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On L-values of elliptic curves twisted by
cubic Dirichlet characters
David Kurniadi Angdinata
Abstract. Given an elliptic curve E over Q of analytic rank zero, its L-function can be twisted by
an even primitive Dirichlet character χ of order q, and in many cases its associated special L-value
L (E, χ) is known to be integral after normalizing by certain periods. This article determines the
precise value of L (E, χ) in terms of Birch–Swinnerton-Dyer invariants when q = 3, classifies their
asymptotic densities modulo 3 by fixing E and varying χ, and presents a lower bound on the 3-adic
valuation of L (E, 1), all of which arise from a congruence of modular symbols. These results also
explain some phenomena observed by Dokchitser–Evans–Wiersema and by Kisilevsky–Nam.

1 Introduction

The Birch–Swinnerton-Dyer conjecture relates the Hasse–Weil L-function L(E , s) of
an elliptic curve E over Q to certain algebraic invariants that encode important global
arithmetic information of E [34]. Over a finite extension K of Q, Artin’s formalism
for L-functions says that the Hasse–Weil L-function L(E/K , s) of E base changed
to K decomposes into a finite product of certain twisted L-functions L(E , χ, s),
ranging over all Artin representations χ that factor through K, so that the behavior of
L(E/K , s) is completely governed by L(E , χ, s). The algebraic and analytic properties
of these twisted L-functions are studied extensively in the literature, and they are the
subject of many important open problems in the arithmetic of elliptic curves, most
notably equivariant refinements of the Birch–Swinnerton-Dyer conjecture [5].

The special value L∗(E , χ, 1) of L(E , χ, s) at s = 1 can be normalized by certain
factors to get a modified twisted L-value L (E , χ) that is conjectured to have nice
algebraic properties. When χ = 1 is the trivial representation, L (E , χ) is simply given
by the special value of L(E , s) at s = 1 divided by the real period Ω(E). When χ is a
nontrivial even Dirichlet character of prime conductor p, this is given by

L (E , χ) ∶= L∗(E , χ, 1)p
τ(χ)Ω(E) ,

where τ(χ) is the Gauss sum of χ.
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2 D. K. Angdinata

Classically, Birch and Swinnerton-Dyer conjectured that L (E , 1) = BSD(E),
where BSD(E) is the Birch–Swinnerton-Dyer quotient

BSD(E) ∶= Tam(E)#X(E)Reg(E)
# tor(E)2 ,

where Tam(E), X(E), and Reg(E) is the Tamagawa number, the Tate–Shafarevich
group, and the elliptic regulator respectively. In contrast, there seems to be a barrier in
formulating an analogous conjecture for L (E , χ) when χ is nontrivial, with concrete
examples of arithmetically identical elliptic curves with modified twisted L-values
that differ by a unit [12, Section 4]. Having such a formula would present nontrivial
consequences for the arithmetic of E/K, such as predictions for the non triviality
of Tate–Shafarevich groups and the existence of points of infinite order, which are
intractable with classical techniques for Selmer groups [12, Section 3].

Prominent existing techniques to study the �-primary parts of Selmer groups, such
as via the Iwasawa main conjectures, only gives a description of the ideal I generated
by L (E , χ), rather than its actual value. In a recent paper to understand a refinement
of the classical Birch–Swinnerton-Dyer conjecture, Burns–Castillo determined I in
terms of arithmetic invariants of E in certain relative K-groups [5, Proposition 7.3].
More concretely, Dokchitser–Evans–Wiersema expressed the norm of I in terms of
BSD(E) and its base-changed quotient BSD(E/K), where K is the number field cut
out by χ [12, Theorem 38], but the actual value of L (E , χ) remains elusive.

This article completely determines the actual value of L (E , χ) for cubic Dirichlet
characters of prime conductor, under fairly generic assumptions on the Manin con-
stants c0(E) and c1(E), culminating in the following result proven in Section 5.

Theorem 1.1 (Corollary 5.2) Let E be an elliptic curve over Q of conductor N such
that L(E , 1) ≠ 0. Let χ be a cubic Dirichlet character of odd prime conductor p ∤ N
such that 3 ∤ c0(E)BSD(E)#E(Fp). Assume further that c1(E) = 1 and that the Birch–
Swinnerton-Dyer conjecture holds over number fields. Then

L (E , χ) = uχ(N)B,

where the positive rational number B ∈ Q× is the positive square root of the positive
rational square BSD(E/K)/BSD(E) ∈ (Q×)2, and the sign u = ±1 is such that

u ≡ −#E(Fp)BSD(E)B−1 mod 3.

On the analytic side of things, in a paper on an analog of the Brauer–Siegel theorem
for elliptic curves over cyclic extensions, Kisilevsky–Nam observed some patterns in
the asymptotic distribution of L (E , χ) [18, Section 7]. They considered six elliptic
curves E and five positive integers q, and numerically computed the norms of L (E , χ)
for primitive Dirichlet characters χ of conductor p and order q, ranging over the thirty
pairs of (E , q) and millions of positive integers p. For each pair of (E , q), they added
a normalization factor to L (E , χ) to obtain a real L-value L +(E , χ), and empirically
determined the greatest common divisor gcdE ,q of the norms of L +(E , χ) by varying
over all p. Upon dividing these norms by gcdE ,q , they observed that these integers
have unexpected biases when reduced modulo q.
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On L-values of elliptic curves twisted by cubic Dirichlet characters 3

This article completely predicts these biases for cubic Dirichlet characters of prime
conductor, again under fairly generic assumptions, for three of the six elliptic curves
they considered. The following result is proven under slightly relaxed assumptions in
Section 7, where the normalization for L +(E , χ) is also defined.

Theorem 1.2 (Proposition 7.7) Let E be an elliptic curve over Q of conductor N and
minimal discriminant Δ = ±N n for some n ∈ N, such that E has no rational 3-isogeny
and that 3 ∤ nc0(E) gcdE ,3. Let χ be a cubic Dirichlet character of odd prime conductor
p ∤ N. Then

L +(E , χ)
gcdE ,3

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 mod 3 if #E(Fp) ≡ 0 mod 3,
2 mod 3 if #E(Fp) ≡ 1 mod 3, and

p splits completely in the 3-division field of E ,
1 mod 3 otherwise.

To put things in a more structured perspective, these biases can be quantified
asymptotically by considering the natural densities of L (E , χ) when reduced mod-
ulo q. More precisely, let X<n

E ,q be the set of Dirichlet characters of odd order q > 1 and
odd prime conductor p < n such that p does not divide the conductor of E. Now define
the residual densities δE ,q of L (E , χ) to be the natural densities of L (E , χ) modulo
(1 − ζq). In other words, this is the value

δE ,q(λ) ∶= lim
n→∞

#{χ ∈ X<n
E ,q ∣L (E , χ) ≡ λ mod (1 − ζq)}

#X<n
E ,q

, λ ∈ Fq ,

if such a limit exists. It turns out that such a limit always exists, and its value for any
λ ∈ Fq only depends on BSD(E), the torsion subgroup tor(E), and the mod-q2 Galois
image im(ρE ,q2). The following result classifies the possible residual densities for cubic
Dirichlet characters, namely the ordered triples

δE ,3 ∶= (δE ,3(0), δE ,3(1), δE ,3(2)).

Theorem 1.3 (Theorem 6.4) Let E be an elliptic curve overQ such that L(E , 1) ≠ 0 and
that 3 ∤ c0(E). Assume further that the Birch–Swinnerton-Dyer conjecture holds. Then
δE ,3 only depends on BSD(E) and on im(ρE ,9), and can only be one of

(1, 0, 0), ( 3
8 , 3

8 , 1
4) , ( 3

8 , 1
4 , 3

8) , ( 1
2 , 1

2 , 0) , ( 1
2 , 0, 1

2) , ( 1
8 , 3

4 , 1
8) ,

( 1
8 , 1

8 , 3
4) , ( 1

4 , 1
2 , 1

4) , ( 1
4 , 1

4 , 1
2) , ( 5

9 , 2
9 , 2

9) , ( 1
3 , 2

3 , 0) , ( 1
3 , 0, 2

3 ) .

In particular, δE ,3 can be determined as follows.
• If ord3(BSD(E)) = 0 and 3 ∤ # tor(E), then δE ,3 is given by the table in Section A.1.
• If ord3(BSD(E)) = −1, then δE ,3 is given by the table in Section A.2.
• Otherwise, δE ,3 = (1, 0, 0).

Note that the aforementioned normalization factors are not present here, so that
the resulting residual densities will be different from that of Kisilevsky–Nam. Section 6
proves this result and outlines the general procedure for higher order characters.
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4 D. K. Angdinata

This classification builds upon the independent result that ord3(BSD(E)) ≥ −1. In
a seminal paper quantifying the cancellations between tor(E) and Tam(E), Lorenzini
proved that if a prime � > 3 is such that � ∣ # tor(E), then � ∣ Tam(E)with finitely many
explicit exceptions [20, Proposition 1.1]. In particular, when E has analytic rank zero,
the denominator # tor(E)2 of the rational number BSD(E) necessarily shares a factor
with Tam(E) in its numerator, so that ord�(BSD(E)) ≥ −1 for any prime � > 3. On
the other hand, he noted that there are explicit families with # tor(E) = 3 without
any cancellation [20, Lemma 2.26], another family of which was given by Barrios–
Roy [1, Corollary 5.1]. Subsequently, Melistas showed that these cancellations may
instead occur between tor(E) and X(E) in the numerator of BSD(E), and hence
ord3(BSD(E)) ≥ −1, except possibly for certain reduction types [23, Theorem 1.4].
He then observed that there are again explicit exceptions, and in all these exceptions
c0(E) = 3 [23, Example 3.8], but did not explain this coincidence. The following result
gives a lower bound for the odd part of the denominator of BSD(E).

Theorem 1.4 (Theorem 4.4) Let E be an elliptic curve over Q such that L(E , 1) ≠ 0.
Let � be an odd prime such that � ∤ c0(E). Assume further that the Birch–
Swinnerton-Dyer conjecture holds. If � ∣ # tor(E), then � ∣ Tam(E)#X(E). In partic-
ular, ord�(BSD(E)) ≥ −1.

Section 4 states this result in terms of L (E , 1) and proves it in slightly larger
generality. Note that this is related to the Gross–Zagier conjecture for # tor(E) = 3
proven by Byeon–Kim–Yhee [9, Theorem 1.2], but their divisibility result holds over
imaginary quadratic fields with a Heegner point of infinite order. In particular, the
local computations here are a subset of their local Tamagawa number computations,
but the global divisibility argument here uses the integrality of L (E , 1) instead.

The methods in this article rely on the key fact that L (E , χ) ∈ Z[ζq] for nontrivial
primitive Dirichlet characters χ of order q, which was proven by Wiersema–Wuthrich
under some mild hypotheses by expressing L (E , χ) in terms of Manin’s modular
symbols [33, Theorem 2]. Parts of their argument can be adapted to obtain an explicit
congruence between L (E , χ) and L (E , 1) modulo the prime (1 − ζq) in Z[ζq]
above q. After establishing notational conventions in Section 2, some background on
Manin’s modular symbols will be provided in Section 3 to obtain this congruence. The
remaining sections will be devoted to proving the four aforementioned results, with
an appendix consisting of a list of mod-3 and 3-adic Galois images.

2 Background and conventions

This section establishes some relevant background on Galois representations and
L-functions of elliptic curves and Dirichlet characters, as well as some notational
conventions that might be deemed less standard in the literature.

For a primitive nth root of unity ζn , the ring of integers of the cyclotomic field
Q(ζn) will be denoted Z[ζn], and denote its norm map by Nmn ∶ Q(ζn) → Q. The
ring of integers of its maximal totally real subfield Q(ζn)+ will be denoted Z[ζn]+,
and denote its norm map by Nm+n ∶ Q(ζn)+ → Q. The isomorphism in class field
theory from the unit group (Z/n)× of Z modulo n to the cyclotomic Galois group
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On L-values of elliptic curves twisted by cubic Dirichlet characters 5

Gal(Q(ζn)/Q) will be given by a ↦ (ζn ↦ ζ a
n), which identifies Dirichlet characters

of modulus n with Artin representations that factor through Q(ζn).
Denote the two-dimensional special, general, and projective linear group functors

by SL2, GL2, and PGL2. For a matrix M in such a matrix group, its trace will be
denoted tr(M) and its determinant will be denoted det(M). For a prime �, the
conjugacy classes of SL2(Z/�) can be grouped by their traces as follows [3, Table 1.1
and Exercise 1.4].
• There are three conjugacy classes of trace 2 represented by ( 1 z

0 1 ) for z ∈ F�, one
for each of the three Legendre symbols ( z

�
) ∈ {0,±1}, each of which has cardinality

equal to ((�2 − 1)/2)∣( z
�
)∣ and has elements of order equal to �∣(

z
�
)∣.

• There are three conjugacy classes of trace � − 2 represented by ( −1 z
0 −1 ) for z ∈ F�, one

for each of the three Legendre symbols ( z
�
) ∈ {0,±1}, each of which has cardinality

equal to ((�2 − 1)/2)∣( z
�
)∣ and has elements of order equal to 2�∣( z

�
)∣.

• There are (� − 3)/2 conjugacy classes of trace x + x−1 represented by ( x 0
0 x−1 ) for

x ∈ F×� /{±1}, one for each unordered pair {x±1}, each of which has cardinality equal
to �(� + 1) and has elements of order equal to the order of x.

• There are (� − 1)/2 conjugacy classes of trace ξ + ξ� represented by

(
1
2(ξ + ξ�) ζ

2(ξ − ξ�)
1

2ζ (ξ − ξ�) 1
2(ξ + ξ�)) , ξ ∈ (F×�2/F×� )/{±1},

where ζ is a fixed element of F×�2 satisfying ζ + ζ� = 0, one for each pair {ξ±1}, each
of which has cardinality �(� − 1) and elements of order equal to the order of ξ.

This will be useful for Theorem 4.4 and Proposition 6.1.
Throughout, an elliptic curve will always refer to an elliptic curve E over Q of

conductor N , and any explicit example of an elliptic curve will be given by its Cremona
label [11, Table 1]. For a prime �, the �-adic Galois representation associated with the
�-adic Tate module of E is denoted ρE ,�, and its �-adic Galois image im(ρE ,�) will be
given by its Rouse–Sutherland–Zureick-Brown label as a subgroup of GL2(Z�) up to
conjugacy [25, Section 2.4]. For any n ∈ N, the projection of ρE ,� onto GL2(Z/�n) is
denoted ρE ,�n , and its mod-�n Galois image im(ρE ,�n) will be given by its Sutherland
label as a subgroup of GL2(Z/�n) up to conjugacy [31, Section 6.4]. Note that if Frv is
an arithmetic Frobenius at a prime v ≠ �, then its trace is given by

tr(ρE ,�(Frv)) = av(E) ∶= 1 + v − #E(Fv).

Let ωE denote a global invariant differential on a minimal Weierstrass equation
of E. Let X0(N) denote the modular curve associated with the Hecke congruence
subgroup Γ0(N) of SL2(Z), and let S2(N) denote the space of weight two cusp
forms of level Γ0(N). By the modularity theorem, there is a surjective morphism ϕE ∶
X0(N) ↠ E of minimal degree and an eigenform fE ∈ S2(N)with Fourier coefficients
av(E) for each prime v ∤ N . These constructions define two differentials on X0(N),
namely 2πi fE(z)dz and the pullback ϕ∗E ωE of ωE by fE , which are related by

ϕ∗E ωE = ±c0(E)2πi fE(z)dz,

where c0(E) is a positive integer called the Manin constant [13, Proposition 2].
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6 D. K. Angdinata

It is conjectured that c0(E) = 1 when E is Γ0(N)-optimal in its isogeny class, which
was recently proven for semistable E [10, Theorem 1.2], but it is possible that c0(E) ≠ 1
in general. Nevertheless, every modular parameterization by X0(N) factors through
a parameterization by the modular curve X1(N) associated with the congruence
subgroup Γ1(N)of SL2(Z) [30, Theorem 1.9]. An analogous construction using X1(N)
yields the Manin constant c1(E), with the following important conjecture.

Conjecture 2.1 (Stevens) Let E be an elliptic curve. Then c1(E) = 1.

For a complex Galois representation ρ, its local Euler factor at a prime v is given by

Lv(ρ, T) ∶= det (1 − T Fr−1
v ∣ ρIv) ,

where ρIv is the subrepresentation of ρ invariant under the inertia subgroup Iv
at v. The L-function L(E , s) of E is then defined to be the infinite Euler product
of Lv(ρ∨E ,� , v−s)−1 over all primes v, where ρ∨E ,� is the dual of the complex Galois
representation associated with ρE ,� ⊗Z�

Q� for some prime � ≠ v. The modularity
theorem says that L(E , s) is the Hecke L-function of fE , so that its order of vanishing
at s = 1, and hence its leading term L∗(E , 1), are both well-defined.

The Birch–Swinnerton-Dyer conjecture predicts this order of vanishing and its
leading term in terms of arithmetic invariants as follows. Let tor(E) and rk(E) denote
the torsion subgroup and the rank of the Mordell–Weil group E(Q) respectively.
Let Ω(E) denote the real period given by ∫E(R) ωE , with orientation chosen such
that Ω(E) > 0. Let Tam(E) denote the Tamagawa number, given as the product
of local Tamagawa numbers Tamv(E) over all primes v. Let Reg(E) denote the
elliptic regulator defined in terms of the Néron–Tate pairing ⟨P, Q⟩ = 1

2 hE(P +
Q) − 1

2 hE(P) − 1
2 hE(Q), where hE is the canonical height on E. Finally, let X(E)

denote the Tate–Shafarevich group, which is implicitly assumed to be finite in this
article.

Conjecture 2.2 (Birch–Swinnerton-Dyer) Let E be an elliptic curve. Then the order of
vanishing of L(E , s) at s = 1 is equal to rk(E), and its leading term satisfies

L∗(E , 1)
Ω(E) = Tam(E)#X(E)Reg(E)

# tor(E)2 .

Here, the left hand side is the modified L-value of E, which will be denoted L (E),
and the right hand side is the Birch–Swinnerton-Dyer quotient of E, which will be
denoted BSD(E). For the base change E/K of E to an extension K of Q, there are
analogous quantities L (E/K) and BSD(E/K) [12, Section 1.5]. If ord� ∶ Q→ Z ∪
{∞}denotes the �-adic valuation for some prime �, the conjecture that ord�(L (E)) =
ord�(BSD(E)) is called the �-part of the Birch–Swinnerton-Dyer conjecture.

Remark 2.3 Thanks to the Gross–Zagier formula [15, Theorem 7.3] and Kolyvagin’s
Euler system [19, Corollary 2], the rank conjecture and the finiteness of X(E) are
known when L(E , 1) ≠ 0. In this setting, BSD(E) is clearly rational since Reg(E) = 1,
and the later Proposition 3.3 will show that L (E) is also rational. On the other
hand, the leading term conjecture is not known even in this setting, but substantial
progress has been made toward ord�(L (E)) = ord�(BSD(E)) as a consequence of
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On L-values of elliptic curves twisted by cubic Dirichlet characters 7

the Iwasawa main conjectures for GL2, starting with the work of Skinner–Urban [29,
Theorem 2]. This is summarized in a survey by Burungale–Skinner–Tian [7, Section
3.3], but note that there is very recent progress in the supersingular case by Burungale–
Skinner–Tian–Wan [8, Theorem 1.5], as well as in the ordinary case by Keller–Yin [17,
Theorem C] and by Burungale–Castella–Skinner [6, Corollary 1.3.1]. For the purposes
of this article, only the case � = 3 will be used in assumptions.

Throughout, a character will always refer to a nontrivial even primitive Dirichlet
character χ of order q > 1 and prime conductor p ∤ N , which automatically means
that χ(−1) = 1 and p ≡ 1mod q. The L-function L(E , χ, s) of E twisted by χ is defined
to be the Euler product of Lv(ρ∨E ,� ⊗ χ, v−s)−1 over all primes v, so that in par-
ticular L (E , 1) =L (E). The modularity theorem says that L(E , χ, s) is the Hecke
L-function of fE twisted by χ [28, Theorem 3.66], so that its order of vanishing at s = 1,
and hence its leading term L∗(E , χ, 1), are again well-defined. When L(E , χ, 1) ≠ 0,
Kato showed that rk(E) = rk(E/K) and X(E/K) is finite [16, Corollary 14.3]. The
analogous modified twisted L-value is given by

L (E , χ) ∶= L∗(E , χ, 1)p
τ(χ)Ω(E) ,

where τ(χ) is the Gauss sum of χ.

Remark 2.4 The definitions of L-values and Birch–Swinnerton-Dyer invariants in
this section agree with those by Wiersema–Wuthrich [33, Section 7] and those by
Dokchitser–Evans–Wiersema [12, Section 1.5] whenever L(E , χ, 1) ≠ 0, except for
one notable difference for twisted L-functions due to the choice of normalization
coming from class field theory. In this article, the Dirichlet series of L(E , χ, s)
is ∑∞n=1 χ(n)an(E)n−s , and L (E , χ) is defined in terms of L(E , χ, s). Wiersema–
Wuthrich gives two definitions for twisted L-functions, namely an automorphic one
that agrees with L(E , χ, s), and a motivic one that coincides with L(E , χ, s) instead
of L(E , χ, s). However, their modified twisted L-value is defined using the motivic
definition, so that it coincides with L (E , χ) instead of L (E , χ). Dokchitser–Evans–
Wiersema follows the motivic convention, so that their twisted L-functions and
modified twisted L-values coincide with L(E , χ, s) and L (E , χ) respectively.

3 Modular symbols

This section recalls some classical facts on modular symbols. Most arguments here
are well-known since the time of Manin [22], with some recent results by Wiersema–
Wuthrich [33], but they are provided here for reference. Nevertheless, the main tool
is the congruence in Corollary 3.7. Note that similar congruences were explored by
Fearnley–Kisilevsky–Kuwata [14, Theorem 3.5], and are essentially equivalent to the
equivariant Tamagawa number conjecture as shown by Bley [2, Section 2].

Let N ∈ N. The congruence subgroup Γ0(N) of SL2(Z) acts on the extended upper
half plane H of C by fractional linear transformations, and a smooth path between
two points in the same Γ0(N)-orbit projects onto a closed path in the quotient
X0(N) =H /Γ0(N), which defines an integral homology class γ ∈ H1(X0(N),Z).
This is independent of the smooth path chosen because H is simply connected, and
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8 D. K. Angdinata

any integral homology class γ ∈ H1(X0(N),Z) arises in such a way. On the other hand,
any cusp form f ∈ S2(N) induces a differential 2πi f (z)dz on X0(N), and integrating
this over the closed path γ gives a complex number ∫γ 2πi f (z)dz called a modular
symbol. A general definition for paths with arbitrary endpoints is given by Manin
[22, Section 1.2], but for the purposes of this article, it suffices to consider the modular
symbol associated with the path from 0 to cusps c ∈ Q ∪ {∞}. When c is rational with
denominator coprime to N , the image of any smooth path between 0 and c is closed
[22, Proposition 2.2], so that it makes sense to write the modular symbol

μ f (c) ∶= ∫
c

0
2πi f (z)dz.

The key example for f will be the normalized cuspidal eigenform fE ∈ S2(N) asso-
ciated with an elliptic curve E of conductor N . In this case, it turns out that L (E),
as well as L (E , χ) for any character χ of conductor coprime to N , can be written as
sums of μE(c) ∶= μ fE (c) for some c ∈ Q. Furthermore, the terms in these sums can be
paired up in a way that guarantees integrality, using the following trick.

Lemma 3.1 Let c ∈ Q with denominator coprime to some N ∈ N. If f ∈ S2(N), then

μ f (c) + μ f (1 − c) = 2R(μ f (c)).

In particular, if E is an elliptic curve, then μE(c) + μE(1 − c) is an integer multiple of
c0(E)−1Ω(E).

Proof This is essentially identical to the proof by Wiersema–Wuthrich [33,
Lemma 4], but the argument is repeated here for reference. Note that μ f (1 − c) −
μ f (−c) is the integral of 2πi f (z) along the closed path between −c and ( 1 1

0 1 ) ⋅ (−c),
which is zero [22, Proposition 1.4], so that μ f (1 − c) = μ f (−c). The change of variables
z ↦ −z then transforms μ f (−c) into μ f (c), and the first statement follows. Now by
definition, c0(E)μE(c) lies in the lattice of modular symbols generated by smooth
paths in H1(E(C),Z), whose real parts lie in 1

2 Ω(E)Z. The second statement then
follows from the first statement with f = fE . ∎

Remark 3.2 When c is rational with denominator coprime to N , this definition of
μE(c) coincides with the modular symbol denoted μ(c) by Wiersema–Wuthrich [33,
Section 2], since their least residue denoted α would vanish.

For this exact reason, the modular symbols μE(c) can be normalized to be integers.
More precisely, for an elliptic curve E of conductor N with normalized cuspidal
eigenform fE ∈ S2(N), define the normalized modular symbol

μ+E(c) ∶=
c0(E)
Ω(E) (μE(c) + μE(1 − c)),

which is now an integer. The integrality of L (E) is now a formal consequence of the
action of Hecke operators on the space of modular symbols.
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On L-values of elliptic curves twisted by cubic Dirichlet characters 9

Proposition 3.3 Let E be an elliptic curve of conductor N. Let v be an odd prime such
that v ∤ N. Then

c0(E)L (E)#E(Fv) =
⌊ v−1

2 ⌋

∑
a=1

μ+E(a/v).

In particular, both sides lie in Z.

Proof The first statement is precisely the action of Hecke operators on the space of
modular symbols [22, Theorem 4.2] up to a factor of c0(E)−1Ω(E). Integrality of both
sides then follows immediately from Lemma 3.1 and the first statement. ∎

Remark 3.4 The assumption that v ∤ N is crucial, and removing this may cause
integrality to fail, such as for the elliptic curve 11a1 where c0(E) = 1 and L (E) = 1

5 ,
but #E(F11) = 11.

The same argument can be adapted for L (E , χ) using Birch’s formula.

Proposition 3.5 Let E be an elliptic curve of conductor N. Let χ be a character of order
q and odd prime conductor p ∤ N. Then

c0(E)L (E , χ) =
⌊

p−1
2 ⌋

∑
a=1

χ(a)μ+E(a/p).

In particular, both sides lie in Z[ζq]. Furthermore, if c1(E) = 1, then L (E , χ) ∈ Z[ζq].

Proof This is identical to the proof by Wiersema–Wuthrich [33, Proposition 7],
noting that the automorphic and motivic definitions of L (E , χ) agree under the
assumption that p ∤ N [33, Lemma 18]. Integrality of both sides then follows imme-
diately from Lemma 3.1 and the first statement. The final statement is an analogous
argument with c1(E) also given by Wiersema–Wuthrich [33, Proposition 8]. ∎

Remark 3.6 The assumption that p ∤ N can be weakened slightly to p2 ∤ N for the
first two statements [33, Proposition 7]. However, removing this completely may cause
integrality to fail, such as for the elliptic curve 50b1 satisfying c0(E) = 1 and the unique
quadratic character of conductor 5, where L (E , χ) = 1

3 .

Now observe that the right hand sides of Propositions 3.3 and 3.5 are highly similar.
More precisely, since χ(a) ≡ 1 mod (1 − ζq) except when � ∣ a, the right hand sides are
congruent modulo (1 − ζq). This is summarized in the following result, which will be
the main tool behind much of the rest of the article.

Corollary 3.7 Let E be an elliptic curve of conductor N. Let χ be a character of order
q and odd prime conductor p ∤ N. Then

c0(E)L (E , χ) ≡ −c0(E)L (E)#E(Fp) mod (1 − ζq).

Furthermore, if q ∤ c0(E), then

L (E , χ) ≡ −L (E)#E(Fp) mod (1 − ζq),

where the denominators of both sides are inverted modulo (1 − ζq).
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10 D. K. Angdinata

Remark 3.8 Without considering the factor of c0(E), both integrality results and the
congruence easily fail in trivial ways, but the assumption that q ∤ c0(E) is a relatively
mild one, since c0(E) ≠ 1 seems to be relatively rare.

Remark 3.9 Modified twisted L-values L (E , χ) are Galois equivariant as predicted
by Deligne’s period conjecture [4, Theorem 2.7], in the sense that L (E , σ ○ χ) =
σ(L (E , χ)) for any σ ∈ Gal(Q(ζq)/Q). With this property, L (E) can be expressed
in terms of the sum of L (E , χ) for all characters χ of a given conductor and order.
For instance, when χ is a cubic character of conductor p,

1 + χ(a) + χ(a) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if a is not a unit in Fp ,
3 if a is the cube of a unit in Fp ,
0 otherwise,

so that the identities in Propositions 3.3 and 3.5 combine to yield

c0(E)L (E , χ) + c0(E)L (E , χ) + c0(E)L (E)#E(Fp) = 3∑
a

μ+E(a/p),

where the sum runs over the cubic residues a in Fp such that 1 ≤ a ≤ ⌊ p−1
2 ⌋. By

Galois equivariance, the first two terms combine to 2c0(E)R(L (E , χ)), so that this
expresses R(L (E , χ)) in terms of L (E) up to a few error terms consisting of modu-
lar symbols. By reducing modulo 3, this recovers the congruence in Corollary 3.7, but
also shows that the congruence would not a priori hold modulo 9, unless the modular
symbols μ+E(a/p) for each cubic residue a in Fp sum to a multiple of 3.

4 Denominators of L-values

This section proves a few results on the �-adic valuations of denominators of mod-
ified L-values, where � is an odd prime, which may be of independent interest.
Since c0(E)L (E)#E(Fv) is integral, the �-adic valuation of the rational number
c0(E)L (E) can be bounded from below by the �-adic valuation of #E(Fv), which
is in turn controlled by tor(E) in the denominator of BSD(E). When � ≠ 3, assuming
the �-part of the Birch–Swinnerton-Dyer conjecture, such a lower bound follows from
Lorenzini’s result that ord�(# tor(E)) ≤ ord�(Tam(E)) with finitely many exceptions
[20, Proposition 1.1], but the case � = 3 requires more work.

Lemma 4.1 Let E be an elliptic curve without complex multiplication such that E(Q)
has a point of order 3 and that 3 ∤ Tam(E). Then im(ρE ,3) is the full Borel subgroup.

Proof By the assumption that E has a point of order 3, E is isomorphic either to
the elliptic curve given by y2 + c y = x3 for some cube-free c ∈ N, which has complex
multiplication by Z[ζ3], or to the elliptic curve E1,±b/a given by

y2 + x y ± b
a

y = x3 ,

for some coprime a, b ∈ N [1, Proposition 2.4]. If 3 ∤ ordv(a) for some prime v,
then 3 ∣ Tamv(E1,±b/a) [1, Theorem 3.5], which contradicts the assumption that
3 ∤ Tam(E), so that a = d3 for some d ∈ N coprime to b. The change of variables
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On L-values of elliptic curves twisted by cubic Dirichlet characters 11

(x , y) ↦ (x/d2 , y/d3) yields an isomorphism from E1,±b/a to the elliptic curve Ed ,±b
given by

y2 + dx y ± by = x3 ,

which is now a minimal model and has discriminant Δ = ±b3(d3 − 27b). Now let v
be a prime such that v ∣ b, so that v ∣ Δ and ordv(d3 − 27b) = 0 by coprimality. By step
2 of Tate’s algorithm, since T2 + dT splits in Fv , the elliptic curve Ed ,±b has Kodaira
symbol Iordv(Δ) with split mutiplicative reduction at v, so that

Tamv(E) = Tamv(Ed ,±b) = ordv(Δ) = 3 ordv(b),

which contradicts the assumption that 3 ∤ Tam(E). This forces b = 1, but the
j-invariant of Ed ,±b = Ed ,±1 computes to be

d3(d3 ∓ 24)3

±d3 − 27
= 27

( 27
±d3−27 + 1) ( 27

±d3−27 + 9)3

( 27
±d3−27)

3 ,

which implies that im(ρE ,3) is the Borel subgroup 3B.1.1 [35, Theorem 1.2]. ∎

Assuming just one direction of the 3-part of the Birch–Swinnerton-Dyer con-
jecture, a clean divisibility result for BSD(E) can be derived from the integrality of
c0(E)L (E)#E(Fv) via a case-by-case analysis on im(ρE ,3).

Proposition 4.2 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0
and that tor(E) ≅ Z/3. Assume further that ord3(L (E)) ≤ ord3(BSD(E)). Then 3 ∣
c0(E)Tam(E)#X(E). In particular, if 3 ∤ c0(E), then ord3(BSD(E)) ≥ −1.

Proof The final statement follows from the first statement, so it suffices to prove the
latter. Assume that 3 ∤ c0(E). By Proposition 3.3 and the assumptions,

ord3 (
Tam(E)#X(E)

9
#E(Fv)) ≥ ord3(L (E)#E(Fv)) ≥ 0,

so it suffices to find an odd prime v ∤ N such that #E(Fv) ≡ 3 mod 9. By Chebotarev’s
density theorem, this reduces to finding a matrix M ∈ im(ρE ,9) such that 1 + det(M) −
tr(M) = 3. By inspecting the table in Section A.2, such matrices exist for all im(ρE ,3)
except for the two 3-adic Galois images 9.72.0.1 and 9.72.0.5, so these two cases have
to be handled separately. If im(ρE ,3) is 9.72.0.1, then im(ρE ,3) is 3Cs.1.1 and not 3B.1.1,
so Lemma 4.1 implies that 3 ∣ Tam(E). Otherwise im(ρE ,3) is 9.72.0.5, then im(ρE ,9)
fixes a subspace of the group of 9-torsion points of E, so that E(Q) ≅ Z/9, which
contradicts the assumption that E(Q) ≅ Z/3. ∎

Remark 4.3 The conclusion of Proposition 4.2 was already observed by Melistas [23,
Example 3.8], where the elliptic curves 27a3, 27a4, and 54a3 all have E(Q) ≅ Z/3 and
Tam(E)#X(E) = 1 but c0(E) = 3. By the work of Lorenzini, it is generally expected
that the factors in Tam(E) would cancel # tor(E), but in this case it is necessary to
consider #X(E) as well, such as in the elliptic curve 1638j3 where E(Q) ≅ Z/3 and
c0(E)Tam(E) = 1 but #X(E) = 9. Note that the statement is false for tor(E) ≅ Z/3
but rk(E) > 0, such as for the elliptic curve 91b1 where c0(E)Tam(E)#X(E) = 1.
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12 D. K. Angdinata

A lower bound on the �-adic valuation of c0(E)L (E) then follows for any odd
prime �, assuming the �-part of the Birch–Swinnerton-Dyer conjecture, but when E
has no rational �-isogeny the bound is unconditional by simple group theory.

Theorem 4.4 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0. Let � be
an odd prime.
(1) If E has no rational �-isogeny, then ord�(c0(E)L (E)) ≥ 0.
(2) Assume further that ord�(L (E)) = ord�(BSD(E)). Then ord�(c0(E)

L (E)) ≥ −1.

Proof For the first statement, by Proposition 3.3, it suffices to find an odd prime
v ∤ N such that � ∤ #E(Fv). By Chebotarev’s density theorem, this reduces to finding a
matrix M ∈ im(ρE ,�) such that tr(M) ≠ 1 + det(M). Suppose otherwise that tr(M) =
1 + det(M) for all matrices M ∈ im(ρE ,�), so that in particular tr(M) = 2 for all
matrices M ∈ im(ρE ,�) ∩ SL2(Z/�). In this case, by inspecting the orders of elements
in each conjugacy class of SL2(Z/�) as in Section 2, it is clear that im(ρE ,�) ∩ SL2(Z/�)
is necessarily an �-group, so that in particular � ∣ # im(ρE ,�). Then either im(ρE ,�)
is contained in a Borel subgroup of GL2(Z/�) or im(ρE ,�) contains SL2(Z/�) [26,
Proposition 15]. The former contradicts the assumption that E has no rational �-
isogeny, and the latter is impossible by comparing orders.

For the second statement, the assumption that ord�(L (E)) = ord�(BSD(E))
reduces the statement to proving that ord�(c0(E)BSD(E)) ≥ −1. By Mazur’s torsion
theorem, since � is odd, it suffices to consider tor(E) being one of the eight subgroups

Z/3, Z/5, Z/6, Z/7, Z/9, Z/10, Z/12, Z/2⊕Z/6,

If E(Q) /≅ Z/3, then a case-by-case analysis of Lorenzini’s classification yields
ord�(Tam(E)) ≥ ord�(# tor(E)) except for the elliptic curve 11a3 with � = 5, and
the elliptic curves 14a4 and 14a6 with � = 3 [20, Proposition 1.1], but these
exceptions all have ord�(c0(E)) = 1 and ord�(BSD(E)) = −2, so that in particular
ord�(c0(E))BSD(E)) ≥ −1. If E(Q) ≅ Z/3, then Proposition 4.2 implies that

ord3(c0(E)BSD(E)) = ord3(c0(E)Tam(E)#X(E)) − 2 ≥ −1,

as required. ∎
Remark 4.5 The assumption on the �-part of the Birch–Swinnerton-Dyer con-
jecture in the second statement can be slightly weakened, by only requiring that
ord�(L (E)) ≥ ord�(BSD(E)) for all E, except for when im(ρE ,3) is 9.72.0.1, where
the assumption ord�(L (E)) ≤ ord�(BSD(E)) is also needed to proceed with the
argument in Proposition 4.2. In fact, it might also be provable without appealing to the
conjecture at all, by finding a matrix M ∈ im(ρE ,�) such that 1 + det(M) − tr(M) ≡ �
mod �2 along the same lines as the proof of Proposition 4.2. In general, this would
need a case-by-case analysis of im(ρE ,�) for when E has no rational �-isogeny for � > 3,
whose classification remains incomplete at present.

The following is another easy result on the �-adic valuation of L (E)#E(Fv). The
factors arising from the denominator of the rational number L (E)#E(Fv) could a
priori cancel the factors appearing in c0(E), but the congruence of L-values says that
this should not happen, assuming Stevens’s conjecture that c1(E) = 1.
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On L-values of elliptic curves twisted by cubic Dirichlet characters 13

Proposition 4.6 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0.
Let v and � be odd primes such that v ∤ N and that v ≡ 1 mod �. Assume fur-
ther that c1(E) = 1. Then � ∤ c0(E)L (E)#E(Fv) if and only if � ∤ c0(E) and
ord�(L (E)#E(Fv)) = 0.
Proof Assume that � ∤ c0(E)L (E)#E(Fv) but � ∣ c0(E). By the assumption that
c1(E) = 1, Proposition 3.5 says that L (E , χ) ∈ Z[ζ�] for any character χ of conduc-
tor v and order �, so that c0(E)L (E , χ) ≡ 0 mod (1 − ζ�), which contradicts � ∤
c0(E)L (E)#E(Fv) by Corollary 3.7. Thus � ∤ c0(E), so that ord�(L (E)#E(Fv)) = 0
also follows, while the converse is immediate noting that L (E) ≠ 0. ∎
Remark 4.7 Assuming Stevens’s conjecture, Proposition 4.6 yields an immediate
proof that L (E)#E(Fv) is integral at � if ord�(c0(E)) ≤ 1. This condition seems to
hold for all elliptic curves in the LMFDB [32], but a proof remains elusive. On the other
hand, assuming the �-part of the Birch–Swinnerton-Dyer conjecture, there might be
a direct proof that L (E)#E(Fv) is integral at �, by arguing that 1 + det(M) − tr(M)
cancels # tor(E)2 for every matrix M lying in every possible im(ρE ,�).

5 Units of twisted L-values

Under the standard arithmetic conjectures, Dokchitser–Evans–Wiersema computed
the norm of L (E , χ) in terms of BSD(E) and BSD(E/K), where K is the degree q
subfield of Q(ζp) cut out by the kernel of χ [12, Theorem 38]. Some of their main
results can be summarized in the notation of this article as follows.
Proposition 5.1 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0.
Let χ be a character of odd prime conductor p ∤ N and odd prime order q ∤
c0(E)BSD(E)#E(Fp). Assume further that c1(E) = 1, and that L (E) = BSD(E) and
L (E/K) = BSD(E/K).
(1) The cyclotomic integer L (E , χ) ∈ Z[ζq] has norm

Nmq(L (E , χ)) = ±BSD(E/K)
BSD(E) ,

and it generates an ideal that is invariant under complex conjugation.
(2) The real cyclotomic integer L (E , χ)ζ ∈ Z[ζq]+ has norm

Nm+q(L (E , χ)ζ) = ±B,

where the positive rational number B ∈ Q× is the positive square root of the positive
rational square BSD(E/K)/BSD(E) ∈ (Q×)2, and ζ ∶= χ(N)(q−1)/2.

In particular, if B = 1, then there is a unit u ∈ Z[ζq]+ such that L (E , χ) = uζ−1.
Proof By Proposition 4.6, under the arithmetic conjectures, the assumption that
q ∤ c0(E)BSD(E)#E(Fp) reduces to q ∤ c0(E) and ordq(L (E)#E(Fp)) = 0. In
particular L(E , 1) ≠ 0, and moreover ordq(L (E , χ)) = 0 by Corollary 3.7, so that
L(E , χ, 1) ≠ 0 as well. This verifies the assumptions of a result by Dokchitser–Evans–
Wiersema [12, Theorem 13(5)–Theorem 13(12)], and is a restatement. ∎

In ideal-theoretic language, Proposition 5.1.1 predicts that the ideal I of Z[ζq]
generated by L (E , χ) has norm equal to the nonzero positive rational number
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14 D. K. Angdinata

BSD(E/K)/BSD(E), and Proposition 5.1.2 says that this rational number is the
square of a positive rational number B equal to the norm of the ideal of Z[ζq]+
generated L (E , χ)ζ . Thus there are only finitely many possibilities for the prime ideal
factorization of I, and the fact that I is invariant under complex conjugation narrows
down the possibilities further. The precise ideal factorization can then be recovered
from the Gal(K/Q)-module structure of X(E/K) [5, Remark 7.4], such as in the
case of Gal(K/Q) ≅ Z/5 explored by Maistret–Shukla [21, Theorem 1.4].

Assuming that I has been computed as an ideal of Z[ζq], any generator of I is
only equal to the actual value of L (E , χ) up to a unit u ∈ Z[ζq]. Proposition 5.1.2
refines this prediction slightly by adding a condition on the norm of L (E , χ)ζ , which
determines the actual value of L (E , χ) up to a unit u ∈ Z[ζq]+. In the special case
of q = 3, this is still ambiguous up to a sign, since the units of Z[ζ3]+ = Z are ±1.
Corollary 3.7 comes into the picture by pinning down the sign in terms of #E(Fp).

Corollary 5.2 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0. Let χ be
a cubic character of odd prime conductor p ∤ N such that 3 ∤ c0(E)BSD(E)#E(Fp).
Assume further that c1(E) = 1, and that L (E) = BSD(E) and L (E/K) = BSD(E/K).
Then

L (E , χ) = uχ(N)B,

where the positive rational number B ∈ Q× is the positive square root of the positive
rational square BSD(E/K)/BSD(E) ∈ (Q×)2, and the sign u = ±1 is such that

u ≡ −#E(Fp)BSD(E)B−1 mod 3.

This follows immediately from Corollary 3.7 and Proposition 5.1. Corollary 5.2 clar-
ifies much of the phenomena observed by Dokchitser–Evans–Wiersema [12, Example
45], where they gave many pairs of examples of arithmetically similar elliptic curves
E1 and E2 with L (E1 , χ) ≠L (E2 , χ) for a few cubic characters χ, in the sense that
L (E1 , χ) ≠L (E2 , χ) precisely because #E1(Fp) /≡ #E2(Fp)mod 3.

Example 5.3 Let E1 and E2 be the elliptic curves 1356d1 and 1356f1, and let χ be
the cubic character of conductor 7 given by χ(3) = ζ2

3 . Then c0(E i) = BSD(E i) =
BSD(E i/K) = 1 for i ∈ {1, 2}, so Proposition 5.1 implies that L (E i , χ) = ±χ(1356) =
±ζ2

3 , but it was a priori unclear why L (E1 , χ) = ζ2
3 and L (E2 , χ) = −ζ2

3 . Corollary 5.2
explains this by requiring that this sign agrees with −#E i(F7) modulo 3, and in this
case #E1(F7) = 11 and #E2(F7) = 7, which are distinct modulo 3. They provided other
examples satisfying c0(E) = BSD(E) = BSD(E/K) = 1 with different L (E , χ) for a
few different cubic characters χ, and they can all be explained similarly. The values of
L (E , χ) for the above character are tabulated as follows.

E 1356d1 1356f1 3264r1 3264s1

L (E , χ) ζ2
3 −ζ2

3 −ζ2
3 ζ2

3

#E(F7) 11 7 10 8
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E 3540a1 3540b1 4800i1 4800bj1 4800bm1

L (E , χ) −ζ2
3 ζ2

3 −ζ2
3 −ζ2

3 ζ2
3

#E(F7) 7 11 7 7 11

When q > 3 but BSD(E) = BSD(E/K), Proposition 5.1 says that L (E , χ) is a unit
in Z[ζq], and Corollary 3.7 places a congruence on this unit in terms of #E(Fp).
Corollary 5.4 Let E be an elliptic curve of conductor N such that L(E , 1) ≠ 0.
Let χ be a character of odd prime conductor p ∤ N and odd prime order q ∤
c0(E)BSD(E)#E(Fp) such that BSD(E) = BSD(E/K). Assume further that c1(E) = 1,
and that L (E) = BSD(E) and L (E/K) = BSD(E/K). Then L (E , χ) = u for some
unit u ∈ Z[ζq] such that u ≡ −#E(Fp)BSD(E)mod (1 − ζq).

Again, this follows immediately from Corollary 3.7 and Proposition 5.1. Corol-
lary 5.4 explains the remaining phenomena observed by Dokchitser–Evans–
Wiersema [12, Example 44], where they gave many pairs of examples of arithmetically
trivial elliptic curves E1 and E2 with L (E1 , χ) ≠L (E2 , χ) for quintic characters χ, in
the sense that L (E1 , χ) ≠L (E2 , χ) precisely because #E1(Fp) /≡ #E2(Fp)mod 5.

Example 5.5 Let E1 and E2 be the elliptic curves 307a1 and 307c1, and let χ be
the quintic character of conductor 11 given by χ(2) = ζ5. Then c0(E i) = BSD(E i) =
BSD(E i/K) = 1 for i ∈ {1, 2}, so Proposition 5.1 implies that L (E i , χ) is a unit, but
it was a priori unclear why L (E1 , χ) = 1 and L (E2 , χ) = ζ5u2, where u ∶= 1 + ζ4

5 .
Corollary 5.4 explains this by requiring that L (E i , χ) ≡ −#E i(F11) mod (1 − ζ5),
and in this case #E1(F11) = 9 and #E2(F11) = 16, which are distinct modulo 5. They
provided other examples satisfying c0(E) = BSD(E) = BSD(E/K) = 1 with different
L (E , χ) for this character, and they can all be explained similarly as follows.

E 307a1 307c1 432g1 432h1 714b1 714h1

L (E , χ) 1 ζ5u2 u2 −ζ5u−1 1 −ζ4
5 u3

#E(F11) 9 16 16 8 9 13

E 1187a1 1187b1 1216g1 1216k1

L (E , χ) ζ2
5 u−1 ζ5u−3 −ζ3

5 u2 ζ4
5 u−1

#E(F11) 17 8 9 7

When q > 3 and BSD(E) ≠ BSD(E/K), it is awkward to rephrase Proposition 5.1
to apply Corollary 3.7, but it can be illustrated with an example [12, Example 46].

Example 5.6 Let E1 and E2 be the elliptic curves 291d1 and 139a1, and let χ be the
quintic character of conductor 31 given by χ(3) = ζ3

5 . Then c0(E i) = BSD(E i) = 1, but
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BSD(E i/K) = 112 for i ∈ {1, 2}, so Proposition 5.1 implies that L (E i , χ) generates an
ideal of norm 112 that is invariant under complex conjugation. By considering the
primes above 112 in Z[ζ5], there are only two such ideals, generated by λ1 ∶= 3ζ3

5 + ζ2
5 +

3ζ5 ≡ 2 mod (1 − ζ5) and λ2 ∶= ζ3
5 + 3ζ5 + 3 ≡ 2 mod (1 − ζ5), and in fact (L (E i , χ)) =

(λ i). Assuming this fact, Corollary 3.7 then predicts that L (E i , χ) = u i λ i for some
units u i ∈ Z[ζ5] such that 2u i ≡ −#E i(F31)mod (1 − ζ5), and in this case #E1(F31) =
33 ≡ 3 mod 5 and #E1(F31) = 23 ≡ 3 mod 5, so that u i ≡ 1 mod (1 − ζ5). In fact, u1 = ζ4

5
and u2 = ζ2

5 − ζ5 + 1.

Remark 5.7 As this example highlights, in general it is possible for L (E1 , χ) ≡
L (E2 , χ)mod (1 − ζq) but L (E1 , χ) ≠L (E2 , χ), even when c0(E i) = BSD(E i)= 1,
so that a general Birch–Swinnerton-Dyer formula for L (E , χ) remains unlikely even
with the factor of #E(Fp). There are also examples for when E i have the same
conductor and minimal discriminant, and furthermore BSD(E i/K) = 1, such as for
the elliptic curves 544b1 and 544f1 and the quintic character χ of conductor 11 given
by χ(2) = ζ5, where L (E1 , χ) = −ζ3

5 − ζ5 and L (E2 , χ) = −2ζ3
5 − 3ζ2

5 − 2ζ5. This is
the pair of elliptic curves with the smallest conductor satisfying the aforementioned
properties but with L (E1 , χ) ≠L (E2 , χ), but other examples do seem to be rare.

6 Residual densities of twisted L-values

For a fixed elliptic curve E of conductor N , a natural problem is to determine the
asymptotic distribution of L (E , χ), as χ varies over characters of some fixed prime
order q but of arbitrarily high odd prime conductor p ∤ N . However, for each such p,
there are q − 1 characters χ of conductor p and order q, giving rise to q − 1 conjugates of
L (E , χ), so that a uniform choice of χ for each p has to be made for any meaningful
analysis. One solution is to observe that the residue class of L (E , χ) modulo (1 −
ζq) is independent of the choice of χ for each p, so that a simpler problem would
be to determine the asymptotic distribution of these residue classes instead. As in the
introduction, let X<n

E ,q be the set of characters of odd order q and odd prime conductor
p < n not dividing N . Define the residual densities δE ,q of L (E , χ) to be the natural
densities of L (E , χ)modulo (1 − ζq). In other words, this is the value

δE ,q(λ) ∶= lim
n→∞

#{χ ∈ X<n
E ,q ∣L (E , χ) ≡ λ mod (1 − ζq)}

#X<n
E ,q

, λ ∈ Fq ,

if such a limit exists. Note that as these residue classes only depend on p rather than χ,
the set X<n

E ,q can be replaced with the set of equivalence classes of characters in X<n
E ,q ,

where two characters are equivalent if they have the same conductor. When q ∤ c0(E),
this can be computed for each λ ∈ Fq using Corollary 3.7, with the only subtlety being
the possible cancellations between L (E) and #E(Fp). In the generic scenario when
im(ρE ,q) is maximal, there is a clean description in terms of Legendre symbols.

Proposition 6.1 Let E be an elliptic curve such that L(E , 1) ≠ 0. Let q be an odd prime
such that q ∤ c0(E).
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(1) If ordq(L (E)) > 0, then δE ,q(0) = 1 and δE ,q(λ) = 0 for any λ ∈ F×q .
(2) If ordq(L (E)) ≤ 0, then set m ∶= 1 − ordq(L (E)) and

GE ,qm ∶= {M ∈ im(ρE ,qm) ∣ det(M) ≡ 1 mod q} .

Then for any λ ∈ Fq ,

δE ,q(λ) =
#{M ∈ GE ,qm ∣ 1 + det(M) − tr(M) ≡ −λL (E)−1 mod qm}

#GE ,qm
.

In particular, if ordq(L (E)) ≤ 0 and ρE ,q is surjective, then compute the Legendre
symbols

εE ,q(λ) ∶= (
λL (E)−1

q
)( λL (E)−1 + 4

q
) .

Then for any λ ∈ Fq ,

δE ,q(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
q−1 if εE ,q(λ) = 1,

q
q2−1 if εE ,q(λ) = 0,

1
q+1 if εE ,q(λ) = −1.

Proof By Corollary 3.7, δE ,q(λ) is just the natural density of −L (E)#E(Fp) ≡
λ mod q. If ordq(L (E)) > 0, then only λ = 0 gives a nonzero natural density.
Otherwise ordq(L (E)) ≤ 0, then this is equivalent to 1 + p − ap(E) ≡ −λL (E)−1

mod qm , noting that L (E)−1 is well-defined and nonzero modulo qm by definition.
By Chebotarev’s density theorem, this occurs with the proportion of matrices M ∈
GE ,q with det(M) = p and tr(M) = ap(E), so that the second statement follows. If
ρE ,q is surjective, then Theorem 4.4.1 yields m = 1, so that δE ,q(λ) is the proportion of
matrices M ∈ SL2(Z/q) such that tr(M) ≡ 2 − λL (E)−1 mod q. The final statement
then follows by # SL2(Z/q) = (q − 1)q(q + 1) and by inspecting the possible traces in
SL2(Z/q) as in Section 2, noting that tr(M) = x + x−1 for some x ∈ Fq/{±1} precisely
when x2 − 4 is a quadratic residue modulo q. ∎

Remark 6.2 Without the assumption that q ∤ c0(E), the same argument can be used
to compute the residual density of c0(E)L (E , χ) instead, by adding a factor of c0(E)
to every instance of L (E) in the statement and proof of Proposition 6.1. However,
Proposition 3.5 predicts that L (E , χ) ∈ Z[ζq] under Stevens’s conjecture, so that both
sides of the congruence are divisible by q and the statement becomes vacuous.

Remark 6.3 Under the standard arithmetic conjectures, Proposition 5.1 says that
L (E , χ)ζ ∈ Z[ζq], so that Nm+q(L (E , χ)ζ) is an integer. Since the norm is multi-
plicative and ζ ≡ 1 mod (1 − ζq), the asymptotic distribution of the residue class of
Nm+q(L (E , χ)ζ)modulo q essentially boils down to computing δE ,q .

Assuming the q-part of the Birch–Swinnerton-Dyer conjecture, Theorem 4.4.3
says ordq(BSD(E)) ≥ −1, so that nontrivial values of δE ,q are only visible when
ordq(BSD(E)) ∈ {0,−1}. Once this is determined, computing δE ,q then reduces to
identifying im(ρE ,q) or im(ρE ,q2), and then weighing the proportion of matrices with
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18 D. K. Angdinata

a certain determinant and trace. To illustrate this in action, the next result describes
the possible ordered triples (δE ,3(0), δE ,3(1), δE ,3(2)) of residual densities, which is
only made possible thanks to the classification of 3-adic Galois images by Rouse–
Sutherland–Zureick-Brown [25, Corollaries 1.3.1 and 12.3.3]. As in the introduction,
these ordered triples will also be denoted δE ,3 for ease of notation.

Theorem 6.4 Let E be an elliptic curve such that L(E , 1) ≠ 0 and that 3 ∤ c0(E).
Assume further that ord3(L (E)) = ord3(BSD(E)). Then precisely one of the following
holds.
(1) If ord3(BSD(E)) > 0, then δE ,3 = (1, 0, 0).
(2) If ord3(BSD(E)) = 0 and 3 ∣ # tor(E), then δE ,3 = (1, 0, 0).
(3) If ord3(BSD(E)) = 0 and 3 ∤ # tor(E), then δE ,3 is given by the table in Section A.1.
(4) If ord3(BSD(E)) = −1, then δE ,3 is given by the table in Section A.2.
In particular, δE ,3 only depends on BSD(E) and im(ρE ,9), and can only be one of

(1, 0, 0), ( 3
8 , 3

8 , 1
4) , ( 3

8 , 1
4 , 3

8) , ( 1
2 , 1

2 , 0) , ( 1
2 , 0, 1

2) , ( 1
8 , 3

4 , 1
8) ,

( 1
8 , 1

8 , 3
4) , ( 1

4 , 1
2 , 1

4) , ( 1
4 , 1

4 , 1
2) , ( 5

9 , 2
9 , 2

9) , ( 1
3 , 2

3 , 0) , ( 1
3 , 0, 2

3 ) .

Proof The fact that there are only four possibilities is immediate from Theorem
4.4. By Proposition 6.1, the first statement follows immediately under the assumption
that ord3(L (E)) = ord3(BSD(E)), while the second statement follows from 3 ∣ 1 +
det(M) − tr(M) for all matrices M ∈ im(ρE ,3) whenever 3 ∣ # tor(E).

For the third statement, it suffices to consider GE ,3 = im(ρE ,3) ∩ SL2(Z/3), and
there are only 5 possibilities for im(ρE ,3) when ρE ,3 is not surjective, as tabulated
in the table in Section A.1. If ρE ,3 is surjective, then δE ,3 is already computed in
the final statement in Proposition 6.1, while the other 5 cases are similar but easier
computations. For instance, if im(ρE ,3) is 3B.1.2, then GE ,3 is conjugate to the
subgroup of unipotent upper triangular matrices in SL2(Z/3). There are 6 matrices
in this subgroup, all of which have trace 0, so that δE ,3 = (1, 0, 0). Note that when
δE ,3(1) ≠ δE ,3(2), the nonzero residue of BSD(E)modulo 3 would swap the values of
δE ,3(1) and δE ,3(2). For instance, if ρE ,3 is surjective, then GE ,3 = SL2(Z/3), and

δE ,3 =
⎧⎪⎪⎨⎪⎪⎩

( 3
8 , 1

4 , 3
8) if BSD(E) ≡ 1 mod 3,

( 3
8 , 3

8 , 1
4) if BSD(E) ≡ 2 mod 3.

For the fourth statement, it suffices to consider GE ,9, and by the classification
this is simply the projection onto GL2(Z/9) of 21 different possible im(ρE ,3), as
tabulated in the table in Section A.2. For instance, if im(ρE ,3) is 3.8.0.1, then GE ,9
is the preimage of the subgroup of SL2(Z/3) generated by ( 1 2

0 1 ) and ( 1 2
0 2 )under the

canonical projection GL2(Z/9) ↠ GL2(Z/3). This preimage in GL2(Z/9) consists of
243 matrices, of which 135 have trace 0 and 54 have trace 1 and 2 each, so that

δE ,3 = ( 135
243 , 54

243 , 54
243) = (

5
9 , 2

9 , 2
9) .

The other 20 cases are similar but easier computations, noting again that the nonzero
residue of 3 BSD(E) modulo 3 would swap the values of δE ,3(1) and δE ,3(2) when
δE ,3(1) ≠ δE ,3(2). For instance, if im(ρE ,3) is 27.648.18.1, then
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On L-values of elliptic curves twisted by cubic Dirichlet characters 19

δE ,3 =
⎧⎪⎪⎨⎪⎪⎩

( 1
3 , 0, 2

3 ) if 3 BSD(E) ≡ 1 mod 3,
( 1

3 , 2
3 , 0) if 3 BSD(E) ≡ 2 mod 3.

Finally, the final statement follows immediately from the first four. ∎
Remark 6.5 The first case happens when 3 ∤ # tor(E) but 3 ∣ Tam(E)#X(E), such
as for the elliptic curve 50b4 where BSD(E) = 3, and the second case happens when
9 ∣ Tam(E)#X(E), such as for the elliptic curve 84a1 where BSD(E) = 1

2 .
Remark 6.6 If im(ρE ,3) is 3Cs.1.1, then a much easier argument to prove that δE ,3 =
(1, 0, 0) is to observe that GE ,3 is trivial, so that E(Fp) acquires full 3-torsion for any
p ≡ 1 mod 3, and thus L (E , χ) ≡ −BSD(E)#E(Fp) ≡ 0 mod 3 always.
Remark 6.7 Theorem 6.4 can be rephrased to describe the the actual densities of
L (E , χ) rather than their residual densities, since it describes the densities of the
sign u determined in Corollary 5.2, but this will not be explored here.

7 Twisted L-values of Kisilevsky–Nam

The computation of residual densities was originally motivated by patterns in the
statistical data by Kisilevsky–Nam [18, Section 7], where they numerically computed
millions of modified twisted L-values by fixing the elliptic curve and varying the
character. However, they considered an alternative normalization, given by

L +(E , χ) ∶=
⎧⎪⎪⎨⎪⎪⎩

L (E , χ) if χ(N) = 1,
L (E , χ)(1 + χ(N)) if χ(N) ≠ 1,

in contrast to the normalization factor ζ given in Proposition 5.1. Under the implicit
assumption that L (E , χ) ∈ Z[ζq], they showed that L +(E , χ) ∈ Z[ζq]+ [18, Propo-
sition 2.1], so that Nm+q(L +(E , χ)) is an integer. Fixing six elliptic curves E and five
small integers q, they varied the character χ of order q over millions of conductors p
with an arbitrary choice of χ for each p, empirically determined the greatest common
divisor gcdE ,q of all the integers Nm+q(L +(E , χ)), and considered the integer

L̃ +(E , χ) ∶=
Nm+q(L +(E , χ))

gcdE ,q
.

Remark 7.1 When q is odd and L(E , 1) ≠ 0, this definition of L̃ +(E , χ) coincides
with the modified twisted L-value denoted Aχ by Kisilevsky–Nam, since χ(N) = −1
never occurs and the global root number is always 1 [18, Section 2.2]. Their definition
of L (E , χ) has an extra factor of 2, but this is cancelled out after division by gcdE ,q .
Remark 7.2 In the interpretation of Proposition 5.1, the integer gcdE ,q is predicted
to arise from contributions by the common divisors of BSD(E/K)/BSD(E), ranging
over various number fields K of degree q over Q coming from characters of order q.

As their normalization differs from that in Proposition 5.1 [18, Remark 1], the
resulting residual densities are skewed. More precisely, define the set X<n

E ,q as before,
and analogously define the skewed residual densities δ̃E ,q of L̃ +(E , χ) to be the natural
densities of L̃ +(E , χ)modulo q. In other words, this is the value
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20 D. K. Angdinata

δ̃E ,q(λ) ∶= lim
n→∞

#{χ ∈ X<n
E ,q ∣ L̃ +(E , χ) ≡ λ mod q}

#X<n
E ,q

, λ ∈ Fq ,

if such a limit exists. In the simplest case where q = 3 ∤ gcdE ,3,

L̃ +(E , χ) ≡
⎧⎪⎪⎨⎪⎪⎩

L (E , χ) gcdE ,3 if χ(N) = 1,
2L (E , χ) gcdE ,3 if χ(N) ≠ 1,

since there is no norm. This becomes amenable to a computation similar to that of
Proposition 6.1 provided that the condition χ(N) = 1 can be controlled. For many
elliptic curves, including half of those considered by Kisilevsky–Nam, χ(N) depends
completely on #E(Fp) due to a shared action of Frobenius in GL2(Z/3).
Lemma 7.3 Let E be an elliptic curve of conductor N with no rational 3-isogeny
such that the splitting field F of X3 − N lies in the splitting field K of the 3-division
polynomial ψE ,3. Let χ be a cubic character of odd prime conductor p ∤ N. Then
im(ρE ,3) = GL2(Z/3) and Gal(K/Q) ≅ PGL2(Z/3). Furthermore, if p does not split
completely in K, then #E(Fp) ≡ 2 mod 3 if and only if χ(N) = 1. Otherwise, #E(Fp) /≡ 2
mod 3 and χ(N) = 1.

Proof Let L be the extension of K where all points in E[3] are defined. By the
assumption that E has no rational 3-isogeny and the classification of im(ρE ,3), if ρE ,3
were not surjective, then Gal(L/Q) is either 3Nn or 3Ns. Neither of this could occur,
since by the assumption that F ⊆ K, there are subfield inclusions

Q ⊆ Q(ζ3) ⊆ F ⊆ K ⊆ L.

In particular, Gal(L/Q) surjects onto Gal(F/Q) ≅ S3, which forces Gal(L/Q) ≅
GL2(Z/3). On the other hand, Gal(K/Q) permutes the roots of the degree 4 poly-
nomial ψE ,3, which forces it to be PGL2(Z/3) ≅ S4. Its subgroup Gal(K/Q(ζ3)) ≅ A4
surjects onto Gal(F/Q(ζ3)) ≅ Z/3, with kernel the unique subgroup Gal(K/F) ≅
(Z/2)2 of index 4 consisting precisely of all elements of A4 of order 1 or 2.

Now Frp ∈ Gal(K/Q) acts on the residue field of a prime π of F above p by

Frp(ζ3) ≡ ζ p
3 mod π, Frp( 3√N) ≡ 3√N

p
mod π.

Clearly Frp fixes ζ3, so that Frp ∈ Gal(K/Q(ζ3)). If p does not split completely in K,
the condition Frp ∈ Gal(K/F) turns out to be equivalent to #E(Fp) ≡ 2 mod 3 and to
χ(N) = 1. To see this, on one hand, this means that Frp fixes 3

√
N , or equivalently that

3
√

N
p−1 ≡ 1 mod p, which is precisely the condition that χ(N) = 1. On the other hand,

this also means that Fr2
p = 1 in Gal(K/Q(ζ3)), which is equivalent to Frp having order

exactly 2 in Gal(K/Q(ζ3)). By the Cayley–Hamilton theorem, these are precisely the
trace 0 matrices in PGL2(Z/3), or equivalently the trace 0 matrices in GL2(Z/3),
which proves the equivalence with ap(E) = 0. Finally, if p splits completely in K,
then Frp = 1 in Gal(K/Q(ζ3)), and hence χ(N) = 1, but these never have trace 0 in
PGL2(Z/3) or in GL2(Z/3), so that #E(Fp) /≡ 2 mod 3. ∎
Remark 7.4 The first assumption is necessary, evident in the elliptic curve 50b1 with
F ⊆ K but im(ρE ,3) is 3B, where 7 does not split completely in K but #E(F7) = 10 ≡
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1 mod 3 and χ(50) = χ(50) = 1. The second assumption is also necessary, evident
in the elliptic curve 21a1 with no rational 3-isogeny but F /⊆ K, where 13 does not
split completely in K but #E(F13) = 16 ≡ 1 mod 3 and χ(21) = χ(21) = 1. For the final
statement, checking that p splits completely in F but not in K is not sufficient to
conclude, such as for the elliptic curve 11a1, where #E(F19) = 20 ≡ 2 mod 3 and χ(11) =
χ(11) = 1. If p does split completely in K, then both #E(Fp) ≡ 0 mod 3 and #E(Fp) ≡ 1
mod 3 are possible, such as for the elliptic curve 11a1, where #E(F337) = 360 ≡ 0 mod 3
and #E(F193) = 190 ≡ 1 mod 3.
Remark 7.5 The argument in the proof of Lemma 7.3 only works for cubic characters,
as PGL2(Z/q) is almost simple for q > 3 and admits few nontrivial surjections.
Remark 7.6 Elliptic curves with minimal discriminant Δ = ±N n for some n ∈ N such
that 3 ∤ n satisfy the assumptions of Lemma 7.3, since 3

√
N can then be expressed in

terms of 3
√

Δ [26, Section 5.3b]. This condition is in turn satisfied when N is prime,
such as for the elliptic curves given by y2 = x3 + ux2 − 16x and y2 = x3 − 2ux2 + Nx
studied by Neumann [24, Theorem 5.1] and Setzer [27, Theorem 2] when N = u2 + 64
for some integer u, which occurs infinitely often assuming Bunyakovsky’s conjecture.

For these elliptic curves, the residual density of L̃ +(E , χ) is now easy to compute.
Proposition 7.7 Let E be an elliptic curve of conductor N with no rational 3-isogeny
such that 3 ∤ c0(E) gcdE ,3 and that the splitting field F of X3 − N lies in the splitting field
K of the 3-division polynomial ψE ,3. Let χ be a cubic character of odd prime conductor
p ∤ N. Then

L̃ +(E , χ) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 mod 3 if #E(Fp) ≡ 0 mod 3,
2 mod 3 if #E(Fp) ≡ 1 mod 3 and p splits completely in K ,
1 mod 3 otherwise.

In particular,

δ̃E ,3(0) = 9
24 , δ̃E ,3(1) = 15

24 , δ̃E ,3(2) = 1
24 .

Proof By Corollary 3.7 and the assumption that 3 ∤ c0(E) gcdE ,3,

L̃ +(E , χ) ≡
⎧⎪⎪⎨⎪⎪⎩

2#E(Fp)L (E) gcdE ,3 if χ(N) = 1,
#E(Fp)L (E) gcdE ,3 if χ(N) ≠ 1.

Clearly L̃ +(E , χ) ≡ 0 mod 3 when #E(Fp) ≡ 0 mod 3. By Lemma 7.3, χ(N) = 1
occurs either when #E(Fp) ≡ 1 mod 3 but p splits completely in K, or when #E(Fp) ≡
2 mod 3 but p does not split completely in K, the only remaining case being when
#E(Fp) ≡ 1 mod 3 and χ(N) ≠ 1. The first statement then follows by substituting the
residues of #E(Fp)modulo 3, and noting that gcdE ,3 cancels out the factors in L (E)
by definition. Now the description of the groups in Lemma 7.3 implies that #E(Fp) ≡ λ
mod 3 occurs with the proportion of matrices M ∈ SL2(Z/3) with tr(M) = 2 − λ, by
Chebotarev’s density theorem. If p splits completely in K, then Frp = 1 in PGL2(Z/3),
so that Frp = ±1 in GL2(Z/3) and in SL2(Z/3), but the condition #E(Fp) ≡ 1 mod 3
forces Frp = −1, which has trace 1. The final statement then follows by counting
matrices in SL2(Z/3) with given trace. ∎
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Proposition 7.7 completely explains the numerical data by Kisilevsky–Nam for
the elliptic curve 11a1 where gcdE ,3 = 5 and the elliptic curves 15a1 and 17a1 where
gcdE ,3 = 4, all of which satisfy the assumptions of Proposition 7.7. Unfortunately, the
same argument cannot explain the density patterns when 3 ∣ gcdE ,3, such as for the
remaining three elliptic curves 14a1, 19a1, and 37b1 considered by Kisilevsky–Nam,
since Corollary 3.7 is a priori not valid modulo 9, as noted in Remark 3.9.

A Tables of Galois images

This section tabulates the mod-3 and 3-adic Galois images of elliptic curves E with
restricted 3-torsion up to conjugacy, crucially used in Proposition 4.2 and Theo-
rem 6.4. In both tables, the examples of elliptic curves are chosen so that it has the
smallest conductor possible satisfying L(E , 1) ≠ 0 and 3 ∣ c0(E), but in general there
are many elliptic curves with each prescribed mod-3 or 3-adic Galois image.

A.1 Mod-3 Galois images of elliptic curves without 3-torsion

The possible mod-3 Galois images are well-known [35, Theorem 1.2 and Propositions
1.14 and 1.16], and those of elliptic curves without 3-torsion are tabulated as follows.
The subgroup labels and generators are taken from Sutherland [31, Section 6.4], and
are viewed as elements of GL2(Z/3). The column GE ,3 lists the elements of GE ,3 =
im(ρE ,3) ∩ SL2(Z/3) as defined in Proposition 6.1, so that the residual densities can
be read off directly in the column δE ,3 as ordered triples (δE ,3(0), δE ,3(−b), δE ,3(b)),
where b ∈ F3 is the residue of BSD(E) modulo 3, which is used in Theorem 6.4. The
final column E gives examples of elliptic curves E with the given mod-3 Galois image,
with b = 1 in the first row and b = 2 in the second row.

im(ρE ,3) im(ρE ,3) generators GE ,3 δE ,3 E

GL2(Z/3) ( 2 0
0 1 ), ( 2 1

2 0 ) SL2(Z/3) ( 3
8 , 3

8 , 1
4) 11a2,

11a1

3B.1.2 ( 2 0
0 1 ), ( 1 1

0 1 ) ( 1 0
0 1 ), ( 1 1

0 1 ), ( 1 2
0 1 ) (1, 0, 0) 19a2,

14a3

3B ( 2 0
0 2 ), ( 1 0

0 2 ), ( 1 1
0 1 ) ( 1 0

0 1 ), ( 1 1
0 1 ), ( 1 2

0 1 ), ( 1
2 , 1

2 , 0) 50b3,

( 2 0
0 2 ), ( 2 1

0 2 ), ( 2 2
0 2 ) 50b1

3Cs ( 2 0
0 2 ), ( 1 0

0 2 ) ( 1 0
0 1 ), ( 2 0

0 2 ) ( 1
2 , 1

2 , 0) 304e2,

304b2

3Nn ( 1 0
0 2 ), ( 2 1

2 2 ) ( 1 0
0 1 ), ( 1 1

1 2 ), ( 0 2
1 0 ), ( 2 1

1 1 ), ( 1
8 , 1

8 , 3
4) 704e1,

( 2 0
0 2 ), ( 2 2

2 1 ), ( 0 1
2 0 ), ( 1 2

2 2 ) 245b1

3Ns ( 2 0
0 2 ), ( 0 2

1 0 ), ( 1 0
0 2 ) ( 1 0

0 1 ), ( 2 0
0 2 ), ( 0 2

1 0 ), ( 0 1
2 0 ) ( 1

4 , 1
4 , 1

2) 1690d1,

338d1
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The remaining two mod-3 Galois images 3B.1.1 and 3Cs.1.1 have 3-torsion, so the
residual densities require finer information from their mod-9 Galois images.

A.2 3-adic Galois images of elliptic curves with 3-torsion

The possible 3-adic Galois images have been classified [25, Corollaries 1.3.1 and 12.3.3],
and those of elliptic curves with 3-torsion are tabulated as follows. The subgroup
labels and generators are taken from Rouse–Sutherland–Zureick-Brown [25, Soft-
ware Repository], and are viewed as elements of GL2(Z/3m) if their corresponding
3-adic Galois images are of the form 3m .i .g .n. The column ME ,3 gives matrices
M ∈ im(ρE ,9) such that 1 + det(M) − tr(M) = 3, which is used in Proposition 4.2. The
column #GE ,9 lists the cardinalities of GE ,9 as defined in Proposition 6.1 for reference,
but the residual densities are calculated separately in the column δE ,3 as ordered
triples (δE ,3(0), δE ,3(−b), δE ,3(b)), where b ∈ F3 is the residue of 3 BSD(E)modulo
3, which is used in Theorem 6.4. The final column E gives examples of elliptic curves E
with the given 3-adic Galois image, assuming they exist and are listed in the LMFDB,
with b = 1 in the first row and b = 2 in the second row if it exists.

im(ρE ,3) im(ρE ,3) im(ρE ,3) generators ME ,3 #GE ,9 δE ,3 E

3.8.0.1 3B.1.1 ( 1 2
0 1 ), ( 1 2

0 2 ) ( 4 0
0 2 ) 243 ( 5

9 , 2
9 , 2

9) 20a2,

20a1

3.24.0.1 3Cs.1.1 ( 2 0
0 1 ) ( 2 0

0 4 ) 81 (1, 0, 0) 26a1,

14a1

9.24.0.1 3B.1.1 ( 7 5
0 8 ), ( 1 8

0 4 ) ( 4 0
0 2 ) 81 (1, 0, 0) 189c3,

702e3

9.24.0.2 3B.1.1 ( 7 3
0 8 ), ( 7 2

6 2 ) ( 4 0
0 2 ) 81 ( 1

3 , 2
3 , 0)

9.72.0.1 3Cs.1.1 ( 5 6
3 1 ), ( 4 6

0 1 ), ( 5 0
0 1 ) N/A 27 (1, 0, 0) 54b1

9.72.0.2 3Cs.1.1 ( 8 3
3 4 ), ( 8 6

0 4 ), ( 1 3
0 1 ) ( 8 0

0 4 ) 27 (1, 0, 0) 54a1

9.72.0.3 3Cs.1.1 ( 8 3
3 4 ), ( 5 0

0 7 ) ( 2 0
0 4 ) 27 (1, 0, 0) 19a1,

7094c1

9.72.0.4 3Cs.1.1 ( 2 3
6 7 ), ( 1 6

6 1 ), ( 4 3
6 4 ) ( 5 0

0 4 ) 27 (1, 0, 0)
9.72.0.5 3B.1.1 ( 1 2

0 8 ), ( 1 7
0 4 ) N/A 27 (1, 0, 0) 54b3

9.72.0.6 3B.1.1 ( 1 5
0 8 ), ( 4 1

0 8 ) ( 4 0
0 8 ) 27 (1, 0, 0)

9.72.0.7 3B.1.1 ( 4 4
0 5 ), ( 1 0

0 8 ) ( 4 0
0 5 ) 27 (1, 0, 0)

9.72.0.8 3B.1.1 ( 7 7
6 4 ), ( 7 7

6 2 ) ( 1 2
3 1 ) 27 ( 1

3 , 2
3 , 0)

9.72.0.9 3B.1.1 ( 4 2
3 5 ), ( 1 3

0 1 ), ( 7 2
3 1 ) ( 4 1

0 5 ) 27 ( 1
3 , 2

3 , 0)
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im(ρE ,3) im(ρE ,3) im(ρE ,3) generators ME ,3 #GE ,9 δE ,3 E

9.72.0.10 3B.1.1 ( 1 5
6 5 ), ( 1 0

0 8 ) ( 4 0
0 8 ) 27 ( 1

3 , 2
3 , 0) 486c1

27.72.0.1 3B.1.1 ( 7 23
0 5 ), ( 1 8

9 16 ) ( 4 0
0 2 ) 81 (1, 0, 0)

27.648.13.25 3B.1.1 ( 16 4
0 16 ), ( 1 17

0 26 ) ( 4 0
0 5 ) 27 (1, 0, 0) N/A

27.648.18.1 3B.1.1 ( 16 15
9 25 ), ( 10 16

9 17 ), ( 7 22
6 4 ) ( 4 1

0 5 ) 27 ( 1
3 , 2

3 , 0) 108a1,

36a1

27.1944.55.31 3Cs.1.1 ( 2 18
12 25 ), ( 16 18

21 16 ) ( 5 0
0 4 ) 9 (1, 0, 0) N/A

27.1944.55.37 3Cs.1.1 ( 17 6
21 10 ), ( 2 3

3 25 ) ( 5 0
3 4 ) 9 (1, 0, 0) 27a1

27.1944.55.43 3B.1.1 ( 19 10
18 8 ), ( 4 11

3 16 ) ( 4 4
0 5 ) 9 ( 1

3 , 2
3 , 0) 243b1

27.1944.55.44 3B.1.1 ( 10 23
3 13 ), ( 13 13

0 14 ) ( 4 4
0 5 ) 9 ( 1

3 , 2
3 , 0) N/A

Remark A.1 Many of the 3-adic Galois images seemingly do not represent any
elliptic curves with b ≠ 0, in the sense that a search through the LMFDB yields no
examples satisfying L(E , 1) ≠ 0 and 3 ∣ c0(E), but current results a priori do not rule
out their existence. To rule out examples for a specific 3-adic Galois image, one could
consider the explicit family of Weierstrass equations parameterized by the associated
modular curve, and then investigate the divisibility of local Tamagawa numbers as in
Lemma 4.1, but this will not be explored here. Note that this is the case for the last six
3-adic Galois images arising from elliptic curves with complex multiplication, where
their associated modular curves have effectively computable finite sets of rational
points.
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