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We study necessary and sufficient conditions for a 4-dimensional Lefschetz fibration
over the 2-disk to admit a Pin±-structure, extending the work of A. Stipsicz in the
orientable setting. As a corollary, we get existence results of Pin+ and
Pin−-structures on closed non-orientable 4-manifolds and on Lefschetz fibrations over
the 2-sphere. In particular, we show via three explicit examples how to read-off
Pin±-structures from the Kirby diagram of a 4-manifold. We also provide a proof of
the well-known fact that any closed 3-manifold M admits a Pin−-structure and we
find a criterion to check whether or not it admits a Pin+-structure in terms of a
handlebody decomposition. We conclude the paper with a characterization of
Pin+-structures on vector bundles.
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1. Introduction

Pin±-structures can be thought of as the non-oriented analogue of Spin-structures.
We refer the reader to [17] and [24, Section 2] for a precise definition of such Lie
groups and for the background on Pin±(n)-structures on low dimensional man-
ifolds. In this note, we find necessary and sufficient conditions for a (possibly
non-orientable) Lefschetz fibration over the 2-disk to support a Pin− or a Pin+-
structure. In particular, such conditions are expressed in terms of the homology
classes of the vanishing cycles of the Lefschetz fibration, with coefficients taken
in Z2 and Z4 respectively. As an application of this criterion, we provide explicit
necessary and sufficient conditions for a given Lefschetz fibration over the 2-sphere
to support a Pin±-structure. We refer the reader to Section 3 for a quick recap on
basic facts about non-orientable Lefschetz fibrations. Our main reference for this
subject is [19]. We also remark that in this note we consider Pin±-structures on
the tangent bundles of the manifolds under consideration, while in [13] they are
defined on the normal bundles of embedded submanifolds.
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2 V. Bais

In Section 4, we prove the following statement, extending the work of A. Stipsicz
on Spin-structures over Lefschetz fibrations in [23, Theorem 1.1].

Theorem 1. Let X be a smooth 4-manifold and f : X → D2 a Lefschetz fibration
with regular fibre Σ. There is no Pin−-structure on X if and only if there are
k+1 vanishing cycles c0, c1, . . . , ck such that [c0] =

∑k
i=1[ci] ∈ H1(Σ;Z2) and

k +
∑

1≤i<j≤k ci · cj ≡ 0 mod 2.

As we will see in Section 4, Theorem 1 is a consequence of the fact that Pin−-
structures on a Lefschetz fibration over the 2-disk with regular fibre Σ naturally
correspond to maps

q− : H1(Σ;Z2) → Z4

such that q−(x+y) = q−(x)+q−(y)+2x·y for every x, y ∈ H1(Σ;Z2) and q−([c]) = 2
on every vanishing cycle c ⊂ Σ, see Lemma 1. Moreover, such correspondence is
equivariant with respect to the action of H1(X;Z2).

Section 5 is devoted to the study of Pin+-structures on Lefschetz fibrations. By
[7], a Pin+-structure on the regular fibre Σ corresponds to a map

q+0 : H1(Σ;Z4) → Z2

with the property that q+0 (x+y) = q+0 (x)+q+0 (y)+x·y ∈ Z2 for all x, y ∈ H1(Σ;Z4).
We show that we can choose q+0 to be the restriction of a Pin+-structure defined
on the whole fibration if and only if the following holds.

Theorem 2. The total space of the Lefschetz fibration f : X → D2 with vanishing
cycles c1, . . . , cn ⊂ Σ supports a Pin+-structure if and only if Σ supports a Pin+-
structure and

rank(C) = rank(C | A)

where C is the Z2-reduction of the n× r matrix (cij) whose rows are given by the
components of [c1], . . . , [cn] ∈ H1(Σ;Z4) ∼= Zr with respect to a fixed basis e1, . . . , er
of the free Z4-module H1(Σ;Z4) and A is the column vector with entries Ai =
1 + q+0 ([ci]) ∈ Z2 for i = 1, . . . , n.

A key tool in the proof of the above result is Lemma 2, in which we show that
Pin+-structures on X correspond to maps

q+ : H1(Σ;Z4) → Z2

such that q+(x+y) = q+(x)+q+(y)+x·y for every x, y ∈ H1(Σ;Z4) and q+([c]) = 1
on every vanishing cycle c ⊂ Σ. The correspondence is also in this case equivariant
with respect to the H1(X;Z2)-action.

We remark that the study of Pin+ and Pin−-structures on non-orientable 4-
manifolds is essentially reduced to the case of non-orientable Lefschetz fibrations
over the 2-disk due to the following result, which is a straightforward consequence
of [19, Theorem 1.1].
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Theorem 3 (Miller-Özbağcı [19]). Let X be a closed non-orientable smooth 4-
manifold. There is a decomposition

X = L ∪∂ H

where L is a non-orientable Lefschetz fibration over the 2-disk and H is a non-
orientable 1-handlebody.

In particular, the proof of [19, Theorem 1.1] shows an explicit way of endowing a
(possibly non-orientable) 2-handlebody with the structure of a Lefschetz fibration
over the 2-disk, see also [14] and [8]. Moreover, a 4-manifold X = L ∪∂ H as in
Theorem 3 admits a Pin±-structure if and only if L does. This latter conditions
can be checked using Theorem 1 and Theorem 2.

In Section 6 we provide explicit examples in which, starting from a handlebody
decomposition of a non-orientable 4-manifold, we endow its 2-handlebody with
the structure of a Lefschetz fibration over the 2-disk. We then apply our results in
order to check whether such 4-manifolds support a Pin− or a Pin+-structure. In the
case they do, we find all the possible structures by looking at the H1(X,Z2)-action
on the associated quadratic enhancements on the regular fibres. The non-orientable
handlebodies under consideration describe the three 4-manifolds RP4, S2×̃RP2 and
S2 × RP2 and can be found in [2], [4], [18] and [25]. In particular, that there are
two non-orientable S 2-bundles over RP2 and we denote by S2 ×̃RP2 the non-trivial
one, see [4, Section 2.3].

Section 7 is devoted of the study of necessary and sufficient conditions for the
existence of a Pin±-structure on a Lefschetz fibration over the 2-sphere. This is the
non-orientable version of [23, Theorem 1.3].

Theorem 4. Let f : X → S2 be a (possibly non-orientable) Lefschetz fibration with
regular fibre Σ. Then X supports a Pin−-structure if and only if X \ ν(Σ) does and
there exists a smoothly embedded surface σ ⊂ X which is dual to Σ in H2(X;Z2)
and such that

[σ]2 + (w1(σ) ∪ w1(ν(σ))([σ]) + w2
1(ν(σ)) = 0 ∈ Z2.

Analogously, X supports a Pin+-structure if and only if X \ ν(Σ) does and there
exists a smoothly embedded surface σ ⊂ X which is dual to Σ in H2(X;Z2) and
such that

χ(σ) + [σ]2 + (w1(σ) ∪ w1(ν(σ)))([σ]) = 0 ∈ Z2.

In analogy to the Spin case, one can define the Pin+ and Pin− cobordism
groups in each dimension, see [17, Section 1]. As sets, they consist of the equiv-
alence classes of closed n-dimensional smooth manifolds with a fixed Pin+ (resp.
Pin−)-structure, which are identified whenever they co-bound a Pin+ (resp. Pin−)
(n + 1)-manifold. The group operation is the one induced by the disjoint union
of manifolds. We remark that Pin+ and Pin− cobordism groups are drastically
different. In particular, the 4-dimensional Pin+-cobordism group is
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ΩPin+

4
∼= Z16

(see [10, Section 2] and [17, Section 3]) and the η-invariant modulo 2Z of the twisted
Dirac operator associated to a Pin+-structure on a 4-manifold is a complete invari-
ant for Pin+-cobordism classes, see [24]. In particular, there are instances in which
such invariant can detect exotic behaviours in the non-orientable 4-dimensional
realm, in the sense that there are examples of non-orientable Pin+ 4-manifolds
which share the same homeomorphism type but define two different classes in ΩPin+

4

and hence cannot be diffeomorphic. To the best of our knowledge, following a sug-
gestion in [11], this was shown for the first time in [24], where the η-invariant of
Pin+-structures is used to detect the exotic RP4 constructed in [5]. We remark that
another exotic RP4 is constructed in [9] and its η-invariant is computed in [21]. An
analogous approach has then been used also in [4] and [25]. On the other hand

ΩPin−

4 = 0

(see again [3, Theorem 5.1] and [17, Section 3]) and hence it is not possible to
find Pin− exotic 4-manifolds using this strategy. In particular, the study of Pin+-
structures on 4-manifolds could potentially lead to better understanding of exotic
behaviours in the non-orientable realm and this fact is one of the main motivations
for this note. In particular, in Section 5 we show that if X = L ∪ H is a closed
4-manifold with a decomposition as in the statement of Theorem 3, then the datum
of a Pin+-structure on X is equivalent to the datum of a map

q+ : H1(Σ;Z4) → Z2

such that q+(x + y) = q+(x) + q+(y) + x · y for all x, y ∈ H1(Σ;Z4) taking value
1 ∈ Z2 on all the vanishing cycles of L, where Σ denotes a regular fibre. We leave
the reader with the following question.

Question: Is there a formula for the η-invariant modulo 2Z of a Pin+-structure
on X in terms of the corresponding map q+ : H1(Σ;Z4) → Z2?

Section 2 contains a short discussion on how to check the vanishing of w2 and
w2

1 in terms of the embeddings of homologically essential surfaces inside the ambi-
ent 4-manifold. In Section 7 we study Lefschetz fibrations over the 2-sphere, 8 is
devoted to a brief discussion on the 3-dimensional case, while Section 9 contains
a characterization of Pin+-structures on vector bundle which resembles Milnor’s
characterization of Spin-structures, see [20, Alternative definitions 2].

All manifolds in this note are smooth. We will not assume our 4-manifolds to be
orientable, unless otherwise stated.

2. Pin±-structures and embedded surfaces

For every n ∈ N, there are two distinct central extensions

Pin±(n) → O(n) (1)

which are topologically a disjoint union Spin(n)∪Spin(n). In the orientable setting,
it is known that the existence of a Spin-structure on a real vector bundle ξ on a
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manifold X is equivalent to the vanishing of w2(ξ) ∈ H2(X,Z2), where wi is the ith
Stiefel-Whitney class of ξ. In the case in which X is 4-dimensional, this equivalent
to having an even intersection form, provided that H2(X;Z) has no 2-torsion [12,
Corollary 5.7.6]. This can be shown via the Wu formula, which states that for any
a ∈ H2(X;Z2) one has

〈w2(X), a〉 = a2 modulo 2 (2)

where a2 denotes the algebraic count of self-intersections of a surface in X repre-
senting a, see [12, Proposition 1.4.18]. In a similar way, there are cohomological
obstructions to the existence of Pin+ and Pin−-structures on the tangent bundle of
a manifold, namely the vanishing of w2(X) and of (w2 + w2

1)(X) respectively, see
[17, Lemma 1.3]. Moreover, both Pin+ and Pin−-structures (when they do exist)
are torsors over H1(X,Z2), meaning that there is a free and transitive action of
H1(X;Z2) over the sets of such geometric structures. However, the Wu formula
does not hold when X is non-orientable, but one can still interpret the vanishing of
w2(X) and (w2 + w2

1)(X) in terms of properties of embedded surfaces. Indeed, for
any 4-manifold X and a ∈ H2(X;Z2) there is a (possibly non-orientable) smoothly
embedded surface Σ ⊂ X representing a (see [12, Remark 1.2.4]) and one can show
that

〈w2(X), a〉 = χ(Σ) + (w1(Σ) ^ w1(ν(Σ)))([Σ]) + [Σ]2 modulo 2. (3)

Since the tangent bundle of a 4-manifold supports a Pin+-structure if and only
if w2(X) vanishes, this is equivalent to checking that the evaluation (3) is trivial
on any homology class a ∈ H2(X;Z2).

On the other hand, the obstruction for Pin−-structures to exist is (w2 +w2
1)(X)

[17, Lemma 1.3] so, in order to understand when such structures exist, we need to
compute w2

1(X) and one can easily show that

〈w2
1(X), [Σ]〉 = w2

1(Σ) + w2
1(ν(Σ)). (4)

Example 1 (RP4). The 4-dimensional real projective space RP4 is an example
of non-orientable 4-manifold supporting two distinct Pin+-structures but no Pin−-
structure. We have that H2(RP4;Z2) ∼= Z2 is generated by the homology class of
RP2. Moreover, the tubular neighbourhood ν(RP2) ⊂ RP4 is diffeomorphic to the
twisted 2-disk bundle D2×̃RP2 defined as the quotient of D2×S2 via the involution

D2 × S2 → D2 × S2

(x, y) 7→ (ρπ(x),−y)

where ρπ denotes the rotation of S 2 of π radians about a fixed axis. One can show
that such a quotient is diffeomorphic to

D2 ×̃ RP2 ∼= (D2 ×D2) ∪ϕ (D2 ×Mb) (5)

where Mb denotes the Möbius strip and ϕ is the map

ϕ : D2 × S1 → D2 × S1, (x, θ) 7→ (ρθ(x), θ)

and ρθ : D2 → D2 denotes the rotation of the 2-disk of angle θ with respect to the
origin, see [1, Section 0] and [4, Example 7].
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By (3) we have that

〈w2(RP4), [RP2]〉 = χ(RP)2 + (w1(RP2) ∪ w1(ν(RP2)))([RP2]) + [RP2]2 = 0 ∈ Z2

since χ(RP2) = 1 = [RP2]2 and w1(ν(RP2)) = 0, while (4) implies that

〈w1(RP4)2, [RP2]〉 = w2
1(RP2) + w2

1(ν(RP2)) = 1 + 0 = 1 ∈ Z2

where w2
1(RP2) is computed as the self-intersection of a loop in RP2 whose Z2-

homology class generates H1(RP2;Z2).

3. Non-orientable Lefschetz fibrations

Since the conditions 3 and 4 are not immediate to check in the non-orientable setting
and depend heavily on the embeddings of the homologically essential surfaces, in
the following sections we develop another way to combinatorially understand when
a 4-manifold is Pin+ or Pin− by means of a specific kind of decomposition. To do
this, we will need the notion of non-orientable Lefschetz fibration over the 2-disk.

We start by recalling the definition of Lefschetz fibration. Our main reference for
this topic in the non-orientable realm is [19].

Definition 1. Let X be a compact, connected 4-manifold and let B be a compact,
connected surface, both with possibly non-empty boundary. A Lefschetz fibration is
a smooth submersion

f : X → B

away from finitely many points in the interior of B such that each fibre contains at
most one critical point and f is a fibre bundle with surface fibre on the complement
of the critical values. Moreover, around each critical point, we require f to conform
to the local complex model

(z1, z2) → z1z2.

Remark 1. If X is non-orientable and B is oriented, each regular fibre is a non-
orientable surface. In this case it makes no sense to ask for the orientation of the
local model around a critical point to be compatible to the one of X.

In the following, we will just consider the case in which B = D2 and Σ is the
regular fibre. It is possible to show that every Lefschetz fibration

f : X → D2

is obtained from the product one

Σ×D2 → D2

by gluing 4-dimensional 2-handles along Σ × ∂D2 with framing ±1 with respect
to the fibre framing. The attaching curves of such 2-handles are push-offs in dis-
tinct fibres of simple closed curves inside Σ, which are called the vanishing cycles
of the fibration and are denoted in the following by c1, . . . , cn ⊂ Σ. Moreover,
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〈w1(X), [ci]〉 = 0 for all i = 1, . . . , n and hence the tubular neighbourhood of these
attaching regions is necessarily diffeomorphic to a product of S 1 with the unit
interval. We will call two-sided all curves with this property.

4. Pin−-structures on 4-manifolds via Lefschetz fibrations

It is well known that the datum of a Spin-structure over an orientable surface is
equivalent to the one of a quadratic enhancement

s : H1(Σ;Z2) → Z2

satisfying the condition

s(x+ y) = s(x) + s(y) + x · y

for all x, y ∈ H1(Σ;Z2), where · denotes the Z2-intersection number between cycles,
see [16] and [23]. A geometric interpretation of this algebraic object can be given

as follows. The 1-dimensional Spin-cobordism group is ΩSpin
1

∼= Z2 [20] and every
closed simple curve γ ⊂ Σ in a Spin surface inherits a Spin-structure. In particular,
if s is the quadratic enhancement associated to the fixed Spin-structure on Σ, then
s([γ]) = 0 if and only if the induced Spin-structure on γ is the one bounding the
unique Spin-structure on the 2-disk.

It is possible to give a similar description for Pin− structures on (not necessarily
orientable) surfaces, as shown by the following result.

Theorem 5 (Kirby-Taylor, [17]). There is a 1:1 correspondence between Pin−-
structures on a surface Σ and quadratic enhancements

q− : H1(Σ;Z2) → Z4

with the property that

q−(x+ y) = q−(x) + q−(y) + 2 x · y

for any x, y ∈ H1(Σ;Z2).

In particular, if γ ⊂ Σ is a simple closed curve, then q−([γ]) is even if and
only if γ is two-sided and this is the case whenever γ is a vanishing cycle for a
Lefschetz fibration. Moreover, recall that the 1-dimensional Pin−-cobordism group
is ΩPin−

1
∼= Z2 (see [3, Theorem 5.1] and [17, Section 0]) and every closed simple

curve γ ⊂ Σ in a Pin− surface inherits a Pin− structure. We have that q−([γ]) = 0
if and only if γ inherits the bounding Pin−-structure.

In order to prove Theorem 1, we will need the following Lemma.

Lemma 1. Let f : X → D2 be a Lefschetz fibration with regular fibre Σ and
vanishing cycles c1, . . . , cn ⊂ Σ. There is a natural one to one correspondence
between the set of Pin−-structures on X and the set of quadratic enhancements
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q− : H1(Σ;Z2) → Z4

such that q−(x+y) = q−(x)+q−(y)+2x·y for all x, y ∈ H1(Σ;Z2) and q−([ci]) = 2
for all i = 1, . . . , n. Moreover, such correspondence is equivariant with respect to
the free and transitive action of H1(X;Z2).

Proof. The existence of a Pin−-structure on X is equivalent to the existence of
a Pin−-structure on Σ that extends to the 2-handles. This follows from the fact
that any Pin−-structure on X induces by restriction a Pin− structure on a (trivial)
tubular neighbourhood ν(Σ) ∼= Σ×D2 and all the Pin−-structures on Σ×D2 are
pull-backs of the ones on Σ via the projection map Σ×D2 → Σ, see also the proof of
[23, Theorem 1.1]. Since such 2-handles are attached to Σ× ∂D2 with relative odd
framing, this corresponds to a Pin−-structure on Σ restricting to the non-bounding
one on every vanishing cycle. The conclusion follows from Theorem 5.

The free and transitive action of H1(X;Z2) on the set of Pin−-structures on X
can be seen as follows. In [17, Section 3], it is shown that H1(Σ;Z2) acts on the set
of Pin−-structures of the surface Σ by

q−γ (x) = q−(x) + 2 · γ(x) (6)

for all γ ∈ H1(Σ;Z2) and x ∈ H1(Σ;Z2). In particular, Pin−-structures on Σ equiv-
ariantly correspond to quadratic enhancements and the action (6) is well defined
on H1(X;Z2) ⊂ H1(Σ;Z2) ∼= H1(X;Z2)⊕K, where K ⊂ H1(Σ;Z2) is the kernel
of the map induced by the inclusion Σ ⊂ X. �

In light of this fact, it is possible to characterize the existence of Pin−-structures
on non-orientable Lefschetz fibrations over the 2-disk in terms of the Z2-homology
classes of the vanishing cycles.

Proof of Theorem 1. By Lemma 1, X does not support any Pin−-structure if and
only if it is not possible to build a map

q− : H1(Σ;Z2) → Z4

such that q−(x+ y) = q−(x) + q−(y) + 2x · y for all x, y ∈ H1(Σ;Z2) and such that
q+([ci]) = 2 for all i = 1, . . . , n. The remaining part of the proof is essentially the
same as the proof of [23, Theorem 1.1]. We will now sketch it for the convenience of
the reader. Let V ⊂ H1(Σ;Z2) be the vector subspace generated by the classes of
the vanishing cycles. Notice that any given enhancement q− on V can be extended
to the whole H1(Σ;Z2) by setting q− = 0 on a basis u1, . . . , uk of an orthogonal
vector subspace and using the relation (6) to define it on the vectors of the form∑

j uij + v, where v ∈ V . In particular, in order to define a Pin−-structure on

X, one needs to find a quadratic enhancement q− : V → Z4 which takes value 2
on the class of any vanishing cycle. Let v1, . . . , vr be a basis of V represented by
vanishing cycles and let Vi = 〈v1, . . . , vi〉 for i = 1, . . . , r. We then want to define
q− inductively on each Vi as in the proof of [23, Theorem 1.1], setting q−(vi) = 2 at
each step. One then notices that things go wrong if and only if there are k classes
vi1 , . . . , vik such that their sum v0 =

∑k
j=1 vij ∈ H1(Σ;Z2) is again represented by
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a vanishing cycle and q−(v0) 6= 2 ∈ Z4. This implies that q−(v0) = 0 ∈ Z4, being v0

is represented by a curve with trivial tubular neighbourhood. Since by construction
we had that q−(vij ) = 2 for j = 1, . . . , k, using (6) the condition q−(q0) = 0 ∈ Z4

translates into

q−(v0) =
k∑

j=1

q−(vij )+2·
( ∑

1≤in≤im≤k

vin ·vim
)
= 2·

(
k+

∑
1≤in≤im≤k

vin ·vim
)
= 0 ∈ Z4.

The conclusion then follows by noticing that 2 · x = 0 ∈ Z4 if and only if
x = 0 ∈ Z2. �

Note that, if we restrict to orientable surfaces, there is a natural map

ΩSpin
1 → ΩPin−

1

giving a group isomorphism, see [17, Theorem 2.1]. At the level of the associated
quadratic forms, the enhancement

s : H1(Σ;Z2) → Z2

corresponds to
q− : H1(Σ;Z2) → Z4

given by

q−(x) = 2 · s(x)
for every x ∈ H1(Σ;Z2), where 2· denotes the inclusion Z2 ⊂ Z4. In particular, the
condition on the vanishing cycles we found in Theorem 1 coincides with the one in
[23, Theorem 1.1] and this is due to the fact that, when restricting to orientable
Lesfschetz fibrations over D2, being Spin coincides with being Pin−.

5. Pin+-structures on Lefschetz fibrations over the 2-disk

As a consequence of [7, Theorem A], there is a canonical affine bijective correspon-
dence between Pin+-structures on a surface Σ and the set of maps

q+ : H1(Σ;Z4) → Z2 (7)

with the property that

q+(x+ y) = q+(x) + q+(y) + x · y (8)

for every x, y ∈ H1(Σ;Z4), where x · y ∈ Z2 denotes the algebraic intersec-
tion modulo 2 between representatives of the Z2-reductions of the classes x, y ∈
H1(Σ;Z4).

Recall that the 1-dimensional Pin+-cobordism group is

ΩPin+

1
∼= {0}

see [17, Section 3]. However, S 1 has two distinct Pin+-structures. These correspond
to two different trivializations of the direct sum TS1 ⊕ ε of the tangent bundle of
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S 1 with a trivial line bundle, where the first one is given by the restriction to S 1 of
a trivialization of the tangent bundle TD2 of the 2-disk and the second one comes
from the Lie group framing of S 1. In particular, one can show that such structures
have the property that they respectively bound the 2-disk and the Möbius strip,
see [17, Section 1]. A close look at the construction of q+ starting from a Pin+-
structure on Σ shows that q+([γ]) = 0 if the induced Pin+-structure on γ is the
one bounding a 2-disk, while q+([γ]) = 1 if it is the one bounding the Möbius strip,
see [17]. Note that, given any two maps q+1 , q

+
2 corresponding to Pin+-structures

on Σ, their difference can be regarded as an element

q+1 − q+2 ∈ Hom(H1(Σ;Z4),Z2).

The proof of Theorem 2 is based on the following Lemma.

Lemma 2. Let f : X → D2 be a Lefschetz fibration with regular fibre Σ and
vanishing cycles c1, . . . , cn ⊂ Σ. There is a natural bijection between the set of
Pin+-structures on X and the set of quadratic enhancements

q+ : H1(Σ;Z4) → Z2

such that q+(x+y) = q+(x)+q+(y)+x ·y for all x, y ∈ H1(Σ;Z4) and q+([ci]) = 1
for all i = 1, . . . , n. Moreover, such correspondence is equivariant with respect to
the free and transitive action of H1(X;Z2).

Proof. As is the Pin− case, the existence of a Pin+-structure on X is equivalent to
the existence of a Pin+-structure on Σ that extends to the 2-handles. Since such
2-handles are attached to Σ × ∂D2 with relative odd framing, this corresponds to
a Pin+-structure on Σ restricting to the one bounding the Möbius strip on every
vanishing cycle. The conclusion follows from [7].

In the Pin+-case, H1(Σ;Z2) acts on the set of Pin+-structures of the surface Σ
by

q+γ (x) = q+(x) + γ(x) (9)

for all γ ∈ H1(Σ;Z2) and x ∈ H1(Σ;Z4), see [7]. In particular, Pin+-structures on
Σ equivariantly correspond to quadratic enhancements and the action (9) is well
defined on H1(X;Z2) ⊂ H1(Σ;Z2) ∼= H1(X;Z2)⊕K, where K ⊂ H1(Σ;Z2) is the
kernel of the map induced by the inclusion Σ ⊂ X. �

Let f : X → D2 be a Lefschetz fibration over the 2-disk with surface fibre Σ. Let
c1, . . . , cn ⊂ Σ be its vanishing cycles. Note that one can find simple closed curves
e1, . . . , eg inducing a basis of H1(Σ;Z2) ∼= Zg

2. From now on, we will assume that
Σ has a Pin+-structure, since this is a necessary condition for X to be a Pin+-
manifold. In particular, this means that Σ is not a closed non-orientable surface of
odd Euler characteristic. Let

q+0 : H1(Σ;Z4) → Z2 (10)

be the quadratic enhancement associated to a fixed Pin+-structure on Σ and let
cj =

∑r
i=1 cji[ei]. This gives the setting of Theorem 2, of which we now provide a

proof.
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Proof of Theorem 2. Lemma 2 implies that X has a Pin+-structure if and only if
there is a map

q+ : H1(Σ,Z4) → Z2

such that q+(x+y) = q+(x)+q+(y)+x·y for all x, y ∈ H1(Σ;Z4) and q+([ci]) = 1 for
all i = 1, . . . , n. In particular, every such q+ is necessarily of the form q+ = q+0 +l for
some linear map l =

∑r
i=1 λi[e

i], where [ei] ∈ H1(Σ;Z2) denotes the dual element
to [ei] ∈ H1(Σ;Z2). In particular, this reduces the problem to finding l =

∑r
i=1 λie

i

such that for every j = 1, . . . , n we have

q+([cj ]) = q+0 ([cj ]) + l([cj ]) = q+0 ([cj ]) +
r∑

i=1

cjiλi = 1.

The conclusion follows from Rouché-Capelli’s Theorem [22, Theorem 2.38]. �

Remark 2. The proof of Theorem 1 as well as the one of [23, Theorem 1.1] rely
on the fact that H1(Σ;Z2) is a vector space. This is why we cannot adopt the same
strategy for Theorem 2, since H1(Σ;Z4) is just a Z4-module.

6. Some examples

In this section, we show how to apply the results proven so far. In particular, starting
from the handlebody decomposition of some small non-orientable 4-manifold M, we
endow the union of handles up to index 2 with the structure of a Lefschetz fibration
over the 2-disk, following the procedure explained in the proof of [19, Theorem 1.1].
At this point, we apply Theorem 1 and Theorem 2 to understand whether or not M
admits a Pin+ or a Pin−-structure, describing the action of H1(M ;Z2) in terms of
the action of a subgroup of H1(Σ;Z2) on the quadratic enhancements on the non-
singular fibre Σ of the Lefschetz fibration. We refer the reader to [1, Section 1.5] for
the conventions and backgound on Kirby diagrams of non-orientable 4-manifolds,
see also [2], [4, Section 2.1], [6] and [18]. The procedure we describe in this section
applies to any closed non-orientable 4-manifold represented by means of a Kirby
diagram.

Example 2 (RP4). Figure 1 represents a Kirby diagram for the standard han-
dlebody decomposition of RP4 with a single k -handle for each k = 0, . . . , 4. In
particular, the union of all handles up to index 2 corresponds to a tubular neigh-
bourhood ν(RP2) ∼= D2 ×̃ RP2 of RP2 (see [2, Section 0] and [4, Section 2.5]) and
RP4 is the result of attaching a 3-handle and a 4-handle to this handlebody. Recall
that 3-handles and 4-handles need not be drawn by [6] and [18], see [4, Example 7].

The union of handles up to index 2 can be seen as a Lefschetz fibration over the
2-disk with the Möbius band Mb as fibre and a single vanishing cycle c1, given by
the projection of the (1, 0)-framed 2-handle, see Figure 2.

A Pin+-structure on Mb extending to RP4 is given by the quadratic enhancement

q+ : H1(Mb;Z4) → Z2 (11)
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12 V. Bais

Figure 1. A Kirby diagram of RP4.

Figure 2. The Lefschetz fibration associated to the 2-handlebody of RP4.

defined by the condition q+([e1]) = 1, where [e1] is the generator of H1(Mb;Z4) ∼=
Z4 represented by the core of the band. Indeed, [c1] = 2[e1] and hence

q+([c1]) = q+(2[e1]) = q+([e1]) + q+([e1]) + e21 = 1 ∈ Z2.

The other Pin+-structure

q+x (y) = q+(y) + x · y for all y ∈ H1(Mb;Z4)

is obtained by acting on q+ by the cohomology class dual to [e1], where x · y
indicates the intersection number between x and the Z2-reduction of y. Note that
the condition q+x ([c1]) = 1 is still satisfied.

On the other hand, if RP4 supported a Pin−-structure, then there would be a
quadratic enhancement

q− : H1(Mb;Z2) → Z4

satisfying q−([c1]) = 2. But this is impossible, since it would imply that

2 = q−([c1]) = q−(2[e1]) = q−(0) = 0 ∈ Z4.

Example 3 (S2 ×̃ RP2). The non-orientable 4-manifold S2 ×̃ RP2 is obtained as
a quotient of S2 × S2 under the orientation-reversing involution

ι : S2 × S2 → S2 × S2

(x, y) 7→ (−x, ρπ(y))

where ρθ : S2 → S2 is the rotation of S 2 of angle θ about a fixed axis for any θ ∈ S1,
see [15, Chapter 12]. Moreover, it can also be seen as the result of a Gluck twist on
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Figure 3. A Kirby diagram of S2 ×̃ RP2.

Figure 4. Lefschetz fibration associated to the 2-handlebody of S2 ×̃ RP2.

the product S2 ×RP2 along a 2-sphere fibre, see [4, Lemma 1]. In particular, there
is a decomposition

S2 ×̃ RP2 = (S2 ×D2) ∪ϕ (S2 ×Mb)

where the gluing map is

ϕ : S1 × S1 → S2 × S2

(x, θ) 7→ (ρθ(x), θ).

A Kirby diagram of this manifold is given in Figure 3, see [2, Section 0], [4,
Figure 1], [18] and [25, Section 4.1]. It is obtained by considering S2 ×̃ RP2 as the
double of D2 ×̃ RP2. Figure 4 represents the projection of the attaching circles of
the 2-handles onto the page of the trivial Lefschetz fibration given by the union of
handles up to index one. In order to endow the 2-handlebody of S2 ×̃RP2 with the
structure of a Lefschetz fibration over D2, we need to stabilize the page and add
vanishing cycles as in Figure 5, so that the attaching spheres of the 2-handles can
be isotoped into different pages and have the right framing. This is Harer’s trick
and is explained in the non-orientable setting in [19, Proof of Theorem 1.1], see
also [14] and [8, Theorem 2.1]. At the level of Kirby diagrams, this corresponds to
adding canceling pairs of 1- and 2-handles.

In Figure 6 we fix a set of simple closed loops e1, . . . , e6 inducing a homology
basis of the page Σ of this new fibration. The quadratic enhancement

q+ : H1(Σ;Z4) → Z2
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Figure 5. The 2-handlebody of S2 ×̃ RP2 as a Lefschetz fibration over D2.

Figure 6. Curves representing a basis of H1(Σ).

defined by the condition q+([ei]) = 1 for every i = 1, . . . , 6 has the property that
q+([ci]) = 1 for all the vanishing cycles c1, . . . , c7 and hence it determines a Pin+-
structure on S2 ×̃ RP2. The other Pin+-structure can be found by acting on q+

with [e1] ∈ H1(Σ;Z2).
On the other hand, S2 ×̃RP2 does not support a Pin−-structure. Indeed, if this

was the case, we could find a quadratic enhancement

q− : H1(Σ;Z2) → Z4

such that q−([ei]) = 2 for all i = 1, . . . , 7 and this would imply that

2 = q−([c1]) = q−([e2 + e6]) = q−([e2]) + q−([e6]) = q−([c2]) + q−([c6]) = 2 + 2

= 0 ∈ Z4

a contradiction.

Example 4 (S2 × RP2). A Kirby diagram of the product 4-manifold S2 × RP2

is given in Figure 7, see [2, Section 0], [4, Figure 1], [18] and [25, Section 4.1]. It
is obtained by considering S2 × RP2 as the double of D2 × RP2. Figure 8 shows
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Figure 7. A Kirby diagram of S2 × RP2.

Figure 8. Lefschetz fibration associated to the 2-handlebody of S2 × RP2.

Figure 9. The 2-handlebody of S2 × RP2 as a Lefschetz fibration over D2.

the projection of the attaching circles of the 2-handles onto the page of the trivial
Lefschetz fibration given by the union of handles up to index one.

We use Harer’s trick again (see [19, Proof of Theorem 1.1], [14] and [8, Theorem
2.1]) and show that the union of the handles up to index 2 in the fixed decomposition
of S2 × RP2 is given by the surface Σ and by the vanishing cycles c1, . . . , c8 in
Figure 9. Note that, with respect to the case of S2×̃RP2, we need to stabilize the
page one additional time in order to adjust the framing of the red coloured 2-handle.

In Figure 10 we again fix a set of loops e1, . . . , e7 ⊂ Σ inducing a first homology
basis of the page.

The quadratic enhancement

q− : H1(Σ;Z2) → Z4
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Figure 10. Curves representing a basis of H1(Σ).

defined by the condition q−([ei]) = 2 for every i = 1, . . . , 7 has the property that
q−([ci]) = 2 for all the vanishing cycles c1, . . . , c8 and hence it determines a Pin−-
structure on S2 × RP2. The other Pin−-structure can be found by acting on q−

with [e1] ∈ H1(Σ;Z2).
On the other hand, S2 × RP2 can not support a Pin+-structure. Indeed, if this

was the case we could find a quadratic enhancement

q+ : H1(Σ;Z4) → Z2

such that q+([ci]) = 1 for all i = 1, . . . , 8 and this would imply that

1 = q+([c1]) = q+([2e1 + e2 + e6 + e7]) =

2q+([e1]) + e21 + q+([e2]) + q+([e6]) + q+([e7]) =

1 + q+([c2]) + q+([c6]) + q+([c7]) = 1 + 1 + 1 + 1 = 0 ∈ Z2

a contradiction.

7. Pin±-structures on Lefschetz fibrations over S2

In this section, we provide a proof of Theorem 4.

Proof. Proof of Theorem 4 The proof is a Z2-coefficients version of the one of [23,
Theorem 1.3] using the two formulas (4) and (3) in Section 2. We hence leave it to
the interested reader as an exercise. �

Remark 3. One can check whetherX\ν(Σ) supports a Pin±-structure by applying
Theorem 1 and Theorem 2 respectively.

8. Pin+ and Pin−-structures on 3-manifolds

The following well-known fact can be easily proven by adapting to the Pin− case
the one of [23, Theorem 1.4], see [17].
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Theorem 6. Any closed 3-manifold M admits a Pin−-structure.

Sketch of Proof. We reduce to the case in which M is non-orientable, since if M is
orientable then it is automatically Spin and hence also Pin+ and Pin−. The idea
is to write M as the union of a non-orientable 3-dimensional handlebody H of
genus g with g 2-handles and a single 3-handle. Then [17, Corollary 1.12] implies
that M admits a Pin−-structure if and only if the closed surface ∂H supports a
Pin−-structure which restricts to the one bounding the 2-disk on all the attaching
spheres of the 2-handles and on all the belt spheres of the 1-handles. Such a Pin−-
structure can always be constructed by means of a quadratic enhancement q− :
H1(∂H;Z2) → Z4 which vanishes on all such curves. The proof follows the same
lines of the one of [23, Theorem 1.4] and we leave the details to the interested
reader. �

On the other hand, it is not true that any closed 3-manifold admits a
Pin+-structure, since the condition w2(M) = 0 is not always satisfied in the
non-orientable setting. RP2 × S1 #N for any 3-manifold N is such an example.
However, we now show that it is still possible to check this condition by considering
a handlebody decomposition of M.

Theorem 7. Let M = H ∪H ′ be a closed non-orientable 3-manifold obtained by
adding g 2-handles and a 3-handle to a genus-g non-orientable handlebody H and
let q+0 : H1(∂H;Z4) → Z2 be a quadratic enhancement corresponding to a Pin+

structure on ∂H. Let a1, . . . , ag ∈ H1(∂H;Z4) and b1, . . . , bg ∈ H1(∂H;Z4) be the
homology classes of the attaching circles of the 2-handles and of the belt circles of
the 1-handles of H respectively and set

q+0 ([aj ]) = αj and q+0 ([bj ]) = βj

for j = 1, . . . , g. If for a fixed basis e1, . . . , e2g of H1(∂H;Z2) we have

ãj =

2g∑
i=1

aj,iei and b̃j =

2g∑
i=1

bj,iei

for j = 1, . . . , g, where ãj and b̃j are the Z2-reduction of aj and bj respectively, then
M has a Pin+-structure if and only if

rank(C|A) = rank(C)

where C and A are respectively the 2g × 2g matrix and the column vector

C =



a1,1 . . . a1,2g
...

. . .
...

ag,1 . . . ag,2g
b1,1 . . . b1,2g
...

. . .
...

b2g,1 . . . bg,2g


, A =



α1

...

αg

β1

...

βg


. (12)
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Proof. There is a Pin+-structure on M if and only if the non-orientable closed sur-
face ∂H has a Pin+-structure which extends to the attaching circles of the 2-handles
and to the belt spheres of the 1-handles in H. In particular, this is equivalent to
check whether or not there exists a map

q+ : H1(∂H;Z4) → Z2 (13)

satisfying the condition q+(x+ y) = q+(x)+ q+(y)+x · y for all x, y ∈ H1(∂H;Z4)
and which vanishes on a1, . . . , ag and on b1, . . . , bg.

If we fix a quadratic enhancement

q+0 : H1(∂H;Z4) → Z2 (14)

corresponding to a Pin+-structure on ∂H, then all the other Pin+-structures on
∂H will be of the form q+ = q+0 + l for some linear map l ∈ Hom(H1(∂H;Z4),Z2).

It follows that M supports a Pin+-structure if and only if there is l =
∑2g

i=1 xie
i ∈

Hom(H1(∂H;Z4),Z2) such that

2g∑
i=1

aj,ixi = αj and

2g∑
i=1

bj,ixi = βj

in Z2 for j = 1, . . . , g, where e1, . . . , e2g is the dual basis to e1, . . . , e2g ∈
H1(∂H;Z2). The conclusion follows from Rouché–Capelli’s theorem. �

9. Interpretation of Pin+-structures à la Milnor

Kirby and Taylor showed in [17] that the sets of Pin+ and Pin−-structures on
a fixed vector bundle ξ are in one to one correspondence with Spin-structures
on ξ ⊕ 3 · det(ξ) and ξ ⊕ det(ξ) respectively. In this section, we remark that for
Pin+-structures one can get another equivalent characterization, which recalls the
following one of Spin-structures by Milnor.

Theorem 8 (Milnor [20]). There is a canonical bijection between the set of Spin-
structures on a real rank-k vector bundle ξ : E → M and the set of homotopy classes
of trivializations of ξ|M1 extending to trivializations of ξ|M2 , where Mi denotes the
ith skeleton of M. Moreover, such correspondence is equivariant with respect to the
action of H1(M ;Z2).

Recall that x ∈ H1(M ;Z2) acts on a trivialization of ξ|M1 by flipping the framing
of any loop γ ⊂ M1 such that 〈x, [γ]〉 = 1 ∈ Z2.

In a similar fashion, we prove the following result. We remark that this follows
essentially from the discussion in [17].

Theorem 9. Let ξ : E → M be a real rank-k vector bundle. There is a canonical
bijection between the set of Pin+-structures on ξ and the set of homotopy classes
of (k − 1)-tuples of everywhere linearly independent sections of ξ|M1 extending to
ξ|M2 , where Mi denotes the ith skeleton of M. Moreover, such correspondence is
equivariant with respect to the action of H1(M ;Z2).
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We remark that the definition of the action of H1(M ;Z2) on the set of homotopy
classes of linearly independent sections of ξ|M1 is completely analogous to the one
described after the statement of Theorem 8.

Proof. The vanishing of w2(ξ) is a necessary and sufficient condition for the exis-
tence of both a (k − 1)-tuple of linearly independent sections of ξ|M2 and a
Pin+-structure on ξ. We now suppose that w2(ξ) is trivial and we endow det(ξ)
with its canonical Pin+-structure, see [17, Addendum to 1.2]. Let v1, . . . , vk−1 be
a (k − 1)-tuple of linearly independent sections of ξ|M1 extending to ξ|M2 . We are
now going to associate to such a (k − 1)-tuple a Pin+-structure on ξ|M2 . This will
uniquely determine a Pin+-structure on ξ, as in the case of Spin-structures. Using
v1, . . . , vk−1 one can define a vector bundle isomorphism

ξ|M2 ∼= εk−1 ⊕ det(ξ) (15)

where εk−1 denotes the trivial rank-(k − 1) real vector bundle. The associated
Pin+-structure on ξ|M2 is given by the pull-back via (15) of the Pin+-structure on
εk−1⊕det(ξ) given by the direct sum of the trivial Spin-structure on εk−1 with the
fixed Pin+-structure on det(ξ). It is now easy to verify that this correspondence
satisfies all the desired properties. �
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