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Abstract

We propose an estimator for the cumulative distribution function G of the sojourn time in
a steady-state M/G/∞ queueing system, when the available data consists of the arrival and
departure epochs alone, without knowing which arrival corresponds to which departure.
The estimator generalizes an estimator proposed in Brown (1970), and is based on a
functional relationship between G and the distribution function of the time between a
departure and the rth latest arrival preceding it. The estimator is shown to outperform
Brown’s estimator, especially when the system is heavily loaded.
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1. Introduction

An M/G/∞ queue is a system with no actual queueing: items arrive in a Poisson stream at
rate λ and are processed immediately, as there is no limit to the number of servers: so their
sojourn times consist of their processing times alone. The sojourn times are assumed to have
a common cumulative distribution function (CDF) G, and to be independent of each other and
of the arrival process.

While we formulate our analysis in queueing-theoretic terms, the study of such systems
antedates any queueing studies. One is often interested in estimating sojourn times in a
changing population, in which items arrive in a Poisson stream and stay for a random time. An
early example in physics is the Einstein–Smoluchowski theory, as developed by Smoluchowski
(1906), (1916), which explains the Brownian motion of colloidal particles in suspension and
was used to measure the diffusion coefficient. The counting process of these particles came
to be known as the Smoluchowski process, which is none other than the M/G/∞ process; see
the reviews Chandrasekhar (1943) and Kac (1959), and, more recently, Bingham and Dunham
(1997). Examples in medicine are measurements such as the mobility of spermatozoa (see
Rothschild (1953), Ruben (1963), and Lindley (1956)) and the mobility of white blood cells
(see Brenner et al. (1978)). Further examples include counting animals in feeding grounds (see
Duffey and Watt (1971)), cars on a stretch of road (see Brown (1970)), and messages in transit
in a communication system (see Ayesta and Mandjes (2009)).

From the statistical point of view, an M/G/∞ system gives rise to a semiparametric estimation
problem, in which one wishes to estimate both the infinite-dimensional CDF G and the single-
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dimensional parameter λ. Given a complete realization of the system over a finite time interval,
one can easily estimate G nonparametrically from direct observations of the sojourn times,
and estimate λ from the arrival process. However, in an M/G/∞ system it is often difficult
or impossible to keep track of each item from arrival to departure, and, thus, to observe its
exact sojourn time. One may distinguish between three types of partial information that might
be available in such a setting: (i) the queue-length process {Qt } (from which the arrival and
departure epochs can be observed, but not their matching, and, hence, also not the sojourn
times), (ii) the ‘busy-period’ process {I(Qt>0)}, which indicates only whether the system is
empty or not, and (iii) the arrival and departure epochs alone (again, without their matching).
Note that data of type (i) are more informative than those of types (ii) and (iii), in the sense that
data of both types (ii) and (iii) can be reconstructed from data of type (i), but not vice versa.
The two types of data (ii) and (iii) are not ordered in their informativeness, in the sense that
neither can be reconstructed from the other.

The study of queueing systems with such partial information dates back at least to Parzen
(1962). Later works focused more on statistical inference. Brown (1970) studied an M/G/∞
system with information of type (iii), and proposed a method for estimating G; more on this
method below. Pickands and Stine (1997) derived two methods for estimating G and λ in a
discrete-time M/G/∞ queue, under information of type (i). Bingham and Pitts (1999) studied
the same problem, and also considered estimation under information of type (ii). Hall and Park
(2004), and later Park (2007), proposed a kernel-based deconvolution estimator for the density
of the processing time, under information of type (ii). In a recent related work, Grübel and
Wegener (2011) derived a method for matching arrivals and departures in an M/G/∞ queue,
when the distribution G is known and the available data are the order statistics of the arrivals
and departures.

In this work we generalize the estimator proposed in Brown (1970) for the CDF G of the
sojourn time in a steady-state M/G/∞ queue, under information of type (iii), i.e. when the
arrival and departure epochs are observed without knowing which arrival corresponds to which
departure. A concrete example for a situation in which such an estimator is required was given
in Brown (1970): one may wish to estimate the distribution of time vehicles spend on a highway,
given only the entrance and exit times.

We first summarize Brown’s result. Let Yi be the time of the ith departure, Wi the sojourn
time ending with the ith departure (assumed to have a finite mean), Zi the time between Yi and
the latest arrival preceding it, and H the CDF of Zi . Note that, under the assumed available
information, namely type (iii), the Wi are not observable, whereas the Zi are observable. By
conditioning on the number of arrivals in the time interval (Yi − Wi, Yi), Brown derived the
conditional CDF H given Wi as follows:

HZ|W(z | w) = P(Zi ≤ z | Wi = w) =
{

1 − e−λz, z < w,

1, z ≥ w.

(Brown’s conditioning on the number of arrivals is not necessary: see our proof of Proposition 1,
below, for an alternative approach for proving a more general version of the last equality.)
Integrating over w with respect to the sojourn time distribution G, Brown obtained the functional
relationship H(z) = 1 − (1 − G(z))e−λz, which may be inverted to yield

G(x) = 1 − (1 − H(x))eλx. (1)

By observing the arrival and departure times in a time interval spanning n departures, one may
construct an estimator λn for λ, and also an ‘empirical’ estimator Hn(x) = (1/n)

∑n
i=1 1{Zi≤x}
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Figure 1: The true CDF G and a typical realization of Brown’s estimator Gn, Equation (3), under
moderate load (ρ = arrival rate/processing rate = 1) in the left-hand panels, and under heavier load
(ρ = 4) in the right-hand panels. Note how the estimates Gn(x) for large values of x are less accurate
when the load is higher. Here, G is exponential with rate 1 and the sample size is n = 100 (upper panels)

or n = 5000 (lower panels).

for H . Substituting Hn and λn for H and λ into (1) yields the following estimator for G:

Vn(x) = 1 − (1 − Hn(x))eλnx. (2)

This estimator, however, is not always monotonically increasing, and to rectify this Brown
defined

Gn(x) = sup
y≤x

Vn(y), (3)

which was shown to converge uniformly and almost surely to G, in the sense that

P

(
lim

n→∞ sup
x

|G(x) − Gn(x)| → 0
)

= 1.

As Brown acknowledged, the estimator Gn in (3) is ‘clearly not the best estimator in any
sense’ (see Brown (1970), page 653). In particular, this Gn essentially estimates G only at
the points Z1, Z2, . . . , Zn, through Gn(Z1), Gn(Z2), . . . , Gn(Zn), whereas we would like
to estimate G at the more ‘typical’ points W1, W2, . . . , Wn (recall that G is the CDF of the
Wi). Under heavy load—i.e. when the sojourn times Wi are large relative to the interarrival
times—the Zi become small relative to the Wi , so inference regarding G(x) for large x becomes
unreliable; see Figure 1.
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In this work we generalize Brown’s estimator by deriving a functional relationship between
G and the CDF of the time between a departure and the rth latest arrival preceding it. The
resulting estimator for G coincides with Brown’s estimator when r = 1. By choosing the
‘right’ r , we can estimate G(x) more reliably than with Brown’s estimator, for a wider range
of x values.

2. Estimating G via rth-latest arrivals for fixed r

Consider a steady-state M/G/∞ queueing system with arrival rate λ and sojourn time CDF
G having mean mG = ∫ ∞

0 x dG(x) < ∞. Let ρ be the load on the system, defined as

ρ = arrival rate

processing rate
= λ

1/mG

= λmG.

The arrivals and departures to and from the system are observed along the time interval
[0, T ], which includes n departures. Let Yi be the time of the ith departure, Wi the true
(but unobservable) sojourn time corresponding to the ith departure, Z

(r)
i the time between Yi

and the rth nearest arrival to the left of Yi , and H(r) the CDF of the Z
(r)
i ; see Figure 2.

Proposition 1. The conditional CDF of Z
(r)
i given Wi = w is

P(Z
(r)
i ≤ z | Wi = w) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
r−1∑
j=0

e−λz(λz)j

j ! , z < w,

1 −
r−2∑
j=0

e−λz(λz)j

j ! , z ≥ w.

(4)

Proof. The event {Z(r)
i ≤ z} is exactly the event ‘there were at least r arrivals in the time

interval [Yi − z, Yi)’. Since we condition on the event {Wi = w}, we distinguish between two
cases. If z < w, the (known) arrival at Yi − w is not included in the interval (Yi − z, Yi), and
since the arrivals form a Poisson process with rate λ, the probability of having at least r of them
in the interval is 1 − ∑r−1

j=0e−λz(λz)j /j !. If z ≥ w, the arrival at Yi − w is included in the
interval, so to have a total of at least r arrivals, we need at least r − 1 additional arrivals in the
interval; by the lack-of-memory property of the Poisson process, these additional arrivals still
constitute a Poisson process, so the probability of having at least r − 1 of them in that interval
is 1 − ∑r−2

j=0e−λz(λz)j /j ! (here and below, summation from 0 to −1 in the case r = 1 is to be
interpreted as the empty sum, that is, as 0).

Proposition 2. For each r , the following functional relationship between G and H(r) holds:

G(x) = 1 − 1 − H(r)(x) − ∑r−2
j=0 e−λx(λx)j /j !

e−λx(λx)r−1/(r − 1)! . (5)
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Figure 2: The random variables Z
(1)
i , Z

(2)
i , Z

(3)
i , and Wi in a realization in which there was exactly one

arrival during the processing of the ith departing item. Arrivals are denoted by crosses and departures are
denoted by filled circles.

Proof. Using the law of total probability, we integrate (4) over w with respect to the sojourn
time distribution G to derive the unconditional CDF of Z

(r)
i :

H(r)(z) = P(Z
(r)
i ≤ z)

=
∫ ∞

0
P(Z

(r)
i ≤ z | Wi = w) dG(w)

=
∫ z

0

(
1 −

r−2∑
j=0

e−λz(λz)j

j !
)

dG(w) +
∫ ∞

z

(
1 −

r−1∑
j=0

e−λz(λz)j

j !
)

dG(w)

= 1 − (1 − G(z))e−λz(λz)(r−1)

(r − 1)! −
r−2∑
j=0

e−λz(λz)j

j ! .

Inverting this relationship between H(r)(z) and G(z), the proposition is proved. This equality
is the counterpart of (1).

Proposition 3. For each r , the sequence Z
(r)
1 , Z

(r)
2 , . . . is stationary and ergodic.

Proof. The proof follows the same steps as its counterpart in Brown (1970). Stationarity
is immediately established from the assumption that the queue is in steady state. To prove
ergodicity, it needs to be shown that every invariant event of the sequence {Z(r)

i } has probability 0
or 1. By Proposition 6.32 of Breiman (1992), every invariant event of {Z(r)

i } is a tail event,
so it is sufficient to show that all tail events of {Z(r)

i } have probability 0 or 1. This will follow
if we show that, for any fixed m, the random variables Z

(r)
1 , . . . , Z

(r)
m are independent of the

tail σ -field of {Z(r)
i }. Since mG < ∞, there are finitely many customers at time Ym (the

time of the mth departure) with probability 1, so that there exists a time t > Ym by which all
these customers have departed from the queue. All Zi corresponding to departures subsequent
to the rth arrival after t are no longer a function of Z

(r)
1 , . . . , Z

(r)
m . Thus, Z

(r)
1 , . . . , Z

(r)
m are

independent of the tail σ -field of {Z(r)
i }, and the proposition is proved.

Let H
(r)
n (x) = (1/n)

∑n
i=11{Z(r)

i ≤x} be the empirical estimator of H(r), and let λn be a
strongly consistent estimator of λ, say the usual maximum likelihood estimator (the inverse of
the mean interarrival time). By substituting H

(r)
n and λn for H and λ into (5), we define the

counterpart of Vn from (2) as follows:

V (r)
n (x) = 1 − 1 − H

(r)
n (x) − ∑r−2

j=0 e−λnx(λnx)j /j !
e−λnx(λnx)r−1/(r − 1)! .

https://doi.org/10.1239/jap/1389370098 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370098


Sojourn time estimation in an M/G/∞ queue 1049

The function V
(r)
n still cannot serve as a reasonable estimator of G for two reasons: it may

assume values outside the interval [0, 1] (this is true only for r ≥ 2), and, in general, it is not
monotonically increasing. We can deal with values outside [0, 1] either by discarding them,
or by replacing values above 1 with 1, and values below 0 with 0. Simulation results (as in
Nelgabatz (2012)) seem to indicate that the first approach yields slightly better results, so we
adopt it henceforth.

One way to build a monotonically increasing function from V
(r)
n is to follow Brown and

define
G̃(r)

n (x) = sup
y≤x

V (r)
n (y). (6)

This function is a strongly and uniformly consistent estimator of G, as proved in the following
theorem.

Theorem 1. For each r , the estimator G̃
(r)
n in (6) converges to G uniformly and almost surely

as n → ∞, in the sense that

P

(
lim

n→∞ sup
x

|G(x) − G̃(r)
n (x)| → 0

)
= 1.

Proof. The proof again follows the same steps as its counterpart in Brown (1970). Since
the sequence {Z(r)

i } is stationary and ergodic (see Proposition 3), both H
(r)
n (x) and H

(r)
n (x−)

converge to H(r)(x) and H(r)(x−), respectively, almost surely for all x, and because H
(r)
n and

H(r) are monotone and bounded the convergence is uniform. This implies that V (r)
n converges to

G uniformly on compact intervals; hence, supy≤x V
(r)
n (y) converges to supy≤x G(y) = G(x),

i.e. G̃(r)
n (x) converges to G(x) for every x, and similarly for x−. This implies by monotonicity

and boundedness that G̃
(r)
n converges to G uniformly, almost surely.

An alternative way of eliminating the nonmonotonicity problem is to use isotonic regression,
i.e. replace the V

(r)
n (Z

(r)
i ) values with the closest possible values (under a quadratic loss

function) that are monotonically increasing. More specifically, we let G
(r)
n be a piecewise-

constant function, with possible jumps at the points Z
(r)
i , such that

G(r)
n (Z

(r)
i ) = gi, (7)

where the gi are the solution of

minimize
g1,...,gn

n∑
i=1

(gi − V (r)
n (Z

(r)
i ))2, such that gi ≤ gj whenever Z

(r)
i ≤ Z

(r)
j . (8)

This quadratic programming problem has a convex objective function and its linear constraints
define a convex, closed feasibility region; hence, the problem always possesses a unique solution
(see Robertson et al. (1988)). Furthermore, the problem can be efficiently solved using the PAVA
algorithm, as described, for example, in De Leeuw et al. (2009).

Simulation results (as in Nelgabatz (2012)) indicate overwhelmingly that the isotonic esti-
mator G

(r)
n defined via (7) and (8) is superior to the supremum estimator G̃

(r)
n defined in (6).

Therefore, we henceforth use the isotonic estimator alone. While we believe that the isotonic
estimator is consistent, it seems that proving this is far from simple. The difficulty is that
whereas the supremum estimator of G(x) depends only on observations in the compact interval
[0, x], the isotonic estimator of G(x) depends on all the observations in the range [0, ∞), so
we cannot use uniform convergence of V

(r)
n to G on compact sets.

https://doi.org/10.1239/jap/1389370098 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370098


1050 N. BLANGHAPS ET AL.

0.0

0.2

0.4

0.6

0.8

1.0

G ~ exponential G ~ uniform

0 10

3
4
5
6

7
8
910

2
1

3
4
5
6

7
8
9 10

2
1

ρ

G ~ Pareto

3
4

5
6

7
8
9

2
1

10

E
(m

ax
x|G

n 
  (

x)
 −

 G
(x

)|)
(r

)

2 4 6 8 0 102 4 6 8 0 102 4 6 8
ρρ

Figure 3: E(supx |G(r)
n (x) − G(x)|) as a function of the load ρ, as estimated by simulation. The ten

curves in each panel correspond to r = 1, . . . , 10. The processing time distribution G is exponential (left
panel), uniform (middle panel), and Pareto (right panel). The sample size n = 5000. See Section 4 for

simulation details.

As a criterion for judging the quality of the estimator, we use the mean L∞ error,

E(supx |G(r)
n (x) − G(x)|),

which we estimate via simulation. This criterion is closely related to the statistic of the
Kolmogorov–Smirnov test (see Massey (1951)), which is probably the most widely used
statistical test for comparing two distributions. This is also a highly stringent criterion, and
indeed, as shown below, the sample size n has to be rather large in order to obtain reasonable
estimates in some settings. In Figure 3 we show the performance of the estimator as a function
of the load ρ for three types of G—exponential, uniform, and Pareto—and for r = 1, . . . , 10.
The most prominent feature of Figure 3 is that, for each fixed r , the quality of the estimator
varies greatly with ρ, and that the different curves of E(maxx |G(r)

n (x) − G(x)|) for different
r are very different from each other. As a result, different rs are optimal for different values of
ρ, and the larger ρ, the larger the optimal r . This observation is in line with Figure 1, which
showed that, when ρ is large, using r = 1 yields a poor estimate.

3. Estimating G via rth-latest arrivals for adaptively chosen r

The values of the performance criterion E(maxx |G(r)
n (x)−G(x)|), as shown in Figure 3, are

a rather complex function of G, λ, n, and r (the dependence on λ is suppressed in our notation,
and the dependence on the observations Z1, . . . , Zn is integrated out through the expectation
operator). Of these factors, G and λ are exogenously given, n is dictated by the data collection
constraints, and so r is the only factor that may be chosen at the statistical analysis stage.
Ideally, we would use the optimal r , which minimizes the performance criterion given the G,
λ, and n at hand:

r∗ = arg min
r

E

(
max

x
|G(r)

n (x) − G(x)|
)
. (9)

However, while n is always known in advance and λ may be easily and accurately estimated
from the data, it is the unknown G which complicates the choice of the optimal r (indeed, the
very purpose of this work is to estimate G).

A simpler approach is to base the choice of r not on estimates of λ and G, but rather, on the
load ρ, which summarizes the relationship between them. Recall that it was indeed the change
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Figure 4: Mean queue length mQ and E(m̂K) as a function of ρ, as estimated from simulation.
The distribution G is exponential and n = 5000.

in the load which rendered Brown’s original estimator unsatisfactory (see again Figure 1), and
that ρ is the horizontal axis of the graphs in Figure 3, which allowed us to study how the
performance of the estimator varies with r . While it is difficult to estimate ρ directly, we will
calculate a statistic closely related to ρ, use it to estimate ρ, and only then choose r , as explained
below.

Let mQ be the mean queue length (recall that the system is assumed to be in steady state, so
that this mean is constant in time). From Little’s formula (see Ross (2010)), it is known that
mQ = λmG, so ρ = λmG = mQ. To estimate ρ, then, we could use an estimate of mQ. If
the queue-length process {Qt } were observable over the sampling period [0, T ], we could use
m̂Q = (1/T )

∫ T

0 Qt dt for this purpose. However, under our assumptions, only the arrival and
departure epochs are observable, so this approach may not be pursued. Still, we could use a
similar approach. Let {Lt , 0 ≤ t ≤ T } be a process that starts at L0 = 0, and then increases by
1 with each arrival and decreases by 1 with each departure; this process can be constructed from
the observed data. Next, define another process, {Kt, 0 ≤ t ≤ T }, via Kt = Lt −min0≤s≤T Ls ,
and let m̂K = (1/T )

∫ T

0 Kt dt . The process {Kt } coincides with {Qt } if the system becomes
empty at least once during the sampling period, in which case m̂K = m̂Q also; in general,

Kt = Qt − min
0≤s≤T

Qs ≤ Qt, 0 ≤ t ≤ T (10)

(the larger the sample size n, the higher the probability of {Kt } coinciding with {Qt }). As the
load increases, m̂Q grows in mean linearly (this is because m̂Q is an unbiased estimator of
mQ, so E(m̂Q) = E((1/T )

∫ T

0 Qt dt) = (1/T )
∫ T

0 E(Qt ) dt = (1/T )
∫ T

0 mQ dt = mQ = ρ).
From (10), it follows that E(m̂K) ≤ ρ. Although the difference in mean between m̂Q and m̂K

increases with ρ, m̂K still holds information on m̂Q; see Figure 4. Let h be the function that
relates ρ to m̂K (for fixed n) via h(ρ) = E(m̂K), and let h−1 be its inverse.

We now propose the following approach for selecting r̂∗, the estimate of the optimal r∗
from (9). Given only n, we use data such as those presented in the left-hand panel of Figure 3,
to partition [0, ∞) into intervals separated by cutoff points 0 = c0 < c1 < c2 < · · · , such
that r∗ = i when ρ ∈ [ci−1, ci] (i.e. when ρ is in the ith interval, the optimal r is i); see
Table 1. Using data such as those presented in Figure 4, we estimate h−1 by ĥ−1. These are

https://doi.org/10.1239/jap/1389370098 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370098


1052 N. BLANGHAPS ET AL.

Table 1: The first ten cutoff points ci used to estimate r∗ for a sample size n = 5000.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 1.8 2.8 4.5 6.0 7.3 8.1 9.1 9.8 10.7

r = r*
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0 10
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E
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x|G

n 
  (

x)
 −
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)|)
(r

)

2 4 6 8 0 102 4 6 8 0 102 4 6 8
ρρ

r = r*ˆ r = {r* − 1, r*, r*+1}ˆ ˆ ˆ

Figure 5: E(supx |G(r)
n (x) − G(x)|) as a function of the load ρ when r is the optimal r∗, the adaptively

chosen r̂∗, and a combination of r̂∗ − 1, r̂∗, and r̂∗ + 1. The simulation parameters are as in Figure 3.

two preliminary steps that are done once (for each n), and are accomplished using simulation
results only; no real data sample is used up to this point. Next, given the arrival and departure
epoch data, we first compute m̂K as explained above, and then let r̂∗ = i for the i satisfying
h−1(m̂K) ∈ [ci−1, ci]. The final estimator of G is Gr̂∗

n .
The left panel of Figure 5 shows how the estimates based on this procedure perform when

G is exponential. The solid curve is the value of E(maxx |G(r)
n (x) − G(x)|) using the optimal

r = r∗ (i.e. the pointwise minimum of the curves from Figure 3), and the dashed curve consists
of the E(maxx |G(r)

n (x) − G(x)|) values obtained using the adaptively chosen r = r̂∗, as
described above. The two curves follow each other very closely, suggesting that the adaptive
procedure succeeds, at least in the exponential case, to select good rs.

The cutoff points ci and the function ĥ−1 were estimated while assuming an exponential G,
yet they produce reasonable estimates also when G departs considerably from exponentiality.
In the middle and right panels of Figure 5, G is uniform and Pareto, respectively, but the ci

and ĥ−1 are exactly those used in the left panel, in which G was exponential. The estimation
results using the adaptively chosen r̂∗ (dashed curves) still do not depart considerably from
those obtained using the optimal r∗ (solid curve) for the true G (uniform or Pareto).

The estimator may be further improved, as shown by the third, dotted curve appearing in
each of the panels of Figure 5. This curve corresponds to an estimator that uses several rs at
the same time. Recall that the input to the isotonic regression procedure was the set of pairs
{Z(r)

i , G
(r)
n (Z

(r)
i )} for some r . One may consider several such sets of pairs corresponding to

several rs, and run the isotonic regression over their union. The dotted curves in Figure 5 are
the results of such a procedure, when using a combination of three rs: the r̂∗ selected using
the adaptive procedure described above, and, in addition, r̂∗ + 1 and r̂∗ − 1 (the latter omitted
when r̂∗ = 1). The resulting estimates indeed improve upon those obtained using r̂∗ alone,
and, for many values of ρ, also improve upon those obtained using r∗.
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Figure 6: E(supx |G(r)
n (x) − G(x)|) as a function of the load ρ for a sample size n = 1000, where the

adaptively chosen r̂∗ values are based on the cutoff points {ci} derived for n = 5000 (see Table 1).

In principle, the cutoff points {ci} need to be estimated anew for each sample size n, at the
preliminary simulation stage. However, the estimation results seem to depend rather weakly
on the choice of n at that stage: in Figure 6 we show again E(maxx |G(r)

n (x) − G(x)|) as a
function of ρ, this time for n = 1000; in each of the three panels, the solid curve is based on
the optimal r = r∗ for this new n, but the dashed curve corresponds to the adaptively chosen
r = r̂∗, based on the {ci} values derived for n = 5000 (see Table 1). Again, the two curves are
rather close to each other.

4. A note on simulation

All simulations were carried out using theR programming language (see www.r-project.org).
Each estimated point is based on 1000 simulation replications.

The arrival rate was kept constant at λ = 1 in all cases. To vary the load ρ, the sojourn time
distribution G was varied as follows. When G is exp(η) or U(0, b), we set η = 1/ρ or b = 2ρ,
respectively, to induce the desired load. For a Pareto G, we used a distribution with the density

f (x) = 3β(βx + 1)−4, x ≥ 0.

This is a slightly modified version of the ‘plain’ Pareto distribution having only first and second
finite moments (i.e. with density f (x) = 3x−4, x ≥ 1): it is shifted by a unit to the left, so that
its support is [0, ∞), and is further parameterized by the scale parameter β, so that its mean is
1/2β. Thus, we set β = 1/(2ρ) to induce the desired load.

To let the system approach steady state, the queue was started empty, and then run for 100
arrivals before sampling began.

Further simulation results and statistical analysis of the performance of our estimators in the
estimation of G(x) at individual points x are given in Nelgabatz (2012).

5. Discussion

In this paper we proposed an estimator for the CDF G of the sojourn time in an M/G/∞
queueing system, when only the arrival and departure epochs are known, without their pairing.
To the best of our knowledge, the only other published work that deals with this exact problem is
Brown (1970); indeed, our proposed method is a generalization of Brown’s, aimed at correcting
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one of its shortcomings. The data for Brown’s method, as well as for ours, are the time intervals
between departures and previous arrivals; Brown used the most recent previous arrival, whereas
our generalization uses the rth most recent arrival. The intuition behind our method is the
following. An observed time interval of length x provides information about the sojourn
time distribution at the point x, that is, it helps in estimating G(x). In Brown’s method, the
observations are typically around 1/λ (the average interarrival time), so when λ is large, we
obtain information about G(x) mostly for small values of x in the support of G. Our method
corrects for that, since our r-delayed observations are typically around r/λ, and so by choosing
the ‘right’ r , we can estimate G(x) for a wider and more representative range of x values.
As can be seen from Figures 3 and 5, our method improves greatly upon Brown’s estimate for
a vast range of parameter regimes (namely, large ρ).

We note, however, that when ρ is too large, the improved method we propose still produces
unreliable estimates of G—say, with expected maximal deviation of more than 0.2. For the
specific sample size n = 5000 which we studied, it seems that ρ needs to be below 6 to produce
reasonable estimates. The reason for this is that when we observe only the arrival and departure
epochs, without their pairing, large values of ρ correspond to a very high noise level. We might
say that the values of the sojourn times about which we wish to learn get almost completely
hidden by the noise when ρ is large. While our estimator seems to be consistent, we conjecture
that the rate of convergence for the metric of expected maximal deviation is slow. An interesting
question is whether we can obtain lower bounds on these rates of convergence, and see how
they compare to what our estimator achieves.

Some of the literature reviewed in Section 1 estimatedGvia the busy-period process {I(Qt>0)}
(see Bingham and Pitts (1999), Hall and Park (2004), and Park (2007)). A necessary condition
for obtaining even the crudest estimate from such methods is to have more than one busy period
in the sampling period; to obtain a reasonable estimate, quite a few busy periods are required.
Recall that the event ‘there was more than one busy period’ is contained in the event ‘the
system became empty at least once’, which is exactly the event in which m̂K = m̂Q, and, thus,
corresponds to a relatively low ρ with which our proposed method performs well. The expected
length of a busy period of an M/G/∞ queue is (1/λ)(eρ − 1), so, for ρ = 6, the average busy
period has approximately 400 arrivals and departures, and, hence, n = 5000 corresponds to
approximately only 12 busy periods. Thus, our method still yields reasonable estimates in cases
where the busy-period approach is almost completely uninformative.

The approach we propose for selecting r , and as a result, for estimating G, is based on a
rule defined while assuming that G is exponential. In reality, we do not know of course in
advance whether G is exponential or not (recall that estimating G is the very purpose of the
procedure), but as shown in Figure 5, the exponential-based rule yields good estimates also
when G is uniform or Pareto. We chose these two distributions as additional test cases because
they are very different from the exponential distribution: while the exponential distribution
has [0, ∞) as its support and a light tail, the uniform distribution has a finite support, and the
Pareto distribution has a heavy tail (we used a Pareto distribution with only two finite moments,
i.e. one whose probability distribution function’s tail is O(x−4)). While it is probably possible
to devise ‘pathological’ CDFs G under which the exponential-based rule yields poor estimates,
we believe that the three types of G we considered span a wide enough range of reasonable
processing time distributions. Notwithstanding the last remark, it might be both theoretically
and practically useful to develop a preliminary procedure for estimating the tail properties of
G (perhaps by deriving the rate of convergence of the estimator), and incorporate the results of
this step into the adaptive procedure.
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Our criterion for judging the quality of the estimators G
(r)
n was E(supx |G(r)

n (x) − G(x)|).
We may replace it with alternative criteria: these could be other functionals of the entire
distribution G, such as E[∫ (G

(r)
n (x) − G(x))2 dx], or criteria focusing on G(x) for some fixed

x of interest, such as the mean-squared error E[(G(r)
n (x) − G(x))2]. In the latter case, the

optimal r∗ should depend also on x, with a larger r required for larger values of x. For example,
as can be seen from Figure 1, the estimates G

(1)
n (x) are reasonable for small x (around typical

values of the observations Z
(1)
i ), but become less reliable as x increases; by using larger r , we

can improve the estimation of G(x) for such values of x. This means, however, that a separate
table of the type of Table 1 will have to be constructed for each x, and in particular, that the
optimal r∗ given the load is not the same for all criteria.

Our analysis assumed that the system is in steady state. However, since the samples we
are considering are rather large, and since the arrival process is stationary from its beginning
and the departure process approaches stationarity very quickly, this assumption seems not to
be crucial. Simulation of the process starting from an empty system yielded virtually identical
results to those based on simulation with the warm-up period (see Section 4).
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