

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–20, 2025 DOI:10.1017/prm.2025.10090

Pin[±]-structures on non-oriented 4-manifolds via Lefschetz fibrations

Valentina Bais 🕞

Department of Mathematics, SISSA, via Bonomea 265, 34136 Trieste, Italy (vbais@sissa.it)

(Received 15 January 2025; revised 14 July 2025; accepted 14 July 2025)

We study necessary and sufficient conditions for a 4-dimensional Lefschetz fibration over the 2-disk to admit a Pin^{\pm} -structure, extending the work of A. Stipsicz in the orientable setting. As a corollary, we get existence results of Pin^+ and Pin^- -structures on closed non-orientable 4-manifolds and on Lefschetz fibrations over the 2-sphere. In particular, we show via three explicit examples how to read-off Pin^{\pm} -structures from the Kirby diagram of a 4-manifold. We also provide a proof of the well-known fact that any closed 3-manifold M admits a Pin^+ -structure and we find a criterion to check whether or not it admits a Pin^+ -structure in terms of a handlebody decomposition. We conclude the paper with a characterization of Pin^+ -structures on vector bundles.

Keywords: 4-manifold; Lefschetz fibration; non-orientable; Pin structure; η -invariant

2020 Mathematics Subject Classification: Primary 57R25; Secondary 57K35; 57R15; 57R22

1. Introduction

Pin[±]-structures can be thought of as the non-oriented analogue of Spin-structures. We refer the reader to [17] and [24, Section 2] for a precise definition of such Lie groups and for the background on $\operatorname{Pin}^{\pm}(n)$ -structures on low dimensional manifolds. In this note, we find necessary and sufficient conditions for a (possibly non-orientable) Lefschetz fibration over the 2-disk to support a Pin^- or a Pin^+ -structure. In particular, such conditions are expressed in terms of the homology classes of the vanishing cycles of the Lefschetz fibration, with coefficients taken in \mathbb{Z}_2 and \mathbb{Z}_4 respectively. As an application of this criterion, we provide explicit necessary and sufficient conditions for a given Lefschetz fibration over the 2-sphere to support a Pin^{\pm} -structure. We refer the reader to Section 3 for a quick recap on basic facts about non-orientable Lefschetz fibrations. Our main reference for this subject is [19]. We also remark that in this note we consider Pin^{\pm} -structures on the tangent bundles of the manifolds under consideration, while in [13] they are defined on the normal bundles of embedded submanifolds.

[©] The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

In Section 4, we prove the following statement, extending the work of A. Stipsicz on Spin-structures over Lefschetz fibrations in [23, Theorem 1.1].

THEOREM 1. Let X be a smooth 4-manifold and $f: X \to D^2$ a Lefschetz fibration with regular fibre Σ . There is no Pin^- -structure on X if and only if there are k+1 vanishing cycles c_0, c_1, \ldots, c_k such that $[c_0] = \sum_{i=1}^k [c_i] \in H_1(\Sigma; \mathbb{Z}_2)$ and $k + \sum_{1 \le i \le j \le k} c_i \cdot c_j \equiv 0 \mod 2$.

As we will see in Section 4, Theorem 1 is a consequence of the fact that Pin⁻-structures on a Lefschetz fibration over the 2-disk with regular fibre Σ naturally correspond to maps

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

such that $q^-(x+y) = q^-(x)+q^-(y)+2x\cdot y$ for every $x,y\in H_1(\Sigma;\mathbb{Z}_2)$ and $q^-([c])=2$ on every vanishing cycle $c\subset\Sigma$, see Lemma 1. Moreover, such correspondence is equivariant with respect to the action of $H^1(X;\mathbb{Z}_2)$.

Section 5 is devoted to the study of Pin⁺-structures on Lefschetz fibrations. By [7], a Pin⁺-structure on the regular fibre Σ corresponds to a map

$$q_0^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

with the property that $q_0^+(x+y) = q_0^+(x) + q_0^+(y) + x \cdot y \in \mathbb{Z}_2$ for all $x, y \in H_1(\Sigma; \mathbb{Z}_4)$. We show that we can choose q_0^+ to be the restriction of a Pin⁺-structure defined on the whole fibration if and only if the following holds.

THEOREM 2. The total space of the Lefschetz fibration $f: X \to D^2$ with vanishing cycles $c_1, \ldots, c_n \subset \Sigma$ supports a Pin^+ -structure if and only if Σ supports a Pin^+ -structure and

$$rank(C) = rank(C \mid A)$$

where C is the \mathbb{Z}_2 -reduction of the $n \times r$ matrix (c_{ij}) whose rows are given by the components of $[c_1], \ldots, [c_n] \in H_1(\Sigma; \mathbb{Z}_4) \cong \mathbb{Z}^r$ with respect to a fixed basis e_1, \ldots, e_r of the free \mathbb{Z}_4 -module $H_1(\Sigma; \mathbb{Z}_4)$ and A is the column vector with entries $A_i = 1 + q_0^+([c_i]) \in \mathbb{Z}_2$ for $i = 1, \ldots, n$.

A key tool in the proof of the above result is Lemma 2, in which we show that Pin^+ -structures on X correspond to maps

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

such that $q^+(x+y) = q^+(x) + q^+(y) + x \cdot y$ for every $x, y \in H_1(\Sigma; \mathbb{Z}_4)$ and $q^+([c]) = 1$ on every vanishing cycle $c \subset \Sigma$. The correspondence is also in this case equivariant with respect to the $H^1(X; \mathbb{Z}_2)$ -action.

We remark that the study of Pin⁺ and Pin⁻-structures on non-orientable 4-manifolds is essentially reduced to the case of non-orientable Lefschetz fibrations over the 2-disk due to the following result, which is a straightforward consequence of [19, Theorem 1.1].

Theorem 3 (Miller-Özbağcı [19]). Let X be a closed non-orientable smooth 4-manifold. There is a decomposition

$$X = L \cup_{\partial} H$$

where L is a non-orientable Lefschetz fibration over the 2-disk and H is a non-orientable 1-handlebody.

In particular, the proof of [19, Theorem 1.1] shows an explicit way of endowing a (possibly non-orientable) 2-handlebody with the structure of a Lefschetz fibration over the 2-disk, see also [14] and [8]. Moreover, a 4-manifold $X = L \cup_{\partial} H$ as in Theorem 3 admits a Pin^{\pm}-structure if and only if L does. This latter conditions can be checked using Theorem 1 and Theorem 2.

In Section 6 we provide explicit examples in which, starting from a handlebody decomposition of a non-orientable 4-manifold, we endow its 2-handlebody with the structure of a Lefschetz fibration over the 2-disk. We then apply our results in order to check whether such 4-manifolds support a Pin⁻ or a Pin⁺-structure. In the case they do, we find all the possible structures by looking at the $H^1(X, \mathbb{Z}_2)$ -action on the associated quadratic enhancements on the regular fibres. The non-orientable handlebodies under consideration describe the three 4-manifolds \mathbb{RP}^4 , $S^2 \times \mathbb{RP}^2$ and $S^2 \times \mathbb{RP}^2$ and can be found in [2], [4], [18] and [25]. In particular, that there are two non-orientable S^2 -bundles over \mathbb{RP}^2 and we denote by $S^2 \times \mathbb{RP}^2$ the non-trivial one, see [4, Section 2.3].

Section 7 is devoted of the study of necessary and sufficient conditions for the existence of a Pin^{\pm} -structure on a Lefschetz fibration over the 2-sphere. This is the non-orientable version of [23, Theorem 1.3].

THEOREM 4. Let $f: X \to S^2$ be a (possibly non-orientable) Lefschetz fibration with regular fibre Σ . Then X supports a Pin^- -structure if and only if $X \setminus \nu(\Sigma)$ does and there exists a smoothly embedded surface $\sigma \subset X$ which is dual to Σ in $H_2(X; \mathbb{Z}_2)$ and such that

$$[\sigma]^2 + (w_1(\sigma) \cup w_1(\nu(\sigma))([\sigma]) + w_1^2(\nu(\sigma)) = 0 \in \mathbb{Z}_2.$$

Analogously, X supports a Pin^+ -structure if and only if $X \setminus \nu(\Sigma)$ does and there exists a smoothly embedded surface $\sigma \subset X$ which is dual to Σ in $H_2(X; \mathbb{Z}_2)$ and such that

$$\chi(\sigma) + [\sigma]^2 + (w_1(\sigma) \cup w_1(\nu(\sigma)))([\sigma]) = 0 \in \mathbb{Z}_2.$$

In analogy to the Spin case, one can define the Pin⁺ and Pin⁻ cobordism groups in each dimension, see [17, Section 1]. As sets, they consist of the equivalence classes of closed n-dimensional smooth manifolds with a fixed Pin⁺ (resp. Pin⁻)-structure, which are identified whenever they co-bound a Pin⁺ (resp. Pin⁻) (n+1)-manifold. The group operation is the one induced by the disjoint union of manifolds. We remark that Pin⁺ and Pin⁻ cobordism groups are drastically different. In particular, the 4-dimensional Pin⁺-cobordism group is

$$\Omega_4^{\mathrm{Pin}^+} \cong \mathbb{Z}_{16}$$

(see [10, Section 2] and [17, Section 3]) and the η -invariant modulo $2\mathbb{Z}$ of the twisted Dirac operator associated to a Pin⁺-structure on a 4-manifold is a complete invariant for Pin⁺-cobordism classes, see [24]. In particular, there are instances in which such invariant can detect exotic behaviours in the non-orientable 4-dimensional realm, in the sense that there are examples of non-orientable Pin⁺ 4-manifolds which share the same homeomorphism type but define two different classes in $\Omega_4^{\text{Pin}^+}$ and hence cannot be diffeomorphic. To the best of our knowledge, following a suggestion in [11], this was shown for the first time in [24], where the η -invariant of Pin⁺-structures is used to detect the exotic \mathbb{RP}^4 constructed in [5]. We remark that another exotic \mathbb{RP}^4 is constructed in [9] and its η -invariant is computed in [21]. An analogous approach has then been used also in [4] and [25]. On the other hand

$$\Omega_4^{\mathrm{Pin}^-} = 0$$

(see again [3, Theorem 5.1] and [17, Section 3]) and hence it is not possible to find Pin⁻ exotic 4-manifolds using this strategy. In particular, the study of Pin⁺-structures on 4-manifolds could potentially lead to better understanding of exotic behaviours in the non-orientable realm and this fact is one of the main motivations for this note. In particular, in Section 5 we show that if $X = L \cup H$ is a closed 4-manifold with a decomposition as in the statement of Theorem 3, then the datum of a Pin⁺-structure on X is equivalent to the datum of a map

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

such that $q^+(x+y) = q^+(x) + q^+(y) + x \cdot y$ for all $x, y \in H_1(\Sigma; \mathbb{Z}_4)$ taking value $1 \in \mathbb{Z}_2$ on all the vanishing cycles of L, where Σ denotes a regular fibre. We leave the reader with the following question.

Question: Is there a formula for the η -invariant modulo $2\mathbb{Z}$ of a Pin⁺-structure on X in terms of the corresponding map $q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$?

Section 2 contains a short discussion on how to check the vanishing of w_2 and w_1^2 in terms of the embeddings of homologically essential surfaces inside the ambient 4-manifold. In Section 7 we study Lefschetz fibrations over the 2-sphere, 8 is devoted to a brief discussion on the 3-dimensional case, while Section 9 contains a characterization of Pin⁺-structures on vector bundle which resembles Milnor's characterization of Spin-structures, see [20, Alternative definitions 2].

All manifolds in this note are smooth. We will not assume our 4-manifolds to be orientable, unless otherwise stated.

2. Pin[±]-structures and embedded surfaces

For every $n \in \mathbb{N}$, there are two distinct central extensions

$$Pin^{\pm}(n) \to O(n)$$
 (1)

which are topologically a disjoint union $\mathrm{Spin}(n) \cup \mathrm{Spin}(n)$. In the orientable setting, it is known that the existence of a Spin-structure on a real vector bundle ξ on a

manifold X is equivalent to the vanishing of $w_2(\xi) \in H^2(X, \mathbb{Z}_2)$, where w_i is the ith Stiefel-Whitney class of ξ . In the case in which X is 4-dimensional, this equivalent to having an even intersection form, provided that $H^2(X; \mathbb{Z})$ has no 2-torsion [12, Corollary 5.7.6]. This can be shown via the Wu formula, which states that for any $a \in H_2(X; \mathbb{Z}_2)$ one has

$$\langle w_2(X), a \rangle = a^2 \text{ modulo } 2$$
 (2)

where a^2 denotes the algebraic count of self-intersections of a surface in X representing a, see [12, Proposition 1.4.18]. In a similar way, there are cohomological obstructions to the existence of Pin^+ and Pin^- -structures on the tangent bundle of a manifold, namely the vanishing of $w_2(X)$ and of $(w_2 + w_1^2)(X)$ respectively, see [17, Lemma 1.3]. Moreover, both Pin^+ and Pin^- -structures (when they do exist) are torsors over $H^1(X,\mathbb{Z}_2)$, meaning that there is a free and transitive action of $H^1(X;\mathbb{Z}_2)$ over the sets of such geometric structures. However, the Wu formula does not hold when X is non-orientable, but one can still interpret the vanishing of $w_2(X)$ and $(w_2 + w_1^2)(X)$ in terms of properties of embedded surfaces. Indeed, for any 4-manifold X and $a \in H_2(X;\mathbb{Z}_2)$ there is a (possibly non-orientable) smoothly embedded surface $\Sigma \subset X$ representing a (see [12, Remark 1.2.4]) and one can show that

$$\langle w_2(X), a \rangle = \chi(\Sigma) + (w_1(\Sigma) \smile w_1(\nu(\Sigma)))([\Sigma]) + [\Sigma]^2 \text{ modulo } 2.$$
 (3)

Since the tangent bundle of a 4-manifold supports a Pin⁺-structure if and only if $w_2(X)$ vanishes, this is equivalent to checking that the evaluation (3) is trivial on any homology class $a \in H_2(X; \mathbb{Z}_2)$.

On the other hand, the obstruction for Pin⁻-structures to exist is $(w_2 + w_1^2)(X)$ [17, Lemma 1.3] so, in order to understand when such structures exist, we need to compute $w_1^2(X)$ and one can easily show that

$$\langle w_1^2(X), [\Sigma] \rangle = w_1^2(\Sigma) + w_1^2(\nu(\Sigma)).$$
 (4)

EXAMPLE 1 (\mathbb{RP}^4). The 4-dimensional real projective space \mathbb{RP}^4 is an example of non-orientable 4-manifold supporting two distinct Pin^+ -structures but no Pin^- -structure. We have that $H_2(\mathbb{RP}^4; \mathbb{Z}_2) \cong \mathbb{Z}_2$ is generated by the homology class of \mathbb{RP}^2 . Moreover, the tubular neighbourhood $\nu(\mathbb{RP}^2) \subset \mathbb{RP}^4$ is diffeomorphic to the twisted 2-disk bundle $D^2 \times \mathbb{RP}^2$ defined as the quotient of $D^2 \times S^2$ via the involution

$$D^2 \times S^2 \to D^2 \times S^2$$

 $(x,y) \mapsto (\rho_{\pi}(x), -y)$

where ρ_{π} denotes the rotation of S^2 of π radians about a fixed axis. One can show that such a quotient is diffeomorphic to

$$D^2 \widetilde{\times} \mathbb{RP}^2 \cong (D^2 \times D^2) \cup_{\varphi} (D^2 \times Mb)$$
 (5)

where Mb denotes the Möbius strip and φ is the map

$$\varphi: D^2 \times S^1 \to D^2 \times S^1, \quad (x,\theta) \mapsto (\rho_{\theta}(x), \theta)$$

and $\rho_{\theta}: D^2 \to D^2$ denotes the rotation of the 2-disk of angle θ with respect to the origin, see [1, Section 0] and [4, Example 7].

By (3) we have that

$$\langle w_2(\mathbb{RP}^4), [\mathbb{RP}^2] \rangle = \chi(\mathbb{RP})^2 + (w_1(\mathbb{RP}^2) \cup w_1(\nu(\mathbb{RP}^2)))([\mathbb{RP}^2]) + [\mathbb{RP}^2]^2 = 0 \in \mathbb{Z}_2$$

since $\chi(\mathbb{RP}^2) = 1 = [\mathbb{RP}^2]^2$ and $w_1(\nu(\mathbb{RP}^2)) = 0$, while (4) implies that

$$\langle w_1(\mathbb{RP}^4)^2, [\mathbb{RP}^2] \rangle = w_1^2(\mathbb{RP}^2) + w_1^2(\nu(\mathbb{RP}^2)) = 1 + 0 = 1 \in \mathbb{Z}_2$$

where $w_1^2(\mathbb{RP}^2)$ is computed as the self-intersection of a loop in \mathbb{RP}^2 whose \mathbb{Z}_2 -homology class generates $H_1(\mathbb{RP}^2; \mathbb{Z}_2)$.

3. Non-orientable Lefschetz fibrations

Since the conditions 3 and 4 are not immediate to check in the non-orientable setting and depend heavily on the embeddings of the homologically essential surfaces, in the following sections we develop another way to combinatorially understand when a 4-manifold is Pin⁺ or Pin⁻ by means of a specific kind of decomposition. To do this, we will need the notion of non-orientable Lefschetz fibration over the 2-disk.

We start by recalling the definition of Lefschetz fibration. Our main reference for this topic in the non-orientable realm is [19].

Definition 1. Let X be a compact, connected 4-manifold and let B be a compact, connected surface, both with possibly non-empty boundary. A Lefschetz fibration is a smooth submersion

$$f: X \to B$$

away from finitely many points in the interior of B such that each fibre contains at most one critical point and f is a fibre bundle with surface fibre on the complement of the critical values. Moreover, around each critical point, we require f to conform to the local complex model

$$(z_1, z_2) \to z_1 z_2.$$

REMARK 1. If X is non-orientable and B is oriented, each regular fibre is a non-orientable surface. In this case it makes no sense to ask for the orientation of the local model around a critical point to be compatible to the one of X.

In the following, we will just consider the case in which $B=D^2$ and Σ is the regular fibre. It is possible to show that every Lefschetz fibration

$$f:X\to D^2$$

is obtained from the product one

$$\Sigma \times D^2 \to D^2$$

by gluing 4-dimensional 2-handles along $\Sigma \times \partial D^2$ with framing ± 1 with respect to the fibre framing. The attaching curves of such 2-handles are push-offs in distinct fibres of simple closed curves inside Σ , which are called the vanishing cycles of the fibration and are denoted in the following by $c_1, \ldots, c_n \subset \Sigma$. Moreover, $\langle w_1(X), [c_i] \rangle = 0$ for all $i = 1, \ldots, n$ and hence the tubular neighbourhood of these attaching regions is necessarily diffeomorphic to a product of S^1 with the unit interval. We will call two-sided all curves with this property.

4. Pin⁻-structures on 4-manifolds via Lefschetz fibrations

It is well known that the datum of a Spin-structure over an orientable surface is equivalent to the one of a quadratic enhancement

$$s: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_2$$

satisfying the condition

$$s(x+y) = s(x) + s(y) + x \cdot y$$

for all $x, y \in H_1(\Sigma; \mathbb{Z}_2)$, where \cdot denotes the \mathbb{Z}_2 -intersection number between cycles, see [16] and [23]. A geometric interpretation of this algebraic object can be given as follows. The 1-dimensional Spin-cobordism group is $\Omega_1^{\mathrm{Spin}} \cong \mathbb{Z}_2$ [20] and every closed simple curve $\gamma \subset \Sigma$ in a Spin surface inherits a Spin-structure. In particular, if s is the quadratic enhancement associated to the fixed Spin-structure on Σ , then $s([\gamma]) = 0$ if and only if the induced Spin-structure on γ is the one bounding the unique Spin-structure on the 2-disk.

It is possible to give a similar description for Pin⁻ structures on (not necessarily orientable) surfaces, as shown by the following result.

Theorem 5 (Kirby-Taylor, [17]). There is a 1:1 correspondence between Pin^- -structures on a surface Σ and quadratic enhancements

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

with the property that

$$q^{-}(x+y) = q^{-}(x) + q^{-}(y) + 2 x \cdot y$$

for any $x, y \in H_1(\Sigma; \mathbb{Z}_2)$.

In particular, if $\gamma \subset \Sigma$ is a simple closed curve, then $q^-([\gamma])$ is even if and only if γ is two-sided and this is the case whenever γ is a vanishing cycle for a Lefschetz fibration. Moreover, recall that the 1-dimensional Pin⁻-cobordism group is $\Omega_1^{\text{Pin}^-} \cong \mathbb{Z}_2$ (see [3, Theorem 5.1] and [17, Section 0]) and every closed simple curve $\gamma \subset \Sigma$ in a Pin⁻ surface inherits a Pin⁻ structure. We have that $q^-([\gamma]) = 0$ if and only if γ inherits the bounding Pin⁻-structure.

In order to prove Theorem 1, we will need the following Lemma.

LEMMA 1. Let $f: X \to D^2$ be a Lefschetz fibration with regular fibre Σ and vanishing cycles $c_1, \ldots, c_n \subset \Sigma$. There is a natural one to one correspondence between the set of Pin⁻-structures on X and the set of quadratic enhancements

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

such that $q^-(x+y) = q^-(x)+q^-(y)+2x\cdot y$ for all $x,y\in H_1(\Sigma;\mathbb{Z}_2)$ and $q^-([c_i])=2$ for all $i=1,\ldots,n$. Moreover, such correspondence is equivariant with respect to the free and transitive action of $H^1(X;\mathbb{Z}_2)$.

Proof. The existence of a Pin⁻-structure on X is equivalent to the existence of a Pin⁻-structure on Σ that extends to the 2-handles. This follows from the fact that any Pin⁻-structure on X induces by restriction a Pin⁻ structure on a (trivial) tubular neighbourhood $\nu(\Sigma) \cong \Sigma \times D^2$ and all the Pin⁻-structures on $\Sigma \times D^2$ are pull-backs of the ones on Σ via the projection map $\Sigma \times D^2 \to \Sigma$, see also the proof of [23, Theorem 1.1]. Since such 2-handles are attached to $\Sigma \times \partial D^2$ with relative odd framing, this corresponds to a Pin⁻-structure on Σ restricting to the non-bounding one on every vanishing cycle. The conclusion follows from Theorem 5.

The free and transitive action of $H^1(X; \mathbb{Z}_2)$ on the set of Pin⁻-structures on X can be seen as follows. In [17, Section 3], it is shown that $H^1(\Sigma; \mathbb{Z}_2)$ acts on the set of Pin⁻-structures of the surface Σ by

$$q_{\gamma}^{-}(x) = q^{-}(x) + 2 \cdot \gamma(x) \tag{6}$$

for all $\gamma \in H^1(\Sigma; \mathbb{Z}_2)$ and $x \in H_1(\Sigma; \mathbb{Z}_2)$. In particular, Pin⁻-structures on Σ equivariantly correspond to quadratic enhancements and the action (6) is well defined on $H^1(X; \mathbb{Z}_2) \subset H^1(\Sigma; \mathbb{Z}_2) \cong H^1(X; \mathbb{Z}_2) \oplus K$, where $K \subset H^1(\Sigma; \mathbb{Z}_2)$ is the kernel of the map induced by the inclusion $\Sigma \subset X$.

In light of this fact, it is possible to characterize the existence of Pin⁻-structures on non-orientable Lefschetz fibrations over the 2-disk in terms of the \mathbb{Z}_2 -homology classes of the vanishing cycles.

Proof of Theorem 1. By Lemma 1, X does not support any Pin⁻-structure if and only if it is not possible to build a map

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

such that $q^-(x+y) = q^-(x) + q^-(y) + 2x \cdot y$ for all $x, y \in H_1(\Sigma; \mathbb{Z}_2)$ and such that $q^+([c_i]) = 2$ for all $i = 1, \ldots, n$. The remaining part of the proof is essentially the same as the proof of [23, Theorem 1.1]. We will now sketch it for the convenience of the reader. Let $V \subset H_1(\Sigma; \mathbb{Z}_2)$ be the vector subspace generated by the classes of the vanishing cycles. Notice that any given enhancement q^- on V can be extended to the whole $H_1(\Sigma; \mathbb{Z}_2)$ by setting $q^- = 0$ on a basis u_1, \ldots, u_k of an orthogonal vector subspace and using the relation (6) to define it on the vectors of the form $\sum_j u_{i_j} + v$, where $v \in V$. In particular, in order to define a Pin⁻-structure on X, one needs to find a quadratic enhancement $q^- : V \to \mathbb{Z}_4$ which takes value 2 on the class of any vanishing cycle. Let v_1, \ldots, v_r be a basis of V represented by vanishing cycles and let $V_i = \langle v_1, \ldots, v_i \rangle$ for $i = 1, \ldots, r$. We then want to define q^- inductively on each V_i as in the proof of [23, Theorem 1.1], setting $q^-(v_i) = 2$ at each step. One then notices that things go wrong if and only if there are k classes v_{i_1}, \ldots, v_{i_k} such that their sum $v_0 = \sum_{j=1}^k v_{i_j} \in H_1(\Sigma; \mathbb{Z}_2)$ is again represented by

a vanishing cycle and $q^-(v_0) \neq 2 \in \mathbb{Z}_4$. This implies that $q^-(v_0) = 0 \in \mathbb{Z}_4$, being v_0 is represented by a curve with trivial tubular neighbourhood. Since by construction we had that $q^-(v_{i_j}) = 2$ for $j = 1, \ldots, k$, using (6) the condition $q^-(q_0) = 0 \in \mathbb{Z}_4$ translates into

$$q^{-}(v_{0}) = \sum_{j=1}^{k} q^{-}(v_{i_{j}}) + 2 \cdot \left(\sum_{1 \leq i_{n} \leq i_{m} \leq k} v_{i_{n}} \cdot v_{i_{m}}\right) = 2 \cdot \left(k + \sum_{1 \leq i_{n} \leq i_{m} \leq k} v_{i_{n}} \cdot v_{i_{m}}\right) = 0 \in \mathbb{Z}_{4}.$$

The conclusion then follows by noticing that $2 \cdot x = 0 \in \mathbb{Z}_4$ if and only if $x = 0 \in \mathbb{Z}_2$.

Note that, if we restrict to orientable surfaces, there is a natural map

$$\Omega_1^{\mathrm{Spin}} \to \Omega_1^{\mathrm{Pin}^-}$$

giving a group isomorphism, see [17, Theorem 2.1]. At the level of the associated quadratic forms, the enhancement

$$s: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_2$$

corresponds to

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

given by

$$q^-(x) = 2 \cdot s(x)$$

for every $x \in H_1(\Sigma; \mathbb{Z}_2)$, where 2· denotes the inclusion $\mathbb{Z}_2 \subset \mathbb{Z}_4$. In particular, the condition on the vanishing cycles we found in Theorem 1 coincides with the one in [23, Theorem 1.1] and this is due to the fact that, when restricting to orientable Lesfschetz fibrations over D^2 , being Spin coincides with being Pin⁻.

5. Pin⁺-structures on Lefschetz fibrations over the 2-disk

As a consequence of [7, Theorem A], there is a canonical affine bijective correspondence between Pin^+ -structures on a surface Σ and the set of maps

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2 \tag{7}$$

with the property that

$$q^{+}(x+y) = q^{+}(x) + q^{+}(y) + x \cdot y \tag{8}$$

for every $x, y \in H_1(\Sigma; \mathbb{Z}_4)$, where $x \cdot y \in \mathbb{Z}_2$ denotes the algebraic intersection modulo 2 between representatives of the \mathbb{Z}_2 -reductions of the classes $x, y \in H_1(\Sigma; \mathbb{Z}_4)$.

Recall that the 1-dimensional Pin⁺-cobordism group is

$$\Omega_1^{\mathrm{Pin}^+} \cong \{0\}$$

see [17, Section 3]. However, S^1 has two distinct Pin⁺-structures. These correspond to two different trivializations of the direct sum $TS^1 \oplus \varepsilon$ of the tangent bundle of

 S^1 with a trivial line bundle, where the first one is given by the restriction to S^1 of a trivialization of the tangent bundle TD^2 of the 2-disk and the second one comes from the Lie group framing of S^1 . In particular, one can show that such structures have the property that they respectively bound the 2-disk and the Möbius strip, see [17, Section 1]. A close look at the construction of q^+ starting from a Pin⁺-structure on Σ shows that $q^+([\gamma]) = 0$ if the induced Pin⁺-structure on γ is the one bounding a 2-disk, while $q^+([\gamma]) = 1$ if it is the one bounding the Möbius strip, see [17]. Note that, given any two maps q_1^+, q_2^+ corresponding to Pin⁺-structures on Σ , their difference can be regarded as an element

$$q_1^+ - q_2^+ \in \operatorname{Hom}(H_1(\Sigma; \mathbb{Z}_4), \mathbb{Z}_2).$$

The proof of Theorem 2 is based on the following Lemma.

LEMMA 2. Let $f: X \to D^2$ be a Lefschetz fibration with regular fibre Σ and vanishing cycles $c_1, \ldots, c_n \subset \Sigma$. There is a natural bijection between the set of Pin^+ -structures on X and the set of quadratic enhancements

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

such that $q^+(x+y) = q^+(x) + q^+(y) + x \cdot y$ for all $x, y \in H_1(\Sigma; \mathbb{Z}_4)$ and $q^+([c_i]) = 1$ for all i = 1, ..., n. Moreover, such correspondence is equivariant with respect to the free and transitive action of $H^1(X; \mathbb{Z}_2)$.

Proof. As is the Pin⁻ case, the existence of a Pin⁺-structure on X is equivalent to the existence of a Pin⁺-structure on Σ that extends to the 2-handles. Since such 2-handles are attached to $\Sigma \times \partial D^2$ with relative odd framing, this corresponds to a Pin⁺-structure on Σ restricting to the one bounding the Möbius strip on every vanishing cycle. The conclusion follows from [7].

In the Pin⁺-case, $H^1(\Sigma; \mathbb{Z}_2)$ acts on the set of Pin⁺-structures of the surface Σ by

$$q_{\gamma}^{+}(x) = q^{+}(x) + \gamma(x) \tag{9}$$

for all $\gamma \in H^1(\Sigma; \mathbb{Z}_2)$ and $x \in H_1(\Sigma; \mathbb{Z}_4)$, see [7]. In particular, Pin^+ -structures on Σ equivariantly correspond to quadratic enhancements and the action (9) is well defined on $H^1(X; \mathbb{Z}_2) \subset H^1(\Sigma; \mathbb{Z}_2) \cong H^1(X; \mathbb{Z}_2) \oplus K$, where $K \subset H^1(\Sigma; \mathbb{Z}_2)$ is the kernel of the map induced by the inclusion $\Sigma \subset X$.

Let $f: X \to D^2$ be a Lefschetz fibration over the 2-disk with surface fibre Σ . Let $c_1, \ldots, c_n \subset \Sigma$ be its vanishing cycles. Note that one can find simple closed curves e_1, \ldots, e_g inducing a basis of $H_1(\Sigma; \mathbb{Z}_2) \cong \mathbb{Z}_2^g$. From now on, we will assume that Σ has a Pin⁺-structure, since this is a necessary condition for X to be a Pin⁺-manifold. In particular, this means that Σ is not a closed non-orientable surface of odd Euler characteristic. Let

$$q_0^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2 \tag{10}$$

be the quadratic enhancement associated to a fixed Pin⁺-structure on Σ and let $c_j = \sum_{i=1}^r c_{ji}[e_i]$. This gives the setting of Theorem 2, of which we now provide a proof.

Proof of Theorem 2. Lemma 2 implies that X has a Pin^+ -structure if and only if there is a map

$$q^+: H_1(\Sigma, \mathbb{Z}_4) \to \mathbb{Z}_2$$

such that $q^+(x+y) = q^+(x) + q^+(y) + x \cdot y$ for all $x, y \in H_1(\Sigma; \mathbb{Z}_4)$ and $q^+([c_i]) = 1$ for all $i = 1, \ldots, n$. In particular, every such q^+ is necessarily of the form $q^+ = q_0^+ + l$ for some linear map $l = \sum_{i=1}^r \lambda_i [e^i]$, where $[e^i] \in H^1(\Sigma; \mathbb{Z}_2)$ denotes the dual element to $[e_i] \in H_1(\Sigma; \mathbb{Z}_2)$. In particular, this reduces the problem to finding $l = \sum_{i=1}^r \lambda_i e^i$ such that for every $j = 1, \ldots, n$ we have

$$q^{+}([c_{j}]) = q_{0}^{+}([c_{j}]) + l([c_{j}]) = q_{0}^{+}([c_{j}]) + \sum_{i=1}^{r} c_{ji}\lambda_{i} = 1.$$

The conclusion follows from Rouché-Capelli's Theorem [22, Theorem 2.38].

REMARK 2. The proof of Theorem 1 as well as the one of [23, Theorem 1.1] rely on the fact that $H_1(\Sigma; \mathbb{Z}_2)$ is a vector space. This is why we cannot adopt the same strategy for Theorem 2, since $H_1(\Sigma; \mathbb{Z}_4)$ is just a \mathbb{Z}_4 -module.

6. Some examples

In this section, we show how to apply the results proven so far. In particular, starting from the handlebody decomposition of some small non-orientable 4-manifold M, we endow the union of handles up to index 2 with the structure of a Lefschetz fibration over the 2-disk, following the procedure explained in the proof of [19, Theorem 1.1]. At this point, we apply Theorem 1 and Theorem 2 to understand whether or not M admits a Pin^+ or a Pin^- -structure, describing the action of $H^1(M; \mathbb{Z}_2)$ in terms of the action of a subgroup of $H^1(\Sigma; \mathbb{Z}_2)$ on the quadratic enhancements on the non-singular fibre Σ of the Lefschetz fibration. We refer the reader to [1, Section 1.5] for the conventions and backgound on Kirby diagrams of non-orientable 4-manifolds, see also [2], [4, Section 2.1], [6] and [18]. The procedure we describe in this section applies to any closed non-orientable 4-manifold represented by means of a Kirby diagram.

EXAMPLE 2 (\mathbb{RP}^4). Figure 1 represents a Kirby diagram for the standard handlebody decomposition of \mathbb{RP}^4 with a single k-handle for each $k=0,\ldots,4$. In particular, the union of all handles up to index 2 corresponds to a tubular neighbourhood $\nu(\mathbb{RP}^2) \cong D^2 \times \mathbb{RP}^2$ of \mathbb{RP}^2 (see [2, Section 0] and [4, Section 2.5]) and \mathbb{RP}^4 is the result of attaching a 3-handle and a 4-handle to this handlebody. Recall that 3-handles and 4-handles need not be drawn by [6] and [18], see [4, Example 7].

The union of handles up to index 2 can be seen as a Lefschetz fibration over the 2-disk with the Möbius band Mb as fibre and a single vanishing cycle c_1 , given by the projection of the (1,0)-framed 2-handle, see Figure 2.

A Pin^+ -structure on Mb extending to \mathbb{RP}^4 is given by the quadratic enhancement

$$q^+: H_1(\mathrm{Mb}; \mathbb{Z}_4) \to \mathbb{Z}_2$$
 (11)

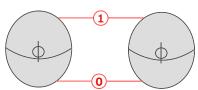


Figure 1. A Kirby diagram of \mathbb{RP}^4 .

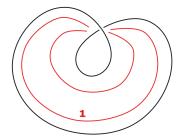


Figure 2. The Lefschetz fibration associated to the 2-handlebody of \mathbb{RP}^4 .

defined by the condition $q^+([e_1]) = 1$, where $[e_1]$ is the generator of $H_1(Mb; \mathbb{Z}_4) \cong \mathbb{Z}_4$ represented by the core of the band. Indeed, $[c_1] = 2[e_1]$ and hence

$$q^+([c_1]) = q^+(2[e_1]) = q^+([e_1]) + q^+([e_1]) + e_1^2 = 1 \in \mathbb{Z}_2.$$

The other Pin⁺-structure

$$q_x^+(y) = q^+(y) + x \cdot y$$
 for all $y \in H_1(\mathrm{Mb}; \mathbb{Z}_4)$

is obtained by acting on q^+ by the cohomology class dual to $[e_1]$, where $x \cdot y$ indicates the intersection number between x and the \mathbb{Z}_2 -reduction of y. Note that the condition $q_x^+([c_1]) = 1$ is still satisfied.

On the other hand, if \mathbb{RP}^4 supported a Pin⁻-structure, then there would be a quadratic enhancement

$$q^-: H_1(\mathrm{Mb}; \mathbb{Z}_2) \to \mathbb{Z}_4$$

satisfying $q^{-}([c_1]) = 2$. But this is impossible, since it would imply that

$$2 = q^{-}([c_1]) = q^{-}(2[e_1]) = q^{-}(0) = 0 \in \mathbb{Z}_4.$$

EXAMPLE 3 $(S^2 \times \mathbb{RP}^2)$. The non-orientable 4-manifold $S^2 \times \mathbb{RP}^2$ is obtained as a quotient of $S^2 \times S^2$ under the orientation-reversing involution

$$\iota: S^2 \times S^2 \to S^2 \times S^2$$

 $(x,y) \mapsto (-x, \rho_{\pi}(y))$

where $\rho_{\theta}: S^2 \to S^2$ is the rotation of S^2 of angle θ about a fixed axis for any $\theta \in S^1$, see [15, Chapter 12]. Moreover, it can also be seen as the result of a Gluck twist on

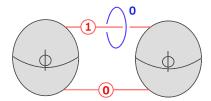


Figure 3. A Kirby diagram of $S^2 \times \mathbb{RP}^2$.

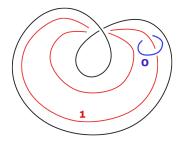


Figure 4. Lefschetz fibration associated to the 2-handlebody of $S^2 \times \mathbb{RP}^2$.

the product $S^2 \times \mathbb{RP}^2$ along a 2-sphere fibre, see [4, Lemma 1]. In particular, there is a decomposition

$$S^2 \cong \mathbb{RP}^2 = (S^2 \times D^2) \cup_{\varphi} (S^2 \times \mathrm{Mb})$$

where the gluing map is

$$\varphi: S^1 \times S^1 \to S^2 \times S^2$$

 $(x, \theta) \mapsto (\rho_{\theta}(x), \theta).$

A Kirby diagram of this manifold is given in Figure 3, see [2, Section 0], [4, Figure 1], [18] and [25, Section 4.1]. It is obtained by considering $S^2 \times \mathbb{RP}^2$ as the double of $D^2 \times \mathbb{RP}^2$. Figure 4 represents the projection of the attaching circles of the 2-handles onto the page of the trivial Lefschetz fibration given by the union of handles up to index one. In order to endow the 2-handlebody of $S^2 \times \mathbb{RP}^2$ with the structure of a Lefschetz fibration over D^2 , we need to stabilize the page and add vanishing cycles as in Figure 5, so that the attaching spheres of the 2-handles can be isotoped into different pages and have the right framing. This is Harer's trick and is explained in the non-orientable setting in [19, Proof of Theorem 1.1], see also [14] and [8, Theorem 2.1]. At the level of Kirby diagrams, this corresponds to adding canceling pairs of 1- and 2-handles.

In Figure 6 we fix a set of simple closed loops e_1, \ldots, e_6 inducing a homology basis of the page Σ of this new fibration. The quadratic enhancement

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

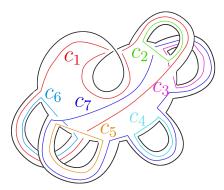


Figure 5. The 2-handlebody of $S^2 \times \mathbb{RP}^2$ as a Lefschetz fibration over D^2 .

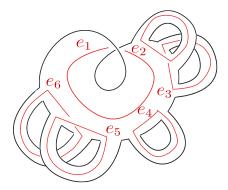


Figure 6. Curves representing a basis of $H_1(\Sigma)$.

defined by the condition $q^+([e_i]) = 1$ for every i = 1, ..., 6 has the property that $q^+([c_i]) = 1$ for all the vanishing cycles $c_1, ..., c_7$ and hence it determines a Pin⁺-structure on $S^2 \cong \mathbb{RP}^2$. The other Pin⁺-structure can be found by acting on q^+ with $[e_1] \in H_1(\Sigma; \mathbb{Z}_2)$.

On the other hand, $S^2 \cong \mathbb{RP}^2$ does not support a Pin⁻-structure. Indeed, if this was the case, we could find a quadratic enhancement

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

such that $q^{-}([e_i]) = 2$ for all i = 1, ..., 7 and this would imply that

$$2 = q^{-}([c_1]) = q^{-}([e_2 + e_6]) = q^{-}([e_2]) + q^{-}([e_6]) = q^{-}([c_2]) + q^{-}([c_6]) = 2 + 2$$
$$= 0 \in \mathbb{Z}_4$$

a contradiction.

EXAMPLE 4 $(S^2 \times \mathbb{RP}^2)$. A Kirby diagram of the product 4-manifold $S^2 \times \mathbb{RP}^2$ is given in Figure 7, see [2, Section 0], [4, Figure 1], [18] and [25, Section 4.1]. It is obtained by considering $S^2 \times \mathbb{RP}^2$ as the double of $D^2 \times \mathbb{RP}^2$. Figure 8 shows

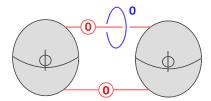


Figure 7. A Kirby diagram of $S^2 \times \mathbb{RP}^2$.

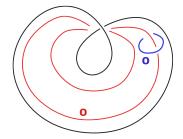


Figure 8. Lefschetz fibration associated to the 2-handlebody of $S^2 \times \mathbb{RP}^2$.

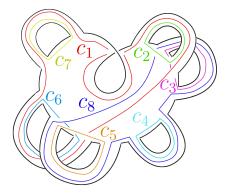


Figure 9. The 2-handlebody of $S^2 \times \mathbb{RP}^2$ as a Lefschetz fibration over D^2 .

the projection of the attaching circles of the 2-handles onto the page of the trivial Lefschetz fibration given by the union of handles up to index one.

We use Harer's trick again (see [19, Proof of Theorem 1.1], [14] and [8, Theorem 2.1]) and show that the union of the handles up to index 2 in the fixed decomposition of $S^2 \times \mathbb{RP}^2$ is given by the surface Σ and by the vanishing cycles c_1, \ldots, c_8 in Figure 9. Note that, with respect to the case of $S^2 \times \mathbb{RP}^2$, we need to stabilize the page one additional time in order to adjust the framing of the red coloured 2-handle.

In Figure 10 we again fix a set of loops $e_1, \ldots, e_7 \subset \Sigma$ inducing a first homology basis of the page.

The quadratic enhancement

$$q^-: H_1(\Sigma; \mathbb{Z}_2) \to \mathbb{Z}_4$$

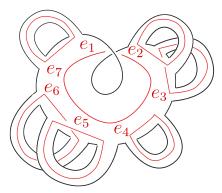


Figure 10. Curves representing a basis of $H_1(\Sigma)$.

defined by the condition $q^-([e_i]) = 2$ for every i = 1, ..., 7 has the property that $q^-([c_i]) = 2$ for all the vanishing cycles $c_1, ..., c_8$ and hence it determines a Pin⁻structure on $S^2 \times \mathbb{RP}^2$. The other Pin⁻-structure can be found by acting on q^- with $[e_1] \in H_1(\Sigma; \mathbb{Z}_2)$.

On the other hand, $S^2 \times \mathbb{RP}^2$ can not support a Pin⁺-structure. Indeed, if this was the case we could find a quadratic enhancement

$$q^+: H_1(\Sigma; \mathbb{Z}_4) \to \mathbb{Z}_2$$

such that $q^+([c_i]) = 1$ for all i = 1, ..., 8 and this would imply that

$$1 = q^{+}([c_{1}]) = q^{+}([2e_{1} + e_{2} + e_{6} + e_{7}]) =$$

$$2q^{+}([e_{1}]) + e_{1}^{2} + q^{+}([e_{2}]) + q^{+}([e_{6}]) + q^{+}([e_{7}]) =$$

$$1 + q^{+}([c_{2}]) + q^{+}([c_{6}]) + q^{+}([c_{7}]) = 1 + 1 + 1 + 1 = 0 \in \mathbb{Z}_{2}$$

a contradiction.

7. Pin^{\pm} -structures on Lefschetz fibrations over S^2

In this section, we provide a proof of Theorem 4.

Proof. Proof of Theorem 4 The proof is a \mathbb{Z}_2 -coefficients version of the one of [23, Theorem 1.3] using the two formulas (4) and (3) in Section 2. We hence leave it to the interested reader as an exercise.

REMARK 3. One can check whether $X \setminus \nu(\Sigma)$ supports a Pin[±]-structure by applying Theorem 1 and Theorem 2 respectively.

8. Pin⁺ and Pin⁻-structures on 3-manifolds

The following well-known fact can be easily proven by adapting to the Pin⁻ case the one of [23, Theorem 1.4], see [17].

Theorem 6. Any closed 3-manifold M admits a Pin⁻-structure.

Sketch of Proof. We reduce to the case in which M is non-orientable, since if M is orientable then it is automatically Spin and hence also Pin^+ and Pin^- . The idea is to write M as the union of a non-orientable 3-dimensional handlebody H of genus g with g 2-handles and a single 3-handle. Then [17, Corollary 1.12] implies that M admits a Pin^- -structure if and only if the closed surface ∂H supports a Pin^- -structure which restricts to the one bounding the 2-disk on all the attaching spheres of the 2-handles and on all the belt spheres of the 1-handles. Such a Pin^- -structure can always be constructed by means of a quadratic enhancement g : $H_1(\partial H; \mathbb{Z}_2) \to \mathbb{Z}_4$ which vanishes on all such curves. The proof follows the same lines of the one of [23, Theorem 1.4] and we leave the details to the interested reader.

On the other hand, it is not true that any closed 3-manifold admits a Pin^+ -structure, since the condition $w_2(M)=0$ is not always satisfied in the non-orientable setting. $\mathbb{RP}^2 \times S^1 \# N$ for any 3-manifold N is such an example. However, we now show that it is still possible to check this condition by considering a handlebody decomposition of M.

THEOREM 7. Let $M = H \cup H'$ be a closed non-orientable 3-manifold obtained by adding g 2-handles and a 3-handle to a genus-g non-orientable handlebody H and let $q_0^+: H_1(\partial H; \mathbb{Z}_4) \to \mathbb{Z}_2$ be a quadratic enhancement corresponding to a Pin^+ structure on ∂H . Let $a_1, \ldots, a_g \in H_1(\partial H; \mathbb{Z}_4)$ and $b_1, \ldots, b_g \in H_1(\partial H; \mathbb{Z}_4)$ be the homology classes of the attaching circles of the 2-handles and of the belt circles of the 1-handles of H respectively and set

$$q_0^+([a_j]) = \alpha_j$$
 and $q_0^+([b_j]) = \beta_j$

for j = 1, ..., g. If for a fixed basis $e_1, ..., e_{2g}$ of $H_1(\partial H; \mathbb{Z}_2)$ we have

$$\tilde{a}_j = \sum_{i=1}^{2g} a_{j,i} e_i \quad and \quad \tilde{b}_j = \sum_{i=1}^{2g} b_{j,i} e_i$$

for j = 1, ..., g, where \tilde{a}_j and \tilde{b}_j are the \mathbb{Z}_2 -reduction of a_j and b_j respectively, then M has a Pin^+ -structure if and only if

$$\mathit{rank}(C|A) = \mathit{rank}(C)$$

where C and A are respectively the $2q \times 2q$ matrix and the column vector

$$C = \begin{pmatrix} a_{1,1} & \dots & a_{1,2g} \\ \vdots & \ddots & \vdots \\ a_{g,1} & \dots & a_{g,2g} \\ b_{1,1} & \dots & b_{1,2g} \\ \vdots & \ddots & \vdots \\ b_{2g,1} & \dots & b_{g,2g} \end{pmatrix}, \qquad A = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_g \\ \beta_1 \\ \vdots \\ \beta_g \end{pmatrix}. \tag{12}$$

Proof. There is a Pin⁺-structure on M if and only if the non-orientable closed surface ∂H has a Pin⁺-structure which extends to the attaching circles of the 2-handles and to the belt spheres of the 1-handles in H. In particular, this is equivalent to check whether or not there exists a map

$$q^+: H_1(\partial H; \mathbb{Z}_4) \to \mathbb{Z}_2 \tag{13}$$

satisfying the condition $q^+(x+y) = q^+(x) + q^+(y) + x \cdot y$ for all $x, y \in H_1(\partial H; \mathbb{Z}_4)$ and which vanishes on a_1, \ldots, a_g and on b_1, \ldots, b_g .

If we fix a quadratic enhancement

$$q_0^+: H_1(\partial H; \mathbb{Z}_4) \to \mathbb{Z}_2 \tag{14}$$

corresponding to a Pin⁺-structure on ∂H , then all the other Pin⁺-structures on ∂H will be of the form $q^+ = q_0^+ + l$ for some linear map $l \in \text{Hom}(H_1(\partial H; \mathbb{Z}_4), \mathbb{Z}_2)$. It follows that M supports a Pin⁺-structure if and only if there is $l = \sum_{i=1}^{2g} x_i e^i \in \text{Hom}(H_1(\partial H; \mathbb{Z}_4), \mathbb{Z}_2)$ such that

$$\sum_{i=1}^{2g} a_{j,i} x_i = \alpha_j \quad \text{and} \quad \sum_{i=1}^{2g} b_{j,i} x_i = \beta_j$$

in \mathbb{Z}_2 for $j=1,\ldots,g$, where e^1,\ldots,e^{2g} is the dual basis to $e_1,\ldots,e_{2g}\in H_1(\partial H;\mathbb{Z}_2)$. The conclusion follows from Rouché–Capelli's theorem.

9. Interpretation of Pin⁺-structures à la Milnor

Kirby and Taylor showed in [17] that the sets of Pin⁺ and Pin⁻-structures on a fixed vector bundle ξ are in one to one correspondence with Spin-structures on $\xi \oplus 3 \cdot \det(\xi)$ and $\xi \oplus \det(\xi)$ respectively. In this section, we remark that for Pin⁺-structures one can get another equivalent characterization, which recalls the following one of Spin-structures by Milnor.

THEOREM 8 (Milnor [20]). There is a canonical bijection between the set of Spinstructures on a real rank-k vector bundle $\xi : E \to M$ and the set of homotopy classes of trivializations of $\xi|_{M^1}$ extending to trivializations of $\xi|_{M^2}$, where M^i denotes the ith skeleton of M. Moreover, such correspondence is equivariant with respect to the action of $H^1(M; \mathbb{Z}_2)$.

Recall that $x \in H^1(M; \mathbb{Z}_2)$ acts on a trivialization of $\xi|_{M^1}$ by flipping the framing of any loop $\gamma \subset M^1$ such that $\langle x, [\gamma] \rangle = 1 \in \mathbb{Z}_2$.

In a similar fashion, we prove the following result. We remark that this follows essentially from the discussion in [17].

THEOREM 9. Let $\xi: E \to M$ be a real rank-k vector bundle. There is a canonical bijection between the set of Pin^+ -structures on ξ and the set of homotopy classes of (k-1)-tuples of everywhere linearly independent sections of $\xi|_{M^1}$ extending to $\xi|_{M^2}$, where M^i denotes the ith skeleton of M. Moreover, such correspondence is equivariant with respect to the action of $H^1(M; \mathbb{Z}_2)$.

We remark that the definition of the action of $H^1(M; \mathbb{Z}_2)$ on the set of homotopy classes of linearly independent sections of $\xi|_{M^1}$ is completely analogous to the one described after the statement of Theorem 8.

Proof. The vanishing of $w_2(\xi)$ is a necessary and sufficient condition for the existence of both a (k-1)-tuple of linearly independent sections of $\xi|_{M^2}$ and a Pin^+ -structure on ξ . We now suppose that $w_2(\xi)$ is trivial and we endow $\det(\xi)$ with its canonical Pin^+ -structure, see [17, Addendum to 1.2]. Let v_1, \ldots, v_{k-1} be a (k-1)-tuple of linearly independent sections of $\xi|_{M^1}$ extending to $\xi|_{M^2}$. We are now going to associate to such a (k-1)-tuple a Pin^+ -structure on $\xi|_{M^2}$. This will uniquely determine a Pin^+ -structure on ξ , as in the case of Spin-structures. Using v_1, \ldots, v_{k-1} one can define a vector bundle isomorphism

$$\xi|_{M^2} \cong \varepsilon^{k-1} \oplus \det(\xi)$$
 (15)

where ε^{k-1} denotes the trivial rank-(k-1) real vector bundle. The associated Pin^+ -structure on $\xi|_{M^2}$ is given by the pull-back via (15) of the Pin^+ -structure on $\varepsilon^{k-1} \oplus \det(\xi)$ given by the direct sum of the trivial Spin-structure on ε^{k-1} with the fixed Pin^+ -structure on $\det(\xi)$. It is now easy to verify that this correspondence satisfies all the desired properties.

Acknowledgements

I am sincerely grateful to my advisors Rafael Torres and Daniele Zuddas for the constant support and for their comments on the first versions of this manuscript. The author has been partially supported by GNSAGA—Istituto Nazionale di Alta Matematica 'Francesco Severi', Italy.

References

- S. Akbulut. 4-manifolds, Oxford Graduate Texts in Mathematics, 25. vii+263, (Oxford University Press, 2016).
- S. Akbulut, A fake 4-manifold, in Four-manifold theory (C. Gordon and R. Kirby, eds.),
 Contemp. Math., vol. 35, American Mathematical Society, Providence, RI, 1984, pp. 75–141.
- D. W. Anderson, E. H. Brown and F. P. Peterson. Pin cobordism and related topics. Comm. Math. Helv. 44 (1969), 462–468.
- 4 V. Bais and R. Torres. Smooth structures on non-orientable 4-manifolds via twisting operations a. 2023, rXiv preprint arXiv: 2308.04227.
- S. E. Cappell and J. L. Shaneson. Some new four-manifolds. Ann. of Math. (2). 104 (1976), 61–72.
- 6 E. César de Sá. Automorphisms of 3-manifolds and representations of 4-manifolds, PhD Thesis, University of Warwick (1977).
- A. Degtyarev and S. Finashin. Pin-structures on surfaces and quadratic forms. Turkish J. Math. 21 (1997), 187–193.
- 8 J. B. Etnyre and T. Fuller. Realizing 4-manifolds as achiral Lefschetz fibrations. *Int. Math. Res. Not.* **2006** Art. ID 70272, 21 pp.
- R. Fintushel and R. J. Stern. An exotic free involution on S⁴. Ann. of Math. 113 (1981), 357.
- 10 V. Giambalvo. Pin and Pin' cobordism. Proc. Amer. Math. Soc. 39 (1973), 365.
- 11 P. B. Gilkey. The eta invariant for even-dimensional PIN manifolds. Adv. in Math. $\bf 58$ (1985), 243–284.
- 12 R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. xv+557 pp.

13 I Hambleton, M. Kreck and P. Teichner. Nonorientable 4-manifolds with fundamental group of order 2. Trans. Amer. Math. Soc. 344 (1994), 649–665.

- 14 J. L. Harer, Pencils of curves on 4-manifolds, Ph.D. thesis, University of California, California, 1979.
- 15 J. Hillman, Four-manifolds, geometries and knots, Geom. Topol. Monogr., vol. 5, Geom. Topol. Publ., Coventry, 2002. xiv+379 pp.
- D. L. Johnson. Spin structures and quadratic forms on surfaces. J. London Math. Soc. (2).
 22 (1980), 365–373.
- 17 R. C. Kirby and L. R. Taylor, Pin structures on low-dimensional manifolds, in London Mathematical Society Lecture Note Series, vol. 151, Cambridge University Press, Cambridge, 1989, pp. 177–242.
- M. H. Miller and P. Naylor. Trisections of nonorientable 4-manifolds. Michigan Math. J. 74 (2024), 403–447.
- M. Miller and B. Özbağcı. Lefschetz fibrations on nonorientable 4-manifolds. Pacific Journal of Mathematics. 312 (2021), 177–202.
- 20 J. W. Milnor. Spin structures on manifolds. Enseign. Math. (2). 9 (1963), 198–203.
- 21 W. J. Olędzki. On the eta-invariant of *Pin*⁺-operator on some exotic 4-dimensional projective space. *Compositio Math.* **78** (1991), 1–27.
- 22 R. I Shafarevich and A. O. Remizov. Linear Algebra and Geometry. (Springer, Berlin, 2013).
- 23 A.I Stipsicz. Spin structures on Lefschetz fibrations, Bull. London Math. Soc. 33 (2001), 466–472.
- 24 S. Stolz. Exotic structures on 4-manifolds detected by spectral invariants. *Invent. Math.* 94 (1988), 147–162.
- 25 R. Torres. Smooth structures on nonorientable four-manifolds and free involutions. J. Knot Theory Ramifications. 26 (2017), 20, 1750085.