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Abstract

Let G be a finitely generated group. We investigate the graph 0M(G), whose vertices are the maximal
subgroups of G and where two vertices M1 and M2 are joined by an edge whenever M1 ∩ M2 6= 1. We
show that if G is a finite simple group then the graph 0M(G) is connected and its diameter is 62 at most.
We also show that if G is a finite group, then 0M(G) either is connected or has at least two vertices
and no edges. Finite groups G with a nonconnected graph 0M(G) are classified. They are all solvable
groups, and if G is a finite solvable group with a connected graph 0M(G), then the diameter of 0M(G) is
at most 2. In the infinite case, we determine the structure of finitely generated infinite nonsimple groups
G with a nonconnected graph 0M(G). In particular, we show that if G is a finitely generated locally
graded group with a nonconnected graph 0M(G), then G must be finite.
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1. Introduction

In this paper G denotes a nontrivial group. Our aim is to investigate the graph 0M(G)
which is associated with the maximal subgroups of G. The vertices of 0M(G) are
the maximal subgroups of G, and we join two distinct vertices M1, M2, whenever
M1 ∩ M2 6= {1}. This graph will be called the maximal graph of G. In this paper p
and n will always denote primes and positive integers, respectively.

If G is a finitely generated group, then it is easy to show, using Zorn’s lemma, that
every proper subgroup of G is contained in a maximal subgroup of G. Therefore we
shall study maximal graphs for finitely generated groups only.

If G is a finite group, then it is easy to check that 0M(G) has exactly one vertex if
and only if G is a cyclic p-group. Another trivial remark is that the maximal graph of
a group G is complete if the Frattini subgroup8(G) is nontrivial. Hence, for example,
0M(G) is complete for all nonelementary abelian finite p-groups.
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If G is a supersolvable group, then every maximal subgroup of G is of prime index.
Therefore, if G is supersolvable, then 0M(G) is complete, except when G is a finite
group of order pq , where p, q are primes (not necessary distinct). In the latter case,
the maximal graph of G has no edges.

Our main aim in this paper is twofold. First, we wish to show that if G is a finite
simple group, then 0M(G) is connected and the diameter of 0M(G), denoted by
diam(0M(G)), is bounded. Our bound, 62, for diam(0M(G)) in the finite simple
case is most certainly not the best possible.

We prove the following theorem.

THEOREM 1.1. Let G be a finite simple group. Then:

(1) 0M(G) is connected; and
(2) diam(0M(G))≤ 62.

Our second main aim is to determine the finite groups with a nonconnected maximal
graph. We prove the following theorem.

THEOREM 1.2. Let G be a finite group. Then the graph 0M(G) is nonconnected if
and only if one of the following holds.

(1) G is elementary abelian of order p2 (p a prime).
(2) G is cyclic of order pq (p, q different primes).
(3) G = P o Q, where P is an elementary abelian p-group of order pn (p a prime),

|Q| = q, where q is a prime different from p, and Q acts irreducibly and fixed
point freely on P.

Since all groups G described in items (1), (2) and (3) of Theorem 1.2 have edgeless
maximal graphs, we obtain the following characterization of finite groups for which
0M(G) has no edges.

PROPOSITION 1.3. Let G be a finite group. Then the graph 0M(G) has no edges
if and only if G is solvable and either it is a cyclic p-group or it has the structure
described in items (1), (2) and (3) of Theorem 1.2.

PROOF. If 0M(G) has no edges, then either it is nonconnected and, by Theorem 1.2,
G has the structure described in items (1), (2) and (3) of that theorem, or it is
connected, which implies that it has only one vertex and hence, as mentioned above,
G is a cyclic p-group. The converse is easy to check. 2

Our first step toward the proof of Theorem 1.2 is the following result. Here
dG(M, M1) denotes the distance in 0M(G) between the maximal subgroups M and
M1 of G and dG(M, M1) > 2 means that either dG(M, M1)= n for some n > 2, or M
and M1 are not connected in 0M(G).

PROPOSITION 1.4. Let G be a finite nonsimple group. Then the graph 0M(G)
contains two vertices M and M1 with dG(M, M1) > 2 if and only if one of the
following holds.
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(1) G is elementary abelian of order p2 (p a prime).
(2) G is cyclic of order pq (p, q different primes).
(3) G = P o Q, where P is an elementary abelian p group of order pn (p a prime),

|Q| = q, q is a prime different from p and Q acts irreducibly and fixed point
freely on P.

In particular, if the maximal graph of G is nonconnected, then G has the structure
described in items (1), (2) and (3).

In view of Proposition 1.4, in order to complete the proof of Theorem 1.2, it is
necessary to investigate the connectivity of 0M(G) for finite simple groups. For this
purpose, it is useful to consider another related graph, called the prime graph of G.

If G is a finite group, then the prime graph 5(G) is defined as follows: its vertices
are the primes dividing the order of G, and two distinct vertices p and q are joined
by an edge if and only if G contains an element of order pq . This graph was first
investigated by Gruenberg and Kegel in an unpublished manuscript [3], and then by
many authors (see, for instance, [1, 5, 10]). Using their results and those of Sawabe
in [8], which rely upon the classification of the finite simple groups, in Section 3 we
prove the above stated Theorem 1.1.

Theorem 1.1(1) and Proposition 1.4 together clearly imply Theorem 1.2.
Notice that there exist finitely generated infinite simple groups G with

nonconnected graphs 0M(G). Such are, for example, the Tarski monsters, in which
all maximal subgroups are of prime order.

We also investigated the diameter of the graph 0M(G) for finite nonsimple groups
with a connected maximal graph. It turns out that if G is a finite nonsimple group,
then either 0M(G) has no edges or it is connected, with diameter less than or equal
to 2. For the exact statement see Theorem 2.1 below.

Section 4 deals with finitely generated groups. In particular, we prove the following
Corollary 1.5, which implies that certain finitely generated generalized solvable groups
with a nonconnected maximal graph must be finite.

COROLLARY 1.5. Let G be a finitely generated locally graded group. If 0M(G) is
nonconnected, then G is finite.

2. On the graph 0M(G) for finite nonsimple groups

Before proving Proposition 1.4, we introduce the appropriate notation. Let M1, M2
be vertices of 0M(G). If M1 ∩ M2 6= {1} (allowing M1 = M2 6= {1}), then we say
that M1 and M2 are directly connected (always in 0M(G)) and we write M1↔ M2.
We say that M1 and M2 are connected, and we write M1 ∼ M2, if they are either
equal or there exists in 0M(G) a finite path between them; otherwise they will be
called disconnected. A maximal graph will be called nonconnected if it contains two
disconnected vertices. Otherwise it will be called connected. If M1 6= M2, then the
distance function dG(M1, M2) will denote the length of a shortest path between M1
and M2 in 0M(G), if such a path exists. If M1 = M2, then we define dG(M1, M2)= 0.
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Thus dG(M1, M2)≤ n for some n ∈ N will mean that either M1 = M2 or M1 6= M2
and they can be connected by a path of length up to n. Clearly dG(M1, M2)= 1 if
and only if {M1, M2} is an edge in 0M(G). If M1 and M2 are disconnected, then
dG(M1, M2)=∞> n for all integers n. If 0M(G) is connected, then diam(0M(G))
denotes its diameter.

PROOF OF PROPOSITION 1.4. We assume, first, that there exist maximal subgroups
M and M1 in G satisfying dG(M, M1) > 2. By our assumptions there exists a
proper minimal normal subgroup N of G. If N ∩ M 6= {1} and N ∩ M1 6= {1}, take
a maximal subgroup M2 of G containing N . Then we have M↔ M2, M1↔ M2 and
d(M, M1)≤ 2, a contradiction.

Thus, without loss of generality, we may assume that N ∩ M = {1}. Then G =
N o M . First we show that |M | is prime. Otherwise, there exists an element
x ∈ M\{1} such that 〈x〉< M . Then N 〈x〉< G and there exists a maximal subgroup
M3 of G such that N 〈x〉 ≤ M3. Clearly M↔ M3. If M1 ∩ N 6= {1}, then also M3↔

M1 and dG(M, M1)≤ 2, a contradiction. If M1 ∩ N = {1}, then G = N o M1 and
N 〈x〉 = N 〈x〉 ∩ (N o M1)= N (N 〈x〉 ∩ M1), which implies that N 〈x〉 ∩ M1 6= {1}.
Thus M3↔ M1 and dG(M, M1)≤ 2, again a contradiction. Therefore |M | = q , q
a prime.

Write M = 〈y〉. If there exists a ∈ N\{1} such that [a, y] = 1, then 〈a, y〉 is abelian
and M < 〈a, y〉. Since M is maximal in G, G = 〈a, y〉 is abelian, G = 〈a〉 × M and
a is of prime order. It follows that either (1) or (2) holds. If such a does not exist, then
y acts fixed point freely on N and N is nilpotent by a theorem of Thompson. Being
minimal normal in G, N is an elementary abelian p-group for some prime p different
from q . Moreover, the action of M on N is irreducible, since M is maximal in G.
Thus (3) holds.

Conversely, if (1), (2) or (3) holds, then G is nonsimple, 0M(G) has at least two
vertices, and two different maximal subgroups of G have trivial intersection. So there
exist two vertices M and M1 of 0M(G) such that dG(M, M1) > 2, as required. 2

It is easy to see that if G is as described in one of the items (1), (2) and (3) of
Proposition 1.4, then 0M(G) has no edges.

As a corollary of Proposition 1.4, we obtain the following theorem.

THEOREM 2.1. Let G be a finite nonsimple group. Then one of the following
statements holds.

(1) The graph 0M(G) has no edges and G either is cyclic of prime power order or
has the structure described in items (1), (2) and (3) of Proposition 1.4.

(2) The graph 0M(G) has at least two vertices and is complete.
(3) The graph 0M(G) has at least two vertices, is connected, diam(0M(G))= 2

and G is a primitive group.

In particular, if 0M(G) is connected, then diam(0M(G))≤ 2.
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PROOF. If 0M(G) has only one vertex then, as mentioned above, G is a cyclic group
of prime power order and (1) holds. If 0M(G) has two vertices M and M1 such that
dG(M, M1) > 2, then by Proposition 1.4 0M(G) has no edges and again (1) holds.
Otherwise, 0M(G) has at least two vertices, it is connected and diam(0M(G))≤ 2.
If diam(0M(G))= 1, then (2) holds.

So assume, finally, that diam(0M(G))= 2 and let M, M1 be maximal subgroups
of G satisfying dG(M, M1)= 2. Suppose that M contains a minimal normal
subgroup N of G. Since dG(M, M1)= 2, we have M ∩ M1 = {1} and consequently
M1 ∩ N = {1}. Hence G = N o M1 and by the maximality of M we have M = N and
|M1| = q , a prime. Since dG(M, M1)= 2, there exists a maximal subgroup M2 of G
such that M2 ∩ M1 6= {1} and M2 ∩ M 6= {1}. But then M2 ≥ M1, so M2 = M1 and
M2 ∩ M = {1}, a contradiction. Hence M contains no minimal normal subgroups of
G and G is a primitive group with the stabilizer M . 2

If G is solvable, we can say a little more.

THEOREM 2.2. Let G be a finite solvable group. Then one of the following statements
holds.

(1) The graph 0M(G) has no edges and G either is cyclic of prime power order or
has the structure described in items (1), (2) and (3) of Proposition 1.4.

(2) The graph 0M(G) has at least two vertices and is complete.
(3) The graph 0M(G) has at least two vertices, it is connected, diam(0M(G))= 2

and G = N o M, where N is the unique minimal normal subgroup of G,
CG(N )= N and M is a maximal subgroup of G of nonprime order.

In particular, if 0M(G) is connected, then diam(0M(G))≤ 2.

PROOF. If G is (abelian) simple, then certainly (1) holds. So assume that G is
nonsimple. Then, by Theorem 2.1, one of the items (1), (2) or (3) of Theorem 2.1
holds. Since the groups in items (1), (2) and (3) of Proposition 1.4 are clearly solvable,
item (1) of Theorem 2.1 implies item (1) of our theorem. Also item (2) of Theorem 2.1
implies item (2) of our theorem.

So assume, finally, that item (3) of Theorem 2.1 holds. Since diam(0M(G))= 2,
there exist two maximal subgroups M and M1 of G such that dG(M, M1)= 2. Then it
follows, as in the last paragraph of the proof of Theorem 2.1, that CoreG(M)= 1. By
the theorem of Baer (see [2, Theorem 15.2]) G has a unique minimal normal subgroup
N which satisfies CG(N )= N and G = N o M . If N is a maximal subgroup of G,
then M is of prime order and dG(N , M)= 2, which is impossible (see the proof of
Theorem 2.1). Thus N is not maximal in G and hence M is not of prime order. 2

3. On the graph 0M(G) for finite simple groups

The main aim of this section is to prove Theorem 1.1. In view of Proposition 1.4,
item (1) of Theorem 1.1 also completes the proof of Theorem 1.2. We start with the
following basic remark.
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PROPOSITION 3.1. Let G be a finite nonabelian simple group and let M1, M2 be
maximal subgroups of G. Then:

(i) if |M1| and |M2| are not coprime, then there exists g ∈ G such that M1 ∼ Mg
2

and dG(M1, Mg
2 )≤ 2;

(ii) if M1 and M2 are of even order, then M1 ∼ M2 and dG(M1, M2)≤ 2.

PROOF. (i) Let p be a prime dividing |M1| and |M2|, and let a ∈ M1 and b ∈ M2, with
|a| = |b| = p. Moreover, let P be a Sylow p-subgroup of G containing a. Since G is a
nonabelian simple group, we have P < G and there exists a maximal subgroup M of G
containing P . By the Sylow theorem b ∈ Ph for a suitable h ∈ G. Thus a ∈ M ∩ M1

and bh−1
∈ M ∩ Mh−1

2 . Therefore M1 ∼ Mh−1

2 and dG(M1, Mh−1

2 )≤ 2, as required.
(ii) Let a ∈ M1 and b ∈ M2, with |a| = |b| = 2. Then 〈a, b〉 is a dihedral group.

Thus 〈a, b〉 is solvable and hence it is a proper subgroup of G. Therefore there exists
a maximal subgroup M3 of G such that 〈a, b〉 ≤ M3 and we have M1 ∩ M3 6= {1} and
M2 ∩ M3 6= {1}. Thus M1 ∼ M2 and dG(M1, M2)≤ 2, as required. 2

We continue with preliminary results leading to the proof of Theorem 1.1. If G
is a finite group, we shall denote the set of all primes dividing |G| by π(G). From
Proposition 3.1 we obtain the following useful result.

PROPOSITION 3.2. Let G be a finite nonabelian simple group and suppose that
0M(G) is nonconnected. Then there exists a maximal subgroup M of G of odd order
such that M is not connected to any maximal subgroup of G of even order.

In particular, π(M) ∩ π(M2) is empty for any maximal subgroup M2 of G of even
order.

Moreover, if p is any prime dividing |M | and P is a nontrivial p-subgroup of G,
then NG(P) is of odd order.

PROOF. Since 0M(G) is nonconnected, there exist two disconnected maximal
subgroups M and M1 in G. By Proposition 3.1(ii), at least one of them, say M ,
has odd order and if M is connected to a maximal subgroup of G of even order, then
M1 is also of odd order and is not connected to any maximal subgroup of G of even
order. Hence, without loss of generality, we may assume that M is not connected
to any maximal subgroup of G of even order. It follows by Proposition 3.1(i) that
π(M) ∩ π(M2) is empty for any maximal subgroup M2 of G of even order.

If p divides |M | and P is a nontrivial p-subgroup of G, then NG(P) < G, since G
is nonabelian simple. Thus there exists M3 maximal in G such that NG(P)≤ M3. By
Proposition 3.1(i), M is connected to a conjugate of M3 and hence M3 must be of odd
order. In particular, NG(P) is of odd order, as claimed. 2

Using Proposition 3.2 we obtain another useful result.

PROPOSITION 3.3. Let G ' PSL(2, pe), where p is a prime and pe > 3. Then
0M(G) is connected and diam(0M(G))≤ 3.
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PROOF. Since pe > 3, G is a nonabelian simple group. Let M be a maximal subgroup
of G of odd order. If M is a p-group, then |M | = pe and |NG(M)| = (pe

− 1)pe/2.
By the maximality of M , we must have (pe

− 1)/2= 1, which implies that pe
= 3,

a contradiction. Hence M must contain an element y 6= 1 of prime order q , where
q 6= p. It follows by Satz II 8.5, Satz II 8.3 and Satz II 8.4 in [4] that NG(〈y〉) has even
order. If M∗ is a maximal subgroup of G containing NG(〈y〉), then it is of even order
and dG(M, M∗)≤ 1. Since M was an arbitrary maximal subgroup of G of odd order,
it follows from Proposition 3.2 that 0M(G) is connected.

Suppose that M and M1 are distinct maximal subgroups of G. If both are of even
order, then dG(M, M1)≤ 2 by Proposition 3.1(ii). So suppose that M is of odd order.
As shown above, there exists a maximal subgroup M∗ of G of even order such that
dG(M, M∗)≤ 1. If M1 is of even order, then dG(M∗, M1)≤ 2 and dG(M, M1)≤ 3.
So suppose, finally, that both M and M1 are of odd order. Then it follows by the list of
maximal subgroups of G (see, for example, [9, Example 7, p. 417]) that they are both
of order pe(pe

− 1)/2. Since pe > 3, we have

[pe(pe
− 1)/2]2 > (pe

− 1)pe(pe
+ 1)/2= |G|,

and it follows that dG(M, M1)= 1. Thus diam(0M(G))≤ 3, and the proof of
Proposition 3.3 is complete. 2

If G is a finite group, then the graph 0M(G) is related to the so-called prime graph
5(G), whose vertices are the primes dividing the order of G and two distinct vertices
p and q are joined by an edge if and only if G contains an element of order pq. In fact
we have the following lemma.

LEMMA 3.4. Let G be a finite group, p and q different primes and let M, M1 be
maximal subgroups of G such that p divides |M | and q divides |M1|. If p and q
are connected in the prime graph, then there exists f ∈ G such that M ∼ M f

1 and

dG(M, M f
1 )≤ 20.

PROOF. Since p and q are connected in 5(G), it follows by [5, Theorem 10] that
d5(G)(p, q)≤ 5. So it suffices to show that if the vertices p and q of 5(G) are joined
by an edge (that is, there exists an element x ∈ G of order pq), then there exists u ∈ G
such that M ∼ Mu

1 and dG(M, Mu
1 )≤ 4. Let a ∈ M be of order p, b ∈ M1 be of order

q , and let M2 be a maximal subgroup of G containing x . Then p and q divide the order
of M2 and, by Proposition 3.1(i), for suitable g, h ∈ G we have M ∼ Mg

2 , M1 ∼ Mh
2

and dG(M, Mg
2 )≤ 2, dG(M1, Mh

2 )≤ 2. Hence M ∼ Mh−1g
1 and dG(M, Mh−1g

1 )≤ 4,
as required. 2

In [1], Chigira et al. proved, using the classification of finite simple groups, that if
G is a finite simple group and p is an odd prime not connected with 2 in the prime
graph, then a Sylow p-subgroup of G is abelian.

Moreover, Williams proved in [10] that if G is a finite simple group and π is a
connected component in the prime graph of G not containing 2, then G has a nilpotent
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Hall π -subgroup H such that, for any g ∈ G, either H ∩ H g
= {1} or H ∩ H g

= H
and CG(h)⊆ H for each h ∈ H\{1}.

Finally, Sawabe recently proved in [8], using the classification of finite simple
groups, that if P is an abelian Sylow p-subgroup of a finite simple group G, then one
of the following holds: either NG(P)/CG(P) contains an involution, or P is cyclic,
or G ' PSL(2, pe) for some pe > 3. Using these results we are able now to prove
Theorem 1.1.

PROOF OF THEOREM 1.1. If G is of prime order, then the theorem certainly holds.
By Proposition 3.3, the theorem also holds if G = PSL(2, pn). So we may assume
that G is a nonabelian simple group and G 6= PSL(2, pn). The distance dG in 0M(G)
will be denoted by d . We shall prove each item separately.

(1) Suppose that 0M(G) is nonconnected. Then, by Proposition 3.2, there exists a
maximal subgroup of G of odd order which is not connected to any maximal subgroup
of G of even order. Let q be minimal in the set of all primes dividing the order of a
maximal subgroup of G not connected to any maximal subgroup of G of even order.
Then, by Proposition 3.1(i), no maximal subgroup of G of order divisible by q is
connected to a maximal subgroup of G of even order. In particular, each maximal
subgroup of G of order divisible by q is of odd order. Moreover, by Lemma 3.4, q is
not connected to the prime 2 in the prime graph of G.

Let π be the connected component in the prime graph of G containing q . Then, by
the results in [10], there exists a nilpotent π -Hall subgroup H of G such that, for any
g ∈ G, either H ∩ H g

= H or H ∩ H g
= {1} and CG(h)≤ H for each h ∈ H\{1}.

There exists y ∈ NG(H)\H , since otherwise it follows from the properties of H that
G is a Frobenius group and G is not a simple group, a contradiction. We may assume
that |y| = p, where p is a prime and p 6= q .

Since H〈y〉< G, there exists a maximal subgroup M of G containing H〈y〉. As
q | |M |, M is not connected to any maximal subgroup of G of even order and, by
the minimality of q , q < p. Moreover, M is of odd order and it follows, using the
arguments in the proof of Proposition 3.2, that if r is a prime dividing |M | and R is a
nontrivial r -subgroup of G, then NG(R) is of odd order.

Let Q be a Sylow q-subgroup of G, Q ≤ H . Since y ∈ NG(H) and H is nilpotent,
we have y ∈ NG(Q). Moreover, since q is not connected to 2 in the prime graph
of G, it follows by [1] that Q is abelian. Hence, by Sawabe’s results in [8], either
NG(Q)/CG(Q) contains an involution or Q is cyclic or G ' PSL(2, qe) for some
qe > 3. But NG(Q) is of odd order and, by Proposition 3.3, G is not isomorphic to
any such PSL(2, qe). Hence the only possibility is that Q is cyclic. If s ∈ Q is of
order q , then y ∈ NG(〈s〉) and since q < p, it follows that [s, y] = 1. Consequently
y ∈ CG(s)⊆ H , a final contradiction.

(2) Suppose that the result is false, and there exist maximal subgroups M and M∗

of G satisfying d(M, M∗) > 62. Then, by Proposition 3.1(ii), at least one of these
subgroups, say M , is of odd order. If d(M, Me)≤ 30 for some maximal subgroup Me
of G of even order, then d(M∗, M∗e ) > 30 for all maximal subgroups M∗e of G of even
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order, since otherwise we get, by Proposition 3.1(ii) for some M∗e ,

d(M, M∗)≤ d(M, Me)+ d(Me, M∗e )+ d(M∗e , M∗)≤ 30+ 2+ 30= 62,

a contradiction. Therefore we may assume that there exists a maximal subgroup of G
of odd order, say M , such that d(M, Me) > 30 for each maximal subgroup Me of G
of even order.

Let p1 ∈ π(M). If p1 is connected to 2 in5(G), then it follows by Lemma 3.4 that
d(M, Me)≤ 20 for some maximal subgroup Me of G of even order, a contradiction.
Hence p1 is not connected to 2 in 5(G).

Let π1 be the connected component of5(G) containing p1. Since 2 /∈ π1, it follows
by [10], as shown in (1), that there exists a nilpotent Hall π1-subgroup H1 of G, such
that CG(h)≤ H1 for each h ∈ H1\{1} and there exists y2 ∈ NG(H1)\H1 of prime order
p2 /∈ π1. Moreover, by [1], H1 is abelian.

Let q ∈ π1 and let Q be a Sylow q-subgroup of H1. Then Q is abelian. If NG(Q)
is of even order, let Me denote a maximal subgroup of G containing NG(Q). Then
Me is of even order, and since p1 ∈ π(M), q ∈ π(Me) and p1, q ∈ π1, it follows by
Lemma 3.4 that d(M, Mg

e )≤ 20 for some g ∈ G, a contradiction. Hence NG(Q) is
of odd order and since G 6= PSL(2, pn), it follows by [8] that Q is cyclic. Hence
H1 is cyclic. Moreover, since y2 ∈ NG(H1), it normalizes Q and consequently y2
normalizes 〈s〉, where s is an element of order q in Q. But y2 /∈ H1, so [y2, s] 6= 1 and
since |y2| = p2, a prime, it follows that p2 < q . Similarly, p2 < r for each r ∈ π1.

Let M2 be a maximal subgroup of G containing H1〈y2〉. Then p1 ∈ π(M) ∩ π(M2)

and it follows by Proposition 3.1(i) that d(M, Mg2
2 )≤ 2 for some g2 ∈ G. Clearly p2 ∈

π(M2) and if p2 is connected to 2 in 5(G), then, by Lemma 3.4, d(M2, Me)≤ 20 for
some maximal subgroup Me of G of even order and

d(M, Mg2
e )≤ d(M, Mg2

2 )+ d(Mg2
2 , Mg2

e )≤ 2+ 20= 22,

a contradiction.
Therefore p2 is not connected to 2 in 5(G), and if π2 is the connected component

of 5(G) containing p2, then, arguing as before, we may conclude that there exists a
cyclic Hall π2-subgroup H2 in G and an element y3 ∈ NG(H2)\H2 of prime order p3,
such that p3 < r for each r ∈ π2. In particular, p3 /∈ π1 ∪ π2. Let M3 be a maximal
subgroup of G containing H2〈y3〉. Then, by Proposition 3.1(i), d(M2, Mg3

3 )≤ 2 for
some g3 ∈ G and, as mentioned above, d(M, Mg2

2 )≤ 2. If p3 is connected to 2 in
5(G), then, by Lemma 3.4, d(M3, Me)≤ 20 for some maximal subgroup Me of G of
even order and

d(M, Mg3g2
e ) ≤ d(M, Mg2

2 )+ d(Mg2
2 , Mg3g2

3 )+ d(Mg3g2
3 , Mg3g2

e )

≤ 2+ 2+ 20= 24,

a contradiction. Therefore p3 is not connected to 2 in 5(G).
We continue, by proving the existence of primes

p1 > p2 > p3 > p4 > p5 > p6
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no two of which are connected in 5(G) and no pi is connected to 2 in 5(G), since
otherwise d(M, Me)≤ 2(i − 1)+ 20≤ 30 for some maximal subgroup Me of G of
even order, a contradiction. Hence 5(G) has at least seven connected components.
But now we have reached the final contradiction, since by [10] the graph 5(G) for a
finite group G has at most six connected components.

The proof of Theorem 1.1 is complete. 2

As mentioned above, Theorem 1.2 follows from Proposition 1.4 and item (1) of
Theorem 1.1.

4. On the graph 0M(G) for finitely generated infinite groups

Our main aim in this final section is to prove the following theorem.

THEOREM 4.1. Let G be a finitely generated infinite nonsimple group. Then the graph
0M(G) is nonconnected if and only if G = N o M, where N is an infinite simple
group, |M | = q, q is a prime different from 2 and every nontrivial element of M acts
irreducibly and fixed point freely on N.

PROOF. Assume that the graph 0M(G) is nonconnected and let M and M1 be
disconnected maximal subgroups of G. Let N be a nontrivial proper normal subgroup
of G and let M2 be a maximal subgroup of G containing N . Then either M2 ∩ M = {1}
or M2 ∩ M1 = {1} and we may assume, without loss of generality, that N ∩ M = {1}.
Hence G = N o M and, arguing as in the proof of Proposition 1.4, we obtain that
|M | = q , a prime. Let M = 〈x〉.

First we show that N is a minimal normal subgroup of G. In fact, if N1 is a
nontrivial normal subgroup of G satisfying N1 ≤ N , then G = N1 M = N M and since
M ∩ N = {1}, it follows that N1 = N .

Consequently, every nontrivial proper normal subgroup of G is a minimal normal
subgroup of G and in particular G ∈ min-n, that is, G satisfies the minimal condition
on normal subgroups.

Next we show that N is an infinite simple group. Since the index |G/N | = q is
finite, N must be infinite. It remains only to show that N is a simple group.

Since G satisfies the min-n condition and the index of N in G is finite, it follows
by a result of J. Wilson that also N ∈ min-n (see, for example, [6, Theorem 5.21]).
Let S be a minimal normal subgroup of N . Then SSx Sx2

· · · Sxq−1
is normal in G,

whence N = SSx Sx2
· · · Sxq−1

and N is the direct product of some of the Sx i
(see [6,

Lemma 5.23]). Therefore S is an infinite simple group. In particular, N is nonabelian.
Denote by B the set of the Sx i

involved in the above mentioned direct product.
Now we show that S = N .
Assume not. Then, for each i ∈ {1, . . . , q − 1}, Sx i � S. Since Sx j

E N for j ∈
{1, . . . , q} and N is a direct product of infinite simple groups, it follows by Remak’s
theorem (see, for example, [7, Theorem 3.3.12]), that Sx j

∈ B for each such j . Thus
N = S × Sx

× Sx2
× · · · × Sxq−1

. Let a ∈ S\{1}. Then D = 〈a, ax , . . . , axq−1
〉 is an
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abelian group and x, a ∈ NG(D). It follows that NG(D)≥ 〈a, x〉> M and by the
maximality of M we get NG(D)= G. Thus D is normal in G, contradicting the
minimality of N . Consequently, N = S is an infinite simple group, as claimed.

Since M is a maximal subgroup of G of prime order, every nontrivial element of
M acts irreducibly and fixed point freely on N . Finally, q 6= 2, since otherwise, letting
a ∈ N\{1} and M = 〈x〉, we get [a, x2

] = 1, which implies that [a, x]x = [a, x]−1.
Since x acts irreducibly and fixed point freely on N , it follows that N = 〈[a, x]〉 and
N is abelian, again a contradiction.

The converse is obvious. 2

We conclude by proving Corollary 1.5.

PROOF OF COROLLARY 1.5. Since G is locally graded, each finitely generated
subgroup of G has a nontrivial finite homomorphic image. Suppose that G is infinite.
Now G is finitely generated, so it also has a nontrivial finite homomorphic image, and
since G is infinite, it follows that G is nonsimple.

If 0M(G) is nonconnected, then, by Theorem 4.1, G has a normal simple subgroup
N of finite index. So N is an infinite finitely generated subgroup of G and does not
have a finite nontrivial homomorphic image, a contradiction. Therefore, if 0M(G) is
nonconnected, then G must be finite. 2
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