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ABSTRACT. A mathematical model is constructed for land glaciers with the thickness much less than the
horizontal dimensions and radii of curvature of large bottom irregularities by means of the method of a thin
boundary layer in dimensionless orthogonal coordinates. The dynamics are described by a statically
determinate system of equations, so the solution for stresses is found. For the general non-isothermal case the
interrelated velocity and temperature distributions are calculated by means of the iteration of solutions for
velocity and for temperature. Temperature distribution is determined by a parabolic equation with a small
parameter at the senior derivative. Its solution is reduced to the solution of a system of recurrent non-
uniform differential equations of the first order by means of a series expansion of the small parameter. A
relatively thin conducting boundary layer adjoins the upper and lower surfaces of a glacier, playing the role
of a temperature damper in the ablation area. For ice divides, the statically indeterminate problem is solved,
s0 the result for stresses depends on the temperature distribution.

REsuME. Modéle mathematique d’un glacier @ trois dimensions non isotherme. Le modéle mathématique est
construit pour des glaciers terrestres d’épaisseur trés inférieure aux dimensions horizontales et que les rayons
de courbures des grandes irrégularités du fond, par la méthode de la fine couche limite en coordonnées
orthogonales sans dimensions. La dynamique est décrite par un systéme d’équations déterminé statique-
ment, ainsi est résolu le probléme des contraintes. Pour le cas général non isotherme, le calcul des distribu-
tions interdépendantes de la vitesse et de la température est réalisé par itération des solutions pour la vitesse
et la température. La distribution de la température est déterminée par une équation parabolique avec un
petit paramétre pour la dérivée seconde. La solution se raméne 2 la résolution d’'un systtme d’équations
différentielles non uniforme reccurentes du premier ordre par le biais d’un développement en série du petit
parameétre. Une couche limite conductrice relativement mince s’ajoute aux surfaces supérieures et inférieures
du glacier, jouant le réle d’un égalisateur de température dans le zone d’ablation. Pour les crétes de glaces,
un probléme statiquement indéterminé est résolu, si bien que les résultats sur les contraintes dépendent de la
distribution de la température.

ZUSAMMENFASSUNG.  Mathematisches Modell eines dreidimensionalen nicht-isothermen Gletschers. Fiir Land-
Gletscher, deren Dicke bedeutend geringer ist als ihre horizontalen Abmasse und die Kriimmungsradien
grosser Unregelmissigkeiten am Untergrund, wird mit Hilfe der Methode der diinnen Grenzschicht ein
mathematisches Modell in dimensionslosen orthogonalen Koordinaten entworfen. Die Bewegungsvorginge
werden durch das statisch bestimmte Gleichungssystem erfasst, wobei sich die Lésung fiir den Spannungs-
zustand ergibt. Fiir den allgemeinen nicht-isothermen Fall werden die gegenseitig abhingige Geschwindig-
keit und Temperaturverteilung mit Hilfe von Iterationslésungen fiir Geschwindigkeit und Temperatur
berechnet. Die Temperaturverteilung ergibt sich aus der parabolischen Gleichung mit einem kleinen
Parameter fiir die bestimmende Ableitung. Ihre Losung lasst sich durch Reihenentwicklung nach dem
kleinen Parameter auf die Losung des Systems rekurrenter nicht-uniformer Differentialgleichungen erster
Ordnung reduzieren., Die Anpassung an die Oberfliche und den Untergrund eines Gletschers geschieht
durch eine relativ diinne, leitende Grenzschicht, der die Rolle eines Temperaturdampfers im Ablationsgebiet
zukommt. Fiir Eisscheiden ist ein statisch unbestimmtes Problem zu lésen, wobei der Spannungszustand
von der Temperaturverteilung abhiangt.

InTRODUCTION

In Grigoryan and Shumskiy (1975) the simplest model of a three-dimensional non-
stationary glacier was suggested. It is based on the method of a thin boundary layer neglecting
the curvatures of the bed and top surfaces. In such an approximation the glacier stress field
is described by a statically defined system of equations for which a closed solution is given.
In the isothermal case a solution was also derived for the velocity field which is uniquely
determined by the stress field, the rheological equations, and the boundary conditions.
Thus, the validity of this simplest model is limited by the negligibly small curvature of the
glacier bed and top surfaces and by isothermality.

* This paper was accepted for the International Symposium on the Thermal Regime of Glaciers and Ice

Sheets, Burnaby, Canada, April 1975, but was not presented because of the absence of the authors.
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In the general case of a non-isothermal glacier, the equations of dynamics should be
integrated together with the thermal-conduction-heat-transfer—heat-generation equation
because of the dependence (1) of strain-rate and motion of ice on its temperature and (2) the
dependence of ice temperature on the rate of advective heat transfer by the moving ice and
on the heat generation intensity during deformation. In the case of a sub-isothermal glacier,
whose temperature is near the melting point and which exhibits small temperature
gradients, the mathematical model falls into two independent dynamic and thermal parts.

The parameters of the rheological law should be refined by using field data taking due
account of the effect of anisotropic structures formed during the flow and the role of rupture
movements. The boundary conditions are known (can be found experimentally) only on the
free glacier surface. So far methods are not available for determining the conditions at the
bed, therefore the lower boundary conditions (at the glacier bed) have to be calculated.
Refinement of the flow-law parameters, and the determination of lower boundary conditions
from field observations (mostly on free surfaces) with the help of mathematical models, are
necessary before models can be used to calculate the regimes, shapes, and sizes of glaciers,
based on given conditions without the need for field observations, and thus to reconstruct and
forecast the changes of glaciers. -

It is not desirable to construct a universal mathematical model of a glacier since the system
of equations for the glacier thermodynamics is complicated. Models should be simplified, as
far as is allowed by peculiar features of various glaciers. Therefore, let us first consider the
principal differences in the glacier dynamics arising from the specific properties of the under-
lying substratum, morphology, and thermal conditions.

1. DYNAMIC CLASSIFICATION OF GLACIERS

Distinctions in the properties of the underlying substratum lead to the radical differences
between land and floating glaciers. In land glaciers static or dynamic friction exists between the
bottom surface and the rock bed. Such a friction is not observed with floating glaciers if we
discard the negligibly small turbulent friction of moving water. Therefore, the free lower
surface of floating glaciers and the upper surface of all glaciers coincide with one of the
principal planes of the stress surface, whereas the bottom of land glaciers coincides with the
plane of maximum shear stress or the envelope of such planes. The absence of horizontal
shear stresses in floating glaciers is connected with the transfer of tensile stress from the steep
edge to whole body, their flat shape, and their high velocity.

From the dynamical point of view land glaciers can be morphologically differentiated
into narrow mountain glaciers and ice sheets. In the former case the width is comparable to the
thickness, in the latter case the horizontal dimensions far exceed the thickness. Wide mountain
glaciers with a width considerably larger than their thickness are intermediate between these
limiting cases.

The bed of land glaciers always has an irregular topography, but the size of most irregulari-
ties is very small compared with the glacier thickness. A rock bed with irregularities com-
parable with the glacier thickness creates particular dynamic conditions: the shear and the
normal stresses are of the same order of magnitude. The dynamics of such sections of a
glacier can only be described by a very complicated complete model. However, for the
greater part of land glaciers the model can be considerably simplified. In the particular case
of ice sheets and wide mountain glaciers, the two shear stresses parallel to the bed far exceed
the normal stress and the third shear stress. As a result, their dynamics can be described by a
statically determinate system of equations. In this case we can approximate their dynamics
using the method of a thin boundary layer, which we shall improve in the present paper as
compared with the simplest model, with due regard for the curvatures of the bed and the free
surface. The model for ice sheets should include, besides the general dynamic solution, a
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particular solution for ice divides which represent singular points or lines of the stress and
velocity fields. The thin-boundary-layer method cannot be applied to narrow mountain
glaciers. Their model has to include the solution of a statically indeterminate system of
equations though it remains much simpler than that for the portions with large bed irregulari-
ties.

Floating glaciers can be.dynamically differentiated into external and internal ice shelves.
The former adjoin the land along one edge and spread freely over the water surface, whereas
the latter are surrounded on three sides by land with which they interact dynamically.

Because of the strong temperature dependence of the strain-rate of ice, the dynamics of
isothermal, or “temperate” glaciers are essentially distinct from those of non-isothermal, *‘cold”
glaciers. In the former case, heat of melting plays the role of an unlimited potential heat sink
which absorbs the heat generated by the sources and prevents any heat exchange (the only
exception is heat run off with liquid phase). The volume variations of the ice due to internal
melting and liquid run-off are negligible. Hence, the dynamics are appreciably simplified
due to the uniform properties of the ice. On the other hand, they are complicated by the
possible sliding of glaciers along the rock bed due to liquid lubricant and aqueous cavitation.
For non-isothermal glaciers, the mathematical model should include, as has been already
pointed out above, a joint integration of the dynamics equations and non-linear equations of
heat transfer involving second-order partial derivatives for calculating the interrelated velocity
and temperature fields. The dynamics of a non-isothermal glacier with a bottom temperature
at the melting point are very complicated. Intermediate sub-isothermal conditions develop in
glaciers whose top is at a temperature slightly lower than the melting point, as well as in small
“cold” glaciers where the temperature gradient is generally small due to their small size and
low heat generation because of their weak activity.

The natural conditions for the existence of glaciers are such that ice sheets, as a rule, are
non-isothermal while the floating ice shelves might exclusively be non-isothermal as they
exist only in cold regions. On the contrary, narrow mountain glaciers belong, as a rule, either
to isothermal or sub-isothermal types. Wide mountain glaciers may have any temperature
regime.

Based on this classification we have developed mathematical models for land ice sheets
and wide mountain glaciers with a smooth bed and different temperature regimes as well as
for ice shelves. For narrow mountain glaciers a statically indeterminate system of equations
is considered and differential equations have been derived for describing the velocity field.
They can be solved by numerical methods; the solution for the temperature field in the sub-
isothermal case is not directly related to the dynamic solution. Thus, the models suggested
cover all the types of glacier, with the exception of some special sections having big irregulari-
ties at the bottom.

2. SyMBOLS

a Dimensionless specific rate of accumulation or ablation on the surface (negative
in the case of ablation) related to the dimensional value @ by @ = vqa

al, Specific rate of accumulation or ablation at the bed

£ = I+k§ (E: )"?/51;

) = 1HhEE M) €IS

, D, E, a, b ¢, d, e Parameters of the rheological equation of ice in the hyperbolic
approximation

B Also characteristic width of the glacier (constant)

¢ Specific heat capacity of ice

d Boundary layer thickness

gi¢ ith component of gravitational acceleration
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gij Fundamental metric tensor component
h x, coordinate of free glacier surface
h; ith Lamé coefficient
H Characteristic thickness of the glacier
As# Activation heat of strain and mechanical relaxation
A#m Latent heat of melting of ice
J Mechanical equivalent of heat
ki Curvature of coordinate line Ox; in a plane normal to the coordinate surface
Ox;x;, dimensional (kJ = 1/RyJ) if i,j = 1, 2,3 and dimensionless (k/ =
HIRJ) ifi,j = &,
K Parameter of the rheological equation of ice in the power approximation
k  Thermal diffusivity of ice
Ki¢ Dimensionless curvature of the upper surface of the glacier in the direction of
coordinate line 1
la, lc Characteristic lengths for advective and conductive heat transport respectively
L Characteristic length of the glacier (constant)
n Parameter of the rheological equation of ice in the power approximation
N = FHog?[8;pcv, T,
# Dimensionless pressure, related to dimensional pressure p by p = pgHp
pa Atmospheric pressure (under water, hydrostatic pressure)
q¢ Density of geothermal heat flow
r Cylindrical polar coordinate
R Gas constant
R, Radius of torsion
Ry Radius of curvature of coordinate line Ox; in a plane normal to the coordinate
surface Oxgx;

s = —p— mean normal stress
stk = s8ix+oy  Components of the stress tensor
t Time
T Dimensionless absolute temperature related to the dimensional temperature T by
=15

T, Absolute melting point of ice
T; Dimensionless torsion of coordinate line i projected on the upper surface of the
glacier
v; ith component of the dimensionless velocity vector related to the dimensional
Tbyd=rop
v, Characteristic velocity (constant)
%,9, 2 Rectangular Cartesian coordinates
x¢ ith orthogonal curvilinear coordinate (i = 1, 2, 3)
Z = Z(¢,m,7) Dimensionless coordinate of free surface
« = a(§, ) Angle of bottom slope
B = B(& m, ) Angle of upper surface slope
y = B—a Relative angle between upper surface and bed
8¢ = k|8 H
8 = H|L, 8, = H|B, 8, = B|L = &3,
8ir Kronecker delta (8ix = 0ifi # k, 8iypy = 1if i = k)
¢ Dimensional shear strain-rate intensity & = [—(&&,+¢,¢;,1¢&;¢,)]! where
é,, €; and &, are the principal strain-rates.
&r Component of strain-rate tensor
{ see ¢
n see ¢
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k = AK|RT,
A Thermal conductivity of ice
v Specific power of mass sources (water freezing)
£, m, { Dimensionless affine orthogonal curvilinear coordinates
p Density of ice
pw Density of water
s Dimensionless shear stress intensity ¢ = [—(0,0,+0,0;,+0;0,)]! where q,, 5,
and o, are the principal stresses related to the dimensional ¢ by & = g,0
oix Component of dimensionless stress deviator
g, Characteristic shear stress (constant)
7 = pot/L Dimensionless time
¢ = H|R,, Dimensionless torsion of coordinate line
¢ Cylindrical polar coordinate
P = sin oz COS o COS a,, tan yg/d,
y = COS ag (sin «,+cos a, tan y,[4,)
® = (44 4"
e = (kgF sin o cOS o, + 7¢ COS g sin &) (2.4
i, = (7, sin a¢ cos o, +k,€ cos a; sin ) (24,

3. EQUATIONS OF THERMODYNAMICS OF GLACIERS IN ORTHOGONAL GOORDINATES

In the simplest model (Grigoryan and Shumskiy, 1975) the coordinates x, y, z with the
origin at the glacier bed, and the Ox-axis parallel to the smoothed bed and to the longitudinal
axis of the glacier and the Oz-axis directed upward normal to the bed are virtually local
rectangular coordinates because the space metrics remains Euclidian (the metric tensor
components gy = 1).

In order to account for the curvature of the bed, we shall substitute the coordinates x, y, z
by the orthogonal curvilinear coordinates x,, x,, x; having the same orientation and Lamé

coefficients
B B E 2 2 2 2 27)4
w=vae=(2) +(2) (=) |’

which in the most complicated case of a thin boundary layer approximation are equal to

hy = [14+k2(xy, x5) 2] [1-HK3(x,, ;) x5],
hy = [14k (%1, x2) 2, ][ 1 +-K3(xy, ;) %3], (1)
hy = 1,

¥

Fig. 1. Orthogonal curvilinear coordinates. Dimensionless coordinates €, v, { as shown are related to dimensional coordinates
X1y X2y X350
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where k;/ = 1/Ry is the curvature of the coordinate axis Ox; in the plane tangential to the
coordinate surface Oux;x; at the point (xq, x;), R is the corresponding radius of curvature
and the coordinate axis Ox; is a straight line normal to the smoothed bed (Fig. 1). For
example, in the particular case of a circular cylindrical bed with generating line Ox, and
radius R one has '
X MR Xy = 5 Bt =k =t =g; k3 = 1R,
hy=h, =1, hy=147/R,

and the square of the length of an element of the radius vector is

ds? = h2dr2th? de2ihrde? = dyrs (1 + }a) (R dé)?+dr*
= dx2 (R-+r)2dp2+drz.

We shall write a closed system of equations descr'ibing the stress, velocity, and temperature
(or melting rate) fields for a body of macroscopically isotropic (polycrystalline) incompressible
ice in the field of gravity, using orthogonal coordinates and symbols of Grigoryan and
Shumskiy (1975) listed in Section 2.

The equations of quasi-static equilibrium are

1 cp o1 (O’ii 1 €&y 1 (6 2 th 1 chg\
—hi in I'!,_ XxXq hj r’:xj flk ka fliflj Fx;+hjhk ?'xj 4
2 h 1 chy

+(hihk o | R ka) hih;h Ty V) S
1 th I ?‘hk

LN Phy _ AET .
s R Gkk+pgi = 0, (i #£J # k), (2)

in which the convention of summing repeated suffices is not observed.
In what follows, the rheological equations
&ix = f(9) 6 S(T),  L(T) =.exp [—«(To/T—1)], (3)
will be used in two variants:
(a) in a power approximation, where

ST = M, (3a)
(b) in hyperbolic approximation, where
£(8) = A+Bjo+(C+Dja+Ejoh. (3b)
For ice the equation of continuity
(p 1
h h }l ? (Phjhkvi) == Vs (4’)

reduces to the equation of incomprf:ss;lblhty

F
— (hjhgoy) = o. (4a)
CXi
The equations of components of the strain-rate tensor are
1 ?ﬂ; 9 chi Ok Chi

S T ey By Jahy B

" U[hy € fd5\ ke © (5 -
-l [ﬁi Pxq (hi)+kj ey (hf)] A b

where again the summatlon convention is not used.
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The equation of thermal conduction-heat transport-heat generation (Fourier-Kirchhof-
Poisson) is

pT weT 1 ¢ (ke T ‘
— Gij€ij = T‘-+h_f F_""fihlhzh\l X ( hi ‘é?i ' 15 Xy (®)
pc

— A v, V= I (7)

As was pointed out by Grigoryan and Shumskiy (1975), the solution of this system of equations
should satisfy the initial conditions

=) & =ihlx, %5,0), T = Tz, %5 %5, 00 (8)
and the boundary conditions on free surface x; = h(x, x,)
By——Das B =G T = Tl s L); (9)
:T_’: %;—i—ﬂ,(h) — i e S A 1= 1, 2; (10)
and at the bed x;, = o
cT 1
”';‘.x"; == (g3 +J01:0i+ A# mpd;), (11)
o, T T (12)
v —
F (013, 531)» T =T, ] (13)

The normal component of velocity at the bottom #; must be equal to ice freezing rate 4, (a
negative value indicating a melting rate). The form and the parameters of function .# in
Equation (13) are to be determined.

4. THERMODYNAMIC EQUATIONS OF A GLACIER IN DIMENSIONLESS ORTHOGONAL COORDINATES

To estimate the magnitude of the terms in the equations of the previous section, we shall
rewrite them in dimensionless coordinates

& = Byl n = Xx,(B, { = x,/H, (14)

which are the dimensionless affine analogues of the orthogonal coordinates x,, x,, x,. The
characteristic size of a glacier (L, B, H) will be measured along the coordinate axes x, x,, x;
(see Section 2 for notation).

Let us reduce the dimensional values (with a tilde above the same symbols) to a dimension-
less form as follows:

L
b = pgHp, & = 0,0, l=—r,
o (15)
b= Ut T=T.7 d = va.
Lamé coefficients for the dimensionless coordinates will be
he = A (6, 1 +EE(E L], hy = A& )1 +HEE(E ), (16)
where
k(€ n). o RGELE,
Ay = [+§_(8§_ﬂn_ Ay = ljryf, (17)
n £
and the dimensionless curvature is
ki = H[R, t=§&n; J=§&00 1 #]. (18)
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The equations expressing the thermodynamics of glaciers can be written as follows.
The equations of quasi-static equilibrium

SE (P o 65 ('O'gg 8 ("05?1 Uﬁgg ¢
Theet PEH{hg R A “‘f"")('“‘ﬁ K

a

ck.f

A A
+A£3qul' ‘-:] °§u+(2 —,-fk5¢+fk,,€) o+

ok,¢ ,
4 h;h [ (k,£6) (1+hF0) + A8 ] (aggma,m)}—sm a = 0,
8,, rp Go {85 Cayg S,, m',,,, F-a,,; 2 [
—_—+ kf +k, £
ck,t A A,
+Ayde g f] Oyt (Ti ket +2 fkac) W e [ (kgmn) (1+kED)+ > (19)

kgt
-+ 128 rr‘ﬁ E:I ( = Ggg)}*cos oy sin tX,’ = 0,

ep o, [8 cage §, Fsg,, (c“ 1 [
— o T +—' (kfE) (1+kfF
f§+ng {hg ré k,f L ) 0+

-

ck C k 4

A
458 ke (o —ag) +T" kyf(oge— o”)} —COS e COS &, = O.
1

The rheological equations

I
& = f(0) ooix f(T), fi(T) = exp [*K ("7‘-“1)] ; (20)
where in the power approximation
f(a) = Kgy"~'a™"!, (20a)
and in the hyperbolic approximation
fl(8) = A+ Bloo+[C+ D[oya+ Ejs,*e?] k. (20b)
The equation of incompressibility
8{ Pﬂg 8,’ FU (U{ I ) £ ¢ . W
TR T iy L7 (WFO0 RO+
ck ¢ ket
b T L v [ b 10+ 400, | o} L
Ag A
+‘(h£k€€+ hqk C)FJ{ = 0. J

7
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The equations of the strain-rate components

Uo {65 aﬂg I

'Z
€ = H\ ke r§+h£h [ (kem) (1 k£ L) + A, 8 = C] Pt P kngg}

. U [8 rv,, N (k,, ,‘,
X v,, oy
BEE HL’
& cv, 8, cv 1 okt ” (22)
s e ___§__ £ ¢ ik —
6 QH{hg T T gy [ TR +k‘f Orded =, .g] .
1

. okt
’l;h (kgn-,?) +k>1 C)'FA,,SE—“?'E—C Vel s

& ovp, ov A
P gy Ove dg
G = QH(hg CT ”E)’

8,00, ©dv, A
o (B0 Dy Ay,
e QH(h,, L ”)

The equation of thermal conduction-heat transport-heat generation

. —A¥my, T=1, (23)
; i€y — vo 5 (“T 35 " rﬂT 3z ?'T+ " cT 3
H h 3 h ol

kT 82 2T 82 ¢2T rZT ‘SE ¥ Y
F F§2+F F.qz_ll (Cz hz h f( 'E}( ] C)-!—

1' (‘k 4 80 f'kg ‘If rké ] 0 T
3 = T A k __ 8 c [
+ ¢ f Y- (1 +k£L) 'y ._E ¢ Fra (24)
8,, I Ag rkﬁ cky E
i [h—- (kg™m) (1 kL) + i h Fn Tyl —
4

ckc cT A eT
¢ Ykt
lz C]F (Iz k5+h,k)rl;}‘ i

)
The initial conditions

el ‘?.’zf(ga’f)' T=Y¥(&n1). (25)
The boundary conditions on free surface { = (£, 4, 7)
P = pa, O = 0, T = T(E; M, T)! (1 =& 7))’ (26)
82, %(R) 02 u() R _ w(R)+aR)
Tk B AR (27)
The boundary conditions at the bottom
oT H
e AT, (g cos ag cos a,+Jo,vu01:0i+ AH mpvov), (28)
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o, T = I
V= R (29)
-ﬁ(o’ic, 5;;), T = I.

5. THE CONDITIONS OF THE VALIDITY OF APPROXIMATE SOLUTION BY THE THIN BOUNDARY LAYER
METHOD AND SIMPLIFIED SYSTEM OF EQUATIONS
The simple mathematical model suggested by Grigoryan and Shumskiy (1975) is applic-
able to glaciers in which (1) the characteristic length L and the characteristic width B greatly
exceed the characteristic thickness H:

H <« L, H < B, (30)

and (2) the radius of curvature R of large irregularities of the bed (except roughnesses) is so
great that the curvature of the bed is negligible:

ki* = 1/R — o, Ry — 0, 1=1,2 (31)

The first condition is satisfied by most glaciers, except narrow mountain glaciers. But the
second condition is usually violated in real glaciers. A consideration of the bed curvature
gives an opportunity to extend the applicability of the thin boundary-layer method to the
limits of validity of the condition

H < Ry, k3 = 1/R33 € 1{H, (32)

which is necessary and sufficient for converting the equation of quasi-static equilibriurh, in a
first approximation, to a statically defined system due to the fact that the normal stress
deviator components are the values of a much higher order of smallness compared to the shear
stresses, On the whole, the conditions of applicability of the model built up by the thin
boundary-layer method can be written as

<1, ki<, i=¢&n, - (33)

where ki is the dimensionless curvature as in Equation (18). These conditions are satisfied
by ice sheets and wide mountain glaciers with a smooth bed. Here,

4= 0(1), h= A (34)

The derivative of the function with respect to dimensionless coordinates is of the same order
of magnitude as the function itself.

In the equations of Section 4, if the terms of the higher-order of small quantities are dis-
carded, we obtain the following simplified system of equations:

The equations of quasi-static equilibrium

85 (!’" 9o Ecgg : b
A€ pgHBp T
8, Yy A (35)
= | sin =0 ¢
A,, ”T ng CC —|—cosa:§ i e,
%, % %oy =
_?C—i—PgH ot —COS oty COS &, = O. )
The equation of incompressibility
8§ EUg Sff ?‘Uff FU( I ¢ ¢
1. 7704 o T or T4 | RE E n = ‘
3,567 A, oo oy A, Log B ety (e u = o (36)

https://doi.org/10.3189/50022143000013708 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013708

MODEL OF A NON-ISOTHERMAL GLACIER 411

The equations of components of strain-rate tensor
N Sgcvg 1 ¢ .
€£E—H A§c§+ n(gn)v,, ’

8, cu,

é”'J:H[A_c_q Ag—Afg(kﬂf) ]

S Up EU{
€ = H?y
~ (37)
8 cv, §,¢ e 1 0
Er = it £
€ QH{Ag A, T A oy ”€+* (k,£€) vy
o 0 BB
€T R’ )
e, o Oy
‘"= oH oL ¢
The equation of thermal conduction heat transport heat generation
q P g
—A#yy, T=1u, (38)
F
= U = Y o T cT 8 rT 8, rT aT\ kT, 2T
pc olo v i e S
H (85 T T AT A, T ;g) e <t (39

The other equations of Section 4 remain unchangcd.

In Equations (37) and (39) it is taken into account that, as follows [rom Equation (21),
the products of 8; and the dimensionless normal velocity derivatives with respect to coordi-
nates, and hence, the products of §; and the dimensionless velocities themselves are of the
same order of magnitude:

oy, tv v
SEF—é x 3, ?—T;’ = ?-é, 8 = 8,0, X vy, ve € v, v € v, (40)
For longitudinal axes of ice sheets, or coordinate axes O¢, we shall take the lines of maximum
slope of the upper surface diverging from the ice divide to the periphery. Ice divides are
singular points or lines of the stress and velocity fields to which a general solution is not
applicable. In the case of ice sheets 8, = O(1) and in the case of mountain glaciers 8, < 1.

6. GENERAL SOLUTION IN STRESSES

A relationship similar to Equation (40) exists between the stress deviator components and
the strain-rate tensor components, i.c. 6, is a value of a higher order of small quantities
than o and o, and the term with its derivative can be neglected not only as compared to
other terms of the last Equation (35), but also to the terms of the other two Equations (35).
By integrating the last Equation (35) without this term under boundary conditions (26) we
obtain

p = cosa(L—10), COS & = COS &y COS &y, (41)

By differentiating this value of p with respect to ¢ and 3, by'Substituting the derivative into
the first two Equations (35), and by integrating under the boundary conditions (26) we obtain
an expression for the bed-parallel shear-stress components
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Sip = %OE [Bi(X—0—d(Z—=03, i=¢&m, (42)

where ¢, ¢y are defined as in Section 2. The condition k¢ <€ 1 is equivalent to condition
7y <€ 1 (i,] = & m). Thus, if sine; € 1 and tan y; <€ 1 are of the same order of magnitude

then
i <€ di.
Therefore, in the general solution instead of Equation (42) we can use the following equation
pgH
S = o $i(<—L)- (43)

On neglecting the stress deviator components oy, d,,, Gy, Gg,, Which are values of higher-order
of smallness as compared to o and a,;, the shear stress intensity is

H
@ = (ot o)t = B O(Z—1). (44)

7 GENERAL SOLUTION IN VELOCITIES IN NON-ISOTHERMAL CASE

In order to calculate the velocity field for T < 1, we have to integrate a system of equations
which, on the basis of the above results, can be reduced to

v = %ff(d) Sig €Xp [—K (%-—l)] d¢, . (45)
2 [{83 e -

8, ¢
—|—A—:E? ff(a) G,¢ EXp [—x (%_—x)] d{+

+fA” [—5 (k,58) f (0) o exp [—« (7- )] g+

-|-—a-c; (ke™) ff(cr) Oy¢ EXP [—lc (';T.—l)] dC]} dg, (46)
0T v 0T vy 8T v 8T H - [ 1
B A 98 T B, on 5 3L~ eap ) e |1 47)

where oy, is defined by Equation (43), o by Equation (44), and f(s) is defined by Equation
(20a), or more exactly (20b). The system should be integrated under the initial and boundary
conditions (Equations (25)—(29)).

A joint solution can be obtained by iterating the solutions of Equations (45) and (46),
under a given temperature field and solving Equation (47) for a given velocity field.

To integrate Equation (47) for a given velocity, one should bear in mind that for most
glaciers k = 36 m?[year, 8; = 0.01 to 0.1, , = 10 to 500 m/year and A = 100 to 1 000 m,
hence the dimensionless parameter 8. is of order 1072 to 1073 and only in the case of small
sub-isothermal glaciers it amounts to 10! but always remains less than 1. Consequently, for
the non-isothermal glaciers concerned, the left-hand terms in Equation (47) characterizing
the advective heat transfer are considerably larger than the first item on the right which
describes the conductive heat transfer. Equation (47) is a parabolic one with a small para-
meter for the highest derivative. It degenerates into the first-order equation as §, — o.

The general solution of Equation (47) can be represented as a power series in the small
parameter 8, (Cole, 1968):

T=TO48,TO4 . 48T+ | (48)
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By substituting the expansion (48) into Equation (47) and by equating the coefficients of the
same powers of 8., we obtain a system of recurrent differential equations:

Tt oy }‘T(O) vy fTIl)J v 7 T 1
1 — e 2 e (
T :fg r--f 3(.:[ f'rln 5__{ rf = {7 (8) & =B [ # (T“” I)] ’ ‘49)
PTW g ¢TW g, 8TW g 8TW  §2T4-D
e e e ; =y By s o
ir 'dy BE B4, ™ T8 Pl i (50)
The highest-order term in the expansion (48) satisfies the non-uniform differential first-order
equation with the heat-source function in the right-hand side. The other expansion terms
satisfy similar equations with the second derivative with respect to { from the previous expan-
sion term on the right.
Thus, the heat transfer in a glacier is mainly due to the ice motion and is described by
Equation (49). Its solution satisfies the following relations

B 1. dé¢ B " A, dy - SJ‘ d¢ ‘
fd ) f:)‘(é:’ YI’ : ) 7 8“ . l/”(fx ik }a" T) — 8 f’_C(fs 7. Ca T} (51)

and, by integration along the characteristic,

I [ dT (
N flo)etexp [—«(1/T—1)]° 52)

l.e. in a glacier the temperature propagates along the particle trajectories (51) according to
law (52). Conductive heat transfer causes small variations in the temperature field, which
can be calculated to any degree of accuracy with the help of Equations (50) having a similar
solution.

But Equations (49), (50), initial conditions (25), and boundary conditions (26) and (28)
present a mathematically incompatible problem: one of the boundary conditions proceeds
from the accumulation region along trajectory (51) according to law (52) slightly changed by
thermal conductivity, and at the exit, where the line comes out on the outer surface in the
region of ablation, the temperature value will be incompatible with that determined by the
surface conditions. This incompatibility is due to different mechanisms of heat transfer
inside the glacier and in the thin layer adjacent to the outer surface (upper or lower),

Temperature propagates from the outer surface into the interior in time (¢ by advective
transport at a depth of order

ls 55 Bl (53)
and by thermal conduction at a depth of order

(kt)t (54)

Fig. 2. Diagram to indicate how the convective and conductive terms cary with depth.
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These dependences are plotted in Fig. 2. It is evident that in a short time ¢ < t* the boundary
condition is transferred to the thin near-surface layer mainly due to conductive heat transfer.
Thus, a thin boundary layer lies adjacent to the outer surface of a glacier and this layer
acquires the boundary conditions (26) and (28) by conduction. Beyond it, inside the glacier,
heat propagates along the particle trajectories (Fig. 3). The limiting thickness d of the
conductive boundary layer is determined by the condition of equality of the advective and the
conductive terms of Equation (47)

d S kfvg, k = 36 m?/year. (55)

The thickness of the conductive boundary layer is not constant and depends on the form of
the boundary conditions (26) and (28) and on the magnitude of the velocity component
normal to the surface.

h

1‘\",5‘ b i

0 t

Fig. 3. Heat transfer within the glacier. The thin boundary layer shown shaded acquires the boundary conditions essentially by
conduction, while in the rest of the glacier heat primarily moves by mass transfer (advection).

Because of the conductive boundary layer, the mathematical problem of temperature-
field calculations becomes quite definite. The glacier outer surface (including the lower one)
is divided into the accumulation region, where particle trajectories enter into the glacier,
and the ablation region, where they leave the glacier. In the accumulation region, conductive
heat transfer and water infiltration directly transmit the boundary condition to advective
heat transfer, i.e. heat propagation is described by the boundary problem for the first-order
hyperbolic equations (25), (26), (49), (50). In the ablation region covering also the bed at the
melting point, the conductive boundary layer serves as a temperature damper. As this layer
is not thick we have to solve the equation of thermal conductivity (near free surface) or thermal
conduction-heat generation (near the bottom):

&T 2y 1
5 = 8¢ F_§?+"\f(6) G2 exp [—K (7_—1>] ) (56)

under condition (25), one of conditions (26) (for the free surface) or (28) (for the bed) and
under the condition of joining the solution with that of the problem for hyperbolic equations
(25), (26), (49), (50) on the inner boundary of the conductive boundary layer:

[T]e-a,a =0, (57)

where the brackets represent a jump in the function.

If the temperature field varies slowly, when 7T/¢t — o, the model becomes quasi-
stationary, i.e. time is contained in the equation of motion and heat transfer in a parametric
form, but it is contained explicitly in the equation of motion of the upper glacier surface (27).
The solution given holds good for the quasi-stationary conditions as well.

https://doi.org/10.3189/50022143000013708 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013708

MODEL OF A NON-ISOTHERMAL GLACIER 415

8. SOLUTION FOR ICE DIVIDES

The points on the rock under the summits of ice domes and saddles of diffluent glaciers
and lines under ice divides are singular points and lines of the stress and velocity fields charac-
terized by zero stress deviator o; = 0 and velocity vector v = o (if we discard the rate of
subsidence due to bottomn melting v = v, = a,). On the normal to the bottom ice divide
lines and planes connecting the singular points and lines with the upper surface, the tangential
components of the stress deviator and the horizontal components of the velocity vector retain
zero value

Giy = 0, vy = 0, = f, n. (58)
Hence, by virtue of Equation (42), we obtain an equation for the ice divide line
$i

(=25 (=¢&n).

If the bed is not horizontal and not flat (a; # o, k¥ # 0) the ice divide can slightly deviate
from the highest point (line) of the ice sheet or from the saddle of the diffluent glacier (8; = o).

The coordinate axis Ol at the ice divides coincides with the third main axis of the stress
surface (the only compression axis) and the shear stress intensity is determined, instead of
by Equation (44), by the formula

o = {§[(o:—02)*+ (6:—03)*+ (0;—0,) ]} = (5.2t 610, +6,7)%. (59)
If the O¢-axis subtends an angle w with the horizontal direction of greatest curvature of the
surface Ox,, then
o, = §[og(1+cos 2w) +0,,(1 —cos 2w)],
6, = }[og(1—cos 2w) +a,,(1+cos 2w)], (60)
o = §[3(og+0y,) 2+ (oge—a,,)2 cos? 2w] .
But the stresses on the ice divides are much smaller than the usual values, therefore, the flow
law of ice is almost linear (Shumskiy, 1975).
By integrating the equations of quasi-static equilibrium (19) at 5;; = 0 we obtain only
the trivial result that the vertical normal component of the stress deviator is equal to the
difference between the ice pressure and weight

H
%r:%;m—umuz—OL (61)

and cannot distinguish p from a;,. The problem is solved by calculating the derivative of the
bed-parallel shear stresses with respect to £ and 7.
On differentiating the equation of incompressibility (36) with respect to { we get
FIUC 85 E’-vé E,', F’zi)u
T _(A_g Fgetta, met) (62)
On differentiating Equations (37) in the same way we see that the right-hand terms in Equation

(62) can be expressed through the derivatives of the strain-rate tensor components with respect
to { in two ways:

(63)
8;; sz,,l o H PG-IM _ H a'f ;g'f-(
.‘44 F"q ?g - Vg (HC - Yo A’-' ?T] .
Hence,
B H(o%g @&\ H (8 80y (64)
ciz Ug \ € c w\dg €6 " A4, ¢
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From Equations (20), (42), (59) and (64) we obtain

pw, H @ o @
a—Zi = - % F(C [f(o) ore fi(T)] = — G"?it [f(6) (ogg+0,9) /1 T)]
H 8 ¢ 8, ¢
— 0 = peHf(a) f(T) [A—i %_FA_: ‘;iq (Aii tan y§+:§—:tan Y,,)] (21, (65)

B _pgH 2 8 O | 5, 0¢
ow = ~(cton = & o [ [ 542 3 -
<

A—(-;g-f-tan 'y5+——lan y,,)] (&— Cd(Z £), (66)

4 Z
H H
2€(O) = o)+ o f SO ST dE = (2 f oD F (@) £(T) AL (67)
o £

As the stress is small, in a first-order approximation
n=1, f(s) =K. (68)

In the non-isothermal case the solutions of Equations (46) and (67) are integrated, and they
take the form

8T v T _ T I
E+S_§ == S E_—P-~|~Nf(cr)(mz+crz‘+cg’) exp [—K (?*l)] , (69)
and generate a system of recurrent equations
cT p. 2T I
?4»8—23—; = Nf(a) (o +0:+0,2) exp [—K (‘m—')] ’ (70)
PTW 9 3T  @T -
R LS X

This system is solved similarly to Equations (49) and (50) under initial and boundary condi-
tions (25) to (29).

Ice divides are surrounded by regions with a low-slope convex surface. The greater the
horizontal size of the ice sheet, the larger these spaces. Transient conditions hold in this
central region

& ¢ cd,
¢’E+¢;} = ;I_’i—(?f-l_——'qf ’

or over the horizontal bed
¢§+¢q = k5c+cha

and ice subsidence under horizontal stress oy, o,, is gradually replaced by its centrifugal

difluence under shear stress o, parallel to the bed. In this region all stresses play more or

less the same role, the system of equations of quasi-static equilibrium and incompressibility is

not closed; each of these solutions taken separately is not acceptable and they have to be
" combined together.

MS. received 26 March 1975

https://doi.org/10.3189/50022143000013708 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013708

MODEL OF A NON-ISOTHERMAL GLACIER. 417

REFERENCES

Cole, J. D. 1968. Perturbation methods in applied mathematics. Waltham, Mass., Blaisdell Publishing Co.

Grigoryan, S. 8., and Shumskiy, P. A. 1975. Prosteyshaya matematicheskaya model’ trekhmernogo nestatsion-
arnogo lednika [The simplest mathematical model of a three-dimensional non-stationary glacier]. Institut
Mekhaniki MGU. Nauchnyye Trudy, No. 42. p. 43-53.

Shumskiy, P. A. 1975. O zakone techeniya .polikristallicheskogo 1'da |On the flow law of polycrystalline ice].
Institut Mekhaniki MGU. Nauchnyye Trudy, No. 42, p. 54-68.

https://doi.org/10.3189/50022143000013708 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013708

