondence C of X. The U t
p and Up-correspondences of

Aδ
χ,ét and Dδ

χ,ét are the morphisms

U t
p : p∗1(A

δ
χ,ét)→ Up : p∗2(A

δ
χ,ét) and Up : p∗2(D

δ
χ,ét)→ p∗1(D

δ
χ,ét)

defined by the pullback of (12) by πHT.

We shall need the following classicality result (see [AS08, Theorem 6.4.1] and [AIS15,
Theorem 3.16]).

Theorem 3.3.7. Let κ = (k1, k2) ∈ X∗(T)+ be a dominant weight. The maps Dδ
κ → V−w0(κ)

and Vκ → Aδ
κ induce isomorphisms of the (< k1 − k2 + 1)-slope part for the action of the

(normalized) Up-operators

H1
prokét(XCp , D

δ
κ,ét)

Up<k1−k2+1 ∼−→ H1
prokét(XCp , V−w0(κ),ét)

Up<k1−k2+1,

H1
prokét(XCp , Vκ,ét)Ut

p<k1−k2+1 ∼−→ H1
prokét(XCp , A

δ
κ,ét)

Ut
p<k1−k2+1.

A similar result holds for the cohomology with compact support.
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Remark 3.3.8. In [AS08], Theorem 3.3.7 is proved only for the cohomology of distribu-
tions. However, the same strategy works for the principal series and the cohomology with com-
pact support. In particular, the bounds of the classicality theorem are motivated by [AS08,
Theorem 3.11.1].

3.4 Overconvergent Hodge–Tate maps
We end this section with the definition of overconvergent Hodge–Tate maps interpolating
the morphisms HTk : Symk TpE ⊗ ÔX → ωk

E ⊗OX
ÔX and HTk,∨ : ω−k

E ⊗OX
ÔX(k)→

Symk TpE ⊗ ÔX .

Definition 3.4.1. Let ε ≥ δ ≥ n, (R,R+) a uniform affinoid Tate Qp-algebra and χ = (χ1, χ2) :
T = T(Zp)→ R+,× a δ-analytic character.

(i) We define the map of pro-Kummer-étale sheaves over X1(ε),

HTA,∨
−w0(χ) : ωw0(χ)

E ⊗R⊗̂OX
ÔX(χ1)→ Aδ

χ,ét⊗̂ÔX ,

as the pullback of the highest weight vector map ΨA,∨
−w0(χ) : L (w0(χ))→ Aδ

χ⊗̂OF	 over

U1(ε) Iwn ⊂ F� by πHT (cf. Proposition 2.4.4). We let HTD
−w0(χ) : Dδ

χ,ét⊗̂ÔX → ω
−w0(χ)
E ⊗

ÔX(−χ1) be the dual of HTA,∨
−w0(χ).

(ii) We define the map of pro-Kummer-étale sheaves over Xw0(ε),

HTA
χ : Aδ

χ,ét⊗̂ÔX → ωχ
E ⊗ ÔX(χ2),

as the pullback by πHT of the lowest weight vector map Aδ
χ⊗̂OF	 → L (χ) over Uw0(ε) Iwn ⊂

F�. We let HTD,∨
χ : ω−χ

E ⊗ ÔX(−χ2)→ Dδ
χ,ét⊗̂ÔX be the dual of HTA

χ .

Lemma 3.4.2. The overconvergent Hodge–Tate maps of Definition 3.4.1 are compatible with
the Up-correspondences of Definitions 3.2.15 and 3.3.6. Moreover, they are compatible with the
normalized Up-correspondences of the sheaves Vκ,ét for κ ∈ X∗(T)+ (see Remark 2.2.13).

Proof. The lemma is an immediate consequence of the definitions and Proposition 2.4.5 (see
Remarks 2.2.10 and 3.2.5). �

4. p-adic Eichler–Shimura maps

Throughout this section we fix a neat compact open subgroup Kp ⊂ GL2(A
∞,p
Q ), and, given

Kp ⊂ GL2(Qp), we let Y = YKp and X = XKp denote the affine and compact modular curves of
levelKp, respectively. We letD = X\Y be the cusp divisor. Let f : Esm → X be the semi-abelian
scheme extending the universal elliptic curve over Y , and E be its relative compactification to
a log smooth adic space over X (cf. [DR73]). We denote by DRX(E) the relative log de Rham
complex of E over X, and by H 1

dR := R1fan,∗(DRX(E)) the first relative de Rham cohomology
group. The sheaf H 1

dR is endowed with a log connection

∇ : H 1
dR →H 1

dR ⊗OX
Ω1

X(log)

and a Hodge filtration 0→ ωE →H 1
dR → ω−1

E → 0 with Fil0 H 1
dR = H 1

dR, Fil1 H 1
dR = ωE and

Fil2 H 1
dR = 0, satisfying Griffiths transversality. This last section is dedicated to the construction

of the Eichler–Shimura decomposition for the étale cohomology of the modular curves. We first
provide a new proof of Faltings’s Eichler–Shimura decomposition of the cohomology of the local
systems Vκ,ét (cf. [Fal87]). Our method uses the Hodge–Tate period map and the dual BGG reso-
lution of Proposition 2.4.3. Next, we use the overconvergent Hodge–Tate maps of Definition 3.4.1
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to define overconvergent Eichler–Shimura maps. We shall recover the results of [AIS15] as well
as a new map from the H1-cohomology with compact support of overconvergent modular forms
to overconvergent modular symbols. Finally, we show that the overconvergent Eichler–Shimura
maps are compatible with the Poincaré and Serre duality pairings, and that, for small slope, we
have a perfect pairing.

4.1 A proétale Eichler–Shimura decomposition
Let κ = (k1, k2) ∈ X∗(T)+ be a dominant weight, Vκ the irreducible representation of highest
weight κ, and Vκ,ét the pro-Kummer-étale local system over X defined by Vκ. Let α = (1,−1) ∈
X∗(T). Let us recall a theorem of Faltings.

Theorem 4.1.1 [Fal87, Theorem 6]. There are Hecke and Galois equivariant isomorphisms

H1
proét(YCp , Vκ,ét)⊗Zp Cp = H1

an(XCp , ω
w0(κ)
E )(k1)⊕H0

an(XCp , ω
κ+α
E )(k2 − 1),

H1
proét,c(YCp , Vκ,ét)⊗Zp Cp = H1

an(XCp , ω
w0(κ)
E (−D))(k1)⊕H0

an(XCp , ω
κ+α
E (−D))(k2 − 1).

Let B+
dR be the de Rham period sheaf of Xprokét, θ : B+

dR → ÔX the Fontaine map, and
ξ ∈ ker θ a local generator of the kernel; we set BdR := B+

dR[1/ξ]. Let OB+
dR,log be the geometric

de Rham period sheaf and OBdR,log = OB+
dR,log[1/ξ], we denote by OClog the sheaf gr0(OBdR,log).

We refer to [Sch13] and [DLLZ23a] for the definition of the period sheaves.
The main ingredient of our proof of Theorem 4.1.1 is an explicit relation between the Faltings

extension gr1 OB+
dR,log and the Tate module TpE. This arises naturally in the study of pullbacks

of GL2-equivariant vector bundles of F� by πHT. Recall that FL = B\GL2, so that we have
an equivalence of categories between GL2-equivariant vector bundles over F� and algebraic
representations of B. Let O(B) be the ring of algebraic functions of B endowed with the right
regular action; note that any finite representation of B occurs in O(B). Writing B = T � N as
a product of the diagonal torus and its unipotent radical, one has that O(B) = O(T)⊗ O(N).
The action of B on O(T) factors through T, so that this ring can be decomposed in terms
of characters of the torus. By Proposition 3.1.4 we already know what the pullback by πHT

of the quasi-coherent sheaf associated to O(T) is; it admits an explicit description in terms of
modular sheaves. On the other hand, the action of B on O(N) is determined by the right action
(n, b) 	→ t−1

b ntbnb, where n ∈ N and b = (tb, nb) ∈ B = T � N. Let O(N) be the GL2-equivariant
quasi-coherent sheaf over F� attached to O(N).

Theorem 4.1.2 ([Fal87, Theorem 5] and [Pan22, Theorem 4.2.2]). There is a natural iso-
morphism of pro-Kummer-étale sheaves over X,

π∗HT(O(N)) = OClog.

Furthermore, let O(N)≤1 ⊂ O(N) be the subrepresentation consisting on polynomials of degree
at most 1. We have an isomorphism as B-representations O(N)≤1 = St⊗Qp(−1, 0); in particular,

π∗HT(O(N)≤1) = TpE ⊗ ÔX(−1)⊗ ωE . Moreover, there is an isomorphism of extensions

where KS is the Kodaira–Spencer isomorphism.
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Proof. It is enough to show the second statement, namely, that if π∗HT(O(N)≤1) = TpE ⊗
Ô(−1)⊗ ωE = gr1 OB+

dR,log(−1), one has

OClog = lim−→
k

Symk(gr1 OB+
dR,log(−1)) = lim−→

k

π∗HT(Symk O(N)≤1) = π∗HT(O(N)).

Let F be a sheaf endowed with an integral log connection ∇; we denote by DR(F ,∇) the log
de Rham complex of F . Let f : E → X be the compactification of the elliptic curve as a log
smooth adic space over X. We have a quasi-isomorphism of complexes over Eprokét,

TpGm ⊗Ẑp
BdR,E � TpGm ⊗Ẑp

DR(OBdR,log,E , d) = DR(OBdR,log,E , d)(1).

Taking R1fprokét,∗ one obtains by [DLLZ23a, Theorem 3.2.7 (5)] or [Sch13, Theorem 8.8]

TpE ⊗ BdR,X � TpE ⊗Ẑp
DR(OBdR,log,X , d) ∼= DR(H 1

dR ⊗ OBdR,log,X ,∇)(1). (24)

Let M := TpE(−1)⊗ B+
dR,X = (TpE(−1)⊗ OB+

dR,log,X)∇=0 and M0 = (H 1
dR ⊗ OB+

dR,log,X)∇=0.
Both M0 and M are B+

dR,X -lattices of TpE(−1)⊗ BdR,X . The Hodge filtration of H 1
dR is

concentrated in degrees 0 and 1, and is equal to

0→ ωE →H 1
dR → ω−1

E → 0.

This implies that ξM ⊂M0 ⊂M, and that (Fil1(H 1
dR ⊗ OB+

dR,log,X))∇=0 = ξM. Then
Proposition 7.9 of [Sch13] implies that

M0/ξM = gr0 H 1
dR ⊗ ÔX = ω−1

E ⊗ ÔX ,

M/M0 = gr1 H 1
dR ⊗ ÔX(−1) = ωE ⊗ ÔX(−1).

In particular,
0→ ξM0/ξ

2M→ ξM/ξ2M→ ξM/ξM0 → 0

is just the Hodge–Tate exact sequence of TpE ⊗ ÔX (note the multiplication by ξ induced by
the Tate twist in (24)), and

0→ ξM/ξM0 →M0/ξM0 →M0/ξM→ 0

is the Hodge exact sequence of H 1
dR ⊗ ÔX .

Consider the map of short exact sequences

(25)

and let θ̃ : OB+
dR,log,X → ÔX be Fontaine’s map.

Taking the first graded piece in the upper short exact sequence, one finds

0→ ξM/ξ2M→ M⊗ (ker θ̃)
M⊗ (ker θ̃)2

∇−→
M⊗ OB+

dR,log,X

M⊗ (ker θ̃)
⊗ Ω1

X(log)→ 0.

Since ξM ⊂M0, taking the intersection with the image of the lower short exact sequence in (25),
one obtains a short exact sequence

0→ ξM

ξ2M
→

M0 ⊗ (ker θ̃) + ξM⊗ OB+
dR,log,X

M0 ⊗ (ker θ̃)2 + ξM⊗ (ker θ̃)
∇−→

M0 ⊗ OB+
dR,log,X

M0 ⊗ (ker θ̃) + ξM⊗ OB+
dR,log,X

⊗ Ω1
X(log)→ 0.

(26)
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The quotient term of the short exact sequence (26) is equal to M0/ξM⊗ Ω1
X(log) = ω−1

E ⊗
Ω1

X(log)⊗ ÔX . The middle term of the short exact sequence is equal to

gr1(H 1
dR ⊗ OB+

dR,log,X) = ωE ⊗ ÔX ⊕ ω−1
E ⊗ gr1 OB+

dR,log,X .

Note that the restriction of ∇ to ωE ⊗ ÔX is the Kodaira–Spencer map by definition. Indeed, if
∇ : H 1

dR →H 1
dR ⊗ Ω1

X(log) is the connection, taking the first graded piece we get the map

KS : ωE → ω−1
E ⊗ Ω1

X(log).

Therefore, we have constructed a short exact sequence

0→ TpE ⊗ ÔX
HT⊕α−−−−→ ωE ⊗ ÔX ⊕ ω−1

E ⊗ gr1 OB+
dR,log,X

KS⊕∇−−−−→ ω−1
E ⊗ Ω1

X(log)⊗ ÔX → 0.

Thus, as KS is an isomorphism so is α, and we have a commutative diagram

which finishes the proof. �
Remark 4.1.3. The previous proposition is the key tool necessary to compute the relative Sen
operator for the modular curve in Pan’s locally analytic vectors (cf. [Pan22]).

We deduce the Eichler–Shimura decompositions for the local systems Vκ,ét.

Theorem 4.1.4. Let α = (1,−1). Let κ = (k1, k2) ∈ X∗(T)+ be a dominant weight and
BGG(κ) the BGG complex of Proposition 2.4.3:

BGG(κ) : [0→ Vκ,ét → V (κ)→ V (w0(κ)− α)→ 0].

Let BGG(κ) be the GL2-equivariant complex of sheaves defined by BGG(κ). We have a quasi-
isomorphism of complexes over Xprokét,

π∗HT(BGG(κ)) = [0→ Vκ ⊗ ÔX → ω
w0(κ)
E ⊗ OClog(k1)→ ωκ+α

E ⊗ OClog(k2 − 1)→ 0].

Moreover, let λ : XCp,prokét → XCp,an be the projection of sites. Let ι : Dprokét → Xprokét be the

natural morphism, and Î = ker(ÔX → ι∗ÔD). We have

Rλ∗(Vκ,ét ⊗ ÔX) = ω
w0(κ)
E ⊗ Cp(k1)[0]⊕ ωκ+α

E ⊗ Cp(k2 − 1)[−1],

Rλ∗(Vκ,ét ⊗ ÎX) = ω
w0(κ)
E (−D)⊗ C(k1)[0]⊕ ωκ+α

E (−D)⊗ C(k2 − 1)[−1].

Then, taking the H1-cohomology over XCp,an, one obtains Theorem 4.1.1.

Proof. Note that V (κ) = κ⊗ V (0) as a B-module, thus the first part of the theorem follows from
Theorem 4.1.2 and Proposition 3.1.4. On the other hand, by [DLLZ23a, Lemma 3.3.2] we know
that Rλ∗OClog = OXCp

and Rλ∗(OClog ⊗ ι∗ÔD) = ι∗OD, in particular that Rλ∗(OClog ⊗ Î ) =
O(−D). Therefore,

Rλ∗(Vκ,ét ⊗ ÔX) = [ωw0(κ)
E ⊗ Cp(k1)→ ωκ+α

E ⊗ Cp(k2 − 1)],

Rλ∗(Vκ,ét ⊗ Î ) = [ωw0(κ)
E (−D)⊗ Cp(k1)→ ωκ+α

E (−D)⊗ Cp(k2 − 1)].
(27)

But the arrows of (27) are 0 since the sheaf ωw0(κ)
E ⊗ Cp(k1) already factors through Vκ,ét ⊗ ÔX

via HT∨
−w0(κ) : ωw0(κ)

E ⊗ ÔX(k1)→ Vκ,ét ⊗ ÔX . The theorem follows. �
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Remark 4.1.5. In [LLZ23], Lan, Liu and Zhu gave another proof of the Eichler–Shimura
decomposition for arbitrary Shimura varieties (also called BGG decomposition; see [LLZ23,
Theorem 6.2.3]). Their proof uses the p-adic Riemann–Hilbert correspondence and the BGG
decomposition in terms of Verma modules; they then apply Faltings’s strategy to construct a
complex of D-modules quasi-isomorphic to the de Rham complex of the corresponding vector
bundle with connection. In our situation, we use the dual BGG decomposition and the associated
GL2-equivariant sheaves over F� instead. Our key ingredient to compute the proétale cohomol-
ogy of Vκ ⊗ ÔX is Theorem 4.1.2, which serves as a dictionary between vector bundles over F�
and ÔX -vector bundles over X.

We finish this section with the compatibility of the Eichler–Shimura decomposition with
Poincaré and Serre duality.

Proposition 4.1.6 [LLZ23, Theorem 6.2.3]. Let TrP : H2
proét,c(YCp ,Qp(1))→ Qp and TrS :

H1
an(XCp ,Ω

1
X)→ Cp respectively be the Poincaré and Serre traces. Then the Poincaré pairing

H1
proét(YCp , Vκ,ét)(1)×H1

proét,c(YCp , V−w0(κ),ét)
∪−→ H2

proét,c(YCp ,Qp(1)) TrP−−→ Qp

and the Serre pairing

H1
an(XCp , ω

−κ
E )×H0

an(XCp , ω
κ+α
E (−D)) KS◦∪−−−−→ H1

an(XCp ,Ω
1
X) TrS−−→ Cp

(respectively, for ω
w0(κ)
E (−D) and ω

−w0(κ)
E ) are compatible with the Eichler–Shimura

decomposition.

4.2 The overconvergent Eichler–Shimura maps
Let n ≥ 1 be a fixed integer. In this subsection we will work with Y = Y0(pn) and X = X0(pn),
the modular curves of levelKp Iwn. Let ε ≥ δ ≥ n be rational numbers, (R,R+) a uniform affinoid
Tate Qp-algebra and χ = (χ1, χ2) : T → R+,× a δ-analytic character. Let w ∈W = {1, w0} be an
element in the Weyl group of GL2 and Xw(ε) the ε-neighbourhood of the w-ordinary locus (cf.
Definition 3.2.1). Let ωχ

E be the sheaf of overconvergent modular forms of weight χ over Xw(ε)
(cf. Definition 3.2.9), and let Aδ

χ,ét and Dδ
χ,ét be the pro-Kummer-étale sheaves of δ-analytic

principal series and distributions over X (cf. § 3.3). We can finally state the main theorem of
this section, but first we need the following lemma.

Lemma 4.2.1. Let α = (1,−1) ∈ X∗(T). The overconvergent Hodge–Tate morphisms of
Definition 3.4.1 give rise to Galois and U t

p-equivariant maps of cohomology groups (see
Definition 3.2.16 for the good normalizations)

H1
prokét(XCp , A

δ
χ,ét⊗̂ÔX) ESA−−−→ H0

w0
(XCp , ω

χ+α
E )ε(χ2 − 1),

H1
1,c(XCp , ω

w0(χ)
E )ε(χ1)

ES∨
A−−−→ H1

prokét(XCp , A
δ
χ,ét⊗̂ÔX).

(28)

Dually, we have Galois and Up-equivariant maps of cohomology groups

H1
w0,c(XCp , ω

−χ
E )ε(−χ2)

ES∨
D−−−→ H1

prokét(XCp , D
δ
χ,ét⊗̂ÔX),

H1
prokét(XCp , D

δ
χ,ét⊗̂ÔX) ESD−−−→ H0

1 (XCp , ω
−w0(χ)+α
E )ε(−χ1 − 1).

An analogous statement holds by exchanging Aδ
χ,ét (respectively, Dδ

χ,ét) with jprokét,!A
δ
χ,et

(respectively, jprokét,!D
δ
χ,ét), and ωχ

E with ωχ
E(−D).
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Proof. Let λ : XCp,prokét → XCp,an be the natural projection. First, let us show that

Rλ∗(ω
χ
E⊗̂ÔX) = ωχ

E [0]⊕ ωχ+α
E ⊗ Cp(−1)[−1],

Rλ∗(ω
χ
E⊗̂Î ) = ωχ

E(−D)[0]⊕ ωχ+α
E (−D)⊗ Cp(−1)[−1].

(29)

By Remark 3.2.10, the sheaf ωχ,+
E is an orthonormalizable O+

X,ét⊗̂R+ sheaf locally for the
étale topology of X. Let ν : XCp,prokét → XCp,két be the natural projection of sites. Then, locally
étale, we can write ωχ,+

E ⊗̂ÔX =
⊕̂

iÔ
+
X⊗̂R+ei. We get that

Rν∗(ω
χ
E⊗̂ÔX) = Rν∗(ω

χ,+
E ⊗̂Ô+

X)
[
1
p

]

= R lim←−
s

Rν∗(
⊕

i

(O+
X/p

s ⊗R+)ei)
[
1
p

]

= R lim←−
s

⊕
i

(Rν∗Ô+
X/p

s ⊗R+)ei

[
1
p

]

= ωχ
E⊗̂R⊗̂ÔX

Rν∗(ÔX⊗̂R).

Since R is a Qp-Banach space, it has a orthonormalizable basis over Qp, and the same rea-
soning as before shows that ωχ

E⊗̂R⊗̂ÔX
Rν∗(ÔX⊗̂R) = ωχ

E⊗̂ÔX
Rν∗ÔX . On the other hand, by

Theorem 4.1.4 we know that Rν∗ÔX = OX,két[0]⊕ ωα
E(−1)[−1]. Lemma 5.5 of [Sch13] and

Lemma 6.17 of [DLLZ23b] imply that the integral structure obtained by Rν∗(Ô+
X) defines the

same topology as that given by O+
X,két[0]⊕ ωα,+

E (−1)[−1] (in fact, the lemmas cited show that
both complexes differ just by bounded torsion when evaluated at affinoids). Therefore,

Rν∗(ω
χ
E⊗̂ÔX) = ωχ

E [0]⊕ ωχ+α
E (−1)[0]

over the Kummer-étale site of Xw(ε). Finally, let μ : XCp,két → XCp,an be the projection map. In
order to descend to the analytic site we recall that ωχ

E is a projective Banach sheaf over Xw(ε)
(cf. [BP22, § 5.5.2]). Thus, it is a direct summand of an orthonormalizable Banach sheaf

⊕̂
iOX

over Xw(ε). But we know that the Kummer-étale cohomology of O+
X in affinoids admitting a

Kummer-étale map to a torus T = Spa(Qp〈T±1〉,Zp〈T±1〉) or a disc D = Spa(Qp〈U〉,Zp〈U〉) has
bounded torsion (by computing the cohomology via the pullback of the perfectoid torus or disc,
and using Lemma 5.5 of [Sch13] or Lemma 6.1.7 of [DLLZ23b] again). An argument similar to
that before using derived limits shows that Rμ∗(

⊕̂
iOX,két) =

⊕̂
iOX,an, whence Rμ∗ω

χ
E = ωχ

E .
Finally, to prove the second equality of (29), it is enough to show the analogous property for
ωχ

E⊗̂ι∗ÔD, which follows from the previous argument applied to the log adic space defined by
the cusps (notice that even if D is a disjoint union of points, the log structure is not trivial!).

Next, we construct the overconvergent Eichler–Shimura maps; we only explain the procedure
for the sheaf Aδ

χ,ét and the pro-Kummer-étale cohomology; the case of Dδ
χ,ét or the cohomology

with compact support follows the same steps. Consider the overconvergent Hodge–Tate maps of
Definition 3.4.1,

HTA,∨
−w0(χ) : ωw0(χ)

E ⊗̂ÔX(χ1)→ Aδ
χ,ét⊗̂ÔX over X1(ε),

HTA
χ : Aδ

χ,ét⊗̂ÔX → ωχ
E⊗̂ÔX(χ2) over Xw0(ε).

1244

https://doi.org/10.1112/S0010437X23007182 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007182


p-adic Eichler–Shimura maps for the modular curve

Taking the projection from the pro-Kummer-étale site to the analytic site, one gets maps

ω
w0(χ)
E ⊗̂Rλ∗ÔX(χ1)→ Rλ∗(Aδ

χ,ét⊗̂ÔX) over X1(ε),

Rλ∗(Aδ
χ,ét⊗̂ÔX)→ ωχ

E⊗̂Rλ∗ÔX(χ2) over Xw0(ε).

Taking the overconvergent cohomologies of Definition 3.2.12 and using (29), we obtain maps

RΓ1,c(XCp , ω
w0(χ)
E )ε(χ1)→ RΓ1,c(XCp , Rλ∗(A

δ
χ,ét⊗̂ÔX))ε,

RΓw0(XCp , Rλ∗(A
δ
χ,ét⊗̂ÔX))ε → RΓw0(XCp , ω

χ+α
E ))ε(χ2 − 1)[−1].

(30)

On the other hand, we have restriction and corestriction maps

RΓ1,c(XCp , Rλ∗(A
δ
χ,ét⊗̂ÔX))ε

Cor−−→ RΓprokét(XCp , A
δ
χ,ét⊗̂ÔX) Res−−→ RΓw0(XCp , Rλ∗(A

δ
χ,ét⊗̂ÔX))ε.

(31)

Taking H1-cohomology in (30), and composing with the morphisms of (31), one obtains the maps
in (28). The Galois equivariance is clear as the Hodge–Tate maps are defined over Xw(ε) ⊂ X.
The compatibility with respect to the good normalization of the Up-operators follows from
Lemma 3.4.2 and the fact that Ugood

p,α = Up,α for the correspondence associated to ωα
E (see

Definition 3.2.16). �
Theorem 4.2.2. Let ε ≥ δ ≥ n, (R,R+) be a uniform affinoid Tate Qp-algebra and χ : T =
T(Zp)→ R+,× be a δ-analytic character. The following assertions hold.

(i) The composition of the Eichler–Shimura maps ESA ◦ ES∨
A is zero. Consider the following

sequence:

0→ H1
1,c(XCp , ω

w0(χ)
E )ε(χ1)

ES∨
A−−−→ H1

prokét(XCp , A
δ
χ,ét⊗̂ÔX)

ESA−−−→ H0
w0

(XCp , ω
χ+α
E )ε(χ2 − 1)→ 0. (32)

(ii) Assume that V = Spa(R,R+) is an affinoid subspace of the weight space WT of T , and let
κ = (k1, k2) ∈ V be a dominant weight of T. Let α = (1,−1) ∈ X∗(T) and let χ = χun

V be
the universal character of V. The following diagram commutes.

(iii) The maps of (ii) are Galois and U t
p-equivariant with respect to the good normalizations

of the Hecke operator (Definition 3.2.16). In particular, the diagram above restricts to the
finite slope part with respect to the action of U t

p.
(iv) Let h < k1 − k2 + 1. There exists an open affinoid V ′ ⊂ V containing κ such that the

(≤ h)-slope part of the restriction of (32) to V ′ is a short exact sequence of finite free
Cp⊗̂QpO(V ′)-modules.
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(v) Retain the hypothesis of (iv), and let χ be the universal character of V ′. Let χ̃ = χ1 −
χ2 + 1 : Z×

p → R+,× and b = d/dt|t=1χ̃(t). Then we have a Galois equivariant split after
inverting b:

H1
prokét(XCp ,Aδ

χ⊗̂ÔX)≤h
b = [H1

1,c(XCp , ω
w0(χ)
E )≤h

ε (χ1)]b ⊕ [H0
w0

(XCp , ω
χ+α
E )≤h

ε (χ2 − 1)]b.

Analogous statements hold for the cohomology with compact support and for the sheaf
Dδ

χ,ét.

Proof. Part (i) follows from the fact that the composition of the restriction and corestriction
maps (31) is zero.

Parts (ii) and (iii) follow from Lemma 4.2.1, and the compatibility of the formation of Aδ
χ,ét

and ωχ
E with the character χ. The commutation of the lower diagram is a direct consequence of

the constructions and Corollary 2.4.5.
For part (iv) we follow the same arguments as [AIS15]. The finite-slope theory (cf. [Urb11,

Buz07]) implies that there is an affinoid open subspace V ′ ⊂ V containing κ such that the
(≤ h)-part of the sequence (32) restricted to V ′ is a sequence of finite free Cp⊗̂QpO(V ′)-modules.
Moreover, by classicality (Theorems 3.2.17 and 3.3.7) and the classical Eichler–Shimura decom-
position (Theorem 4.1.1), we can take V ′ such that the (≤ h)-slope of the sequence (32) is short
and exact.

Finally, we briefly sketch the argument for part (v). Let V ′ be as in (iv), let R = O(V ′),
and consider the short exact sequence of the (≤ h)-slope of (32). Taking basis of the finite free
Cp⊗̂R-modules of (32) and tensoring with the Tate twist R(1− χ2), we are left to prove that
the localization by b of H1(GQp ,Cp⊗̂R(χ1 − χ2 + 1)) vanishes. By almost étale descent one has

H1(GQp ,Cp⊗̂R(χ1 − χ2 + 1)) = H1(Gal(Qcyc
p /Qp),Qcyc

p ⊗̂QpR(χ1 − χ2 + 1)). (33)

We identify Gal(Qcyc
p /Qp) with Z×

p via χcyc. By Sen theory, to show that (33) is of b-torsion it
is enough to prove that H1(Lie Z×

p , R(χ1 − χ2 + 1))b = 0, but this is clear as H1(Lie Z×
p , R(χ1 −

χ2 + 1)) ∼= R/bR. �

4.2.1 Previous works in the literature. Here we briefly discuss some previous works and their
connection with Theorem 4.2.2. Our main result is the complement of the work of Andreatta,
Iovita and Stevens; they constructed the map ESD from H1

proét(YCp , D
δ
χ,ét)⊗̂Cp to the space

of overconvergent modular forms of weight −w0(χ) (cf. [AIS15, Theorem 6.1]). Our theorem
constructs a new map from the overconvergent H1-cohomology with supports of higher Coleman
theory [BP22], to the space of modular symbols defined by the distributions. In addition, we
have discussed the dual picture with the principal series, and with the proétale cohomology with
compact support instead.

On the other hand, the first work on the subject which uses the perfectoid modular curve to
construct the ESD map goes back to Chojecki, Hansen and Johansson. Additionally, they con-
structed the map for Shimura curves, and they translated a theorem analogous to Theorem 4.2.2
in terms of the eigencurve (see [CHJ17, Theorem 5.14]).

The work of Sean Howe [How21] studies natural pairings between some local cohomologies
attached to the flag variety F� = P1

Qp
and overconvergent modular forms; these take values

in the locally analytic vectors of the completed cohomology of the modular curve. The local
cohomologies are the cohomology with supports lim←−ε

H1
Uw(ε)

(P1
Qp
,L (χ)) or the overconvergent

cohomology lim−→ε
H1(Uw(ε),L (χ)) (see [How21, Lemma 4.3.1 and Remark 1.2.12]; in the notation

of [How21] one has 0 = [0 : 1], which is represented by 1 ∈ GL2). It is expected that these pairings
provide a more geometric interpretation of the ES∨

A map of Theorem 4.2.2, namely, they are
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closely related to the description the of completed cohomology of Lue Pan that we briefly explain
next.

In his recent work [Pan22], Lue Pan gives an exhausting description of the χ-isotypic part
of the locally analytic vectors of the completed cohomology for the action of the Borel algebra
LieB (see [Pan22, Theorem 1.0.1]). His method uses a new tool in p-adic Hodge theory which
is the geometric Sen operator; then, using the dictionary between representation theory over
F� and proétale sheaves over the modular curve provided by πHT, he shows that the completed
cohomology can be decomposed in terms of overconvergent modular forms. The intersection
between locally analytic vectors of completed cohomology and Theorem 4.2.2 lies in the fact
that the cohomology group H1

proét(YCp , A
δ
χ,ét) is a subspace of the locally analytic completed

cohomology, consisting on those δ-analytic cohomology classes admitting an action of Iwn, such
that B(Zp) ∩ Iwn acts via −χ. Finally, the maps ES∨

A and ESA are instances of the spaces Mμ,1

and Mμ,w appearing in [Pan22, Theorem 5.4.2].

4.2.2 The pairings. We end this section with the compatibility of the overconvergent
Eichler–Shimura maps and Poincaré and Serre duality. Let ε ≥ δ ≥ n, and let (R,R+) and χ
be as in previous sections. By definition there is a natural pairing between the δ-principal series
and distributions

Aδ
χ ×Dδ

χ → R.

It is easy to see that it induces a Poincaré pairing

〈−,−〉P : H1
proét,c(YCp , D

δ
χ,ét(1))×H1

proét(YCp , A
δ
χ,ét)→ H2

proét,c(YCp , R(1)) TrP−−→ R,

where the first arrow is a Yoneda pairing, and the last arrow is induced by the Poincaré trace
H1

proét,c(YCp ,Zp(1)) TrP−−→ Zp.
On the other hand, in [BP22] the authors have defined overconvergent Serre pairings in

families

〈−,−〉S : H1
w,c(XCp , ω

−χ
E (−D))ε ×H0

w(XCp , ω
χ+α
E )ε → Cp⊗̂R

compatible with the classical Serre pairings. The pairings are constructed by taking the Yoneda’s
product

∪ :H1
w,c(XCp , ω

−χ
E (−D))ε×H0

w(XCp , ω
χ+α
E )ε

∪−→ H1
w,c(XCp , ω

α
E(−D)⊗̂R)ε

KS−−→ H1
w,c(XCpΩ

1
X⊗̂R)ε

and composing with the Serre trace map of X,

H1
w,c(XCp ,Ω

1
X⊗̂R)ε

Cor−−→ H1
an(XCp ,Ω

1
X⊗̂R) TrS−−→ Cp⊗̂R.

Theorem 4.2.3. Retain the notation of Theorem 4.2.2. The following assertions hold.

(i) The Poincaré and Serre pairings of overconvergent cohomologies are compatible with the
good normalizations of the Up-operators (Definition 3.2.16). Moreover, they are compatible
with the classical Eichler–Shimura maps of Theorem 4.1.1.

(ii) LetWT be the weight space of T = T(Zp), let V ⊂ WT be an open affinoid, and let χ = χun
V

be the universal character of V. Let κ = (k1, k2) ∈ V be a classical weight and fix h <
k1 − k2 + 1. There exists an open affinoid V ′ ⊂ V containing κ such that we have perfect
pairings of finite free Cp⊗̂O(V ′)-modules

〈−,−〉P : H1
proét,c(YCp , D

δ
χ,ét(1))≤h ×H1

proét(YCp , A
δ
χ,ét)

≤h → O(V ′)
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and

〈−,−〉S : H1
w,c(XCp , ω

−χ
E (−D))≤h

ε ×H0
w(XCp , ω

χ+α
E )≤h

ε → Cp⊗̂O(V ′),

〈−,−〉S : H1
w,c(XCp , ω

w0(χ)
E )≤h

ε ×H0
w(XCp , ω

−w0(χ)+α
E (−D))≤h

ε → Cp⊗̂O(V ′),

compatible with the overconvergent Eichler–Shimura maps.

Proof. The Hecke operators are compatible with the pairings by their definition via finite flat
correspondences (see Definitions 3.2.15 and 3.3.6).

In the following we forget the Galois action. Let λ : XCp,prokét → XCp,an be the projection of
sites. We have the following commutative diagram of Yoneda’s products.

On the other hand, we also have compatible pairings provided by the Faltings extension (cf.
[Sch13, Corollary 6.14])

The compatibility of Poincaré and Serre traces [LLZ23, Theorem 4.4.1(4)] implies part (i). Part
(ii) follows along the same lines of the proof of Theorem 4.2.2 using the fact that the pairings
are perfect for the classical Eichler–Shimura decomposition. �
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