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Abstract

In this paper various wave motions in water of infinite depth containing vertical porous
boundaries are determined when the water is of infinite extent on one or both sides. Initially
surface tension is ignored and simple solutions for incident waves are obtained before going
on to harder wave source and wave-maker solutions. A reduction method is developed to
obtain solutions for two-sided boundaries from those for one-sided, which are obtained by
standard techniques. The effect of surface tension that precludes simple solutions is also
considered, although a present lack of information on dynamical edge behaviour for porous
boundaries means that the formal mathematical solutions must be left in terms of arbitrary
edge constants. In conclusion, some solutions are noted for finite depth.

1. Introduction

In contrast to the extensive traditional theory involving impermeable boundaries,
surface wave motion on water in the presence of porous boundaries has received but
little attention. Two reasonably recent time-harmonic investigations of Chwang [3]
for a vertical wave-maker and Chakrabarti and Sahoo [2] for incident waves against
a nearly vertical wall seek to redress this situation. Both are based on the assumption
of the boundaries having fine pores, when a linear condition given by Taylor [10]
relating normal velocity to pressure jump may be used.

In this paper we continue the investigation and examine several problems for time-
harmonic surface waves in the presence of a vertical porous boundary, when the water
is on either one side only or both sides and extends to infinity. In the former situation
traditional methods can be employed, while for the latter a reduction method can
be developed to determine the motion quite easily from the former solutions. This
method is similar to one used for two superposed liquids with a horizontal interface
in Rhodes-Robinson [8].
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The problems solved are for the scattering of incident waves by, and wave sources
outside, fixed boundaries and vertical wave-maker problems for moving boundaries.
Linearised potential theory is used and for simplicity two-dimensional motion on
infinite depth is taken; the extension to three-dimensional motion and finite constant
depth is straightforward, however, and some of the solutions are noted for the latter.

The effect of surface tension is omitted in the initial formulation, but the modific-
ations needed to include this are also discussed in some detail. Solutions are more
complicated now and involve arbitrary edge constants as for impermeable boundaries.
A dynamical edge condition that would enable these to be evaluated is not known at
present. A generalised slope potential for a porous wall is fundamental to the solu-
tions. The effect of surface tension was omitted in [3, 5] but included in two fairly
recent investigations by Chakrabarti [1] and Gorgui, Faltas and Ahmed [4] for porous
boundaries, although the edge conditions are dubious.

2. Formulation

The infinitesimal wave motion of water considered herein is two-dimensional in
the x, y-plane and harmonic in time t with angular frequency a. Motion takes place
in a region y > 0 of infinite depth with horizontal mean free surface y = 0. A vertical
boundary x = 0 extends throughout the region and contains water of semi-infinite
horizontal extent either on one or both sides. The effect of surface tension is ignored
for now and motion is under the influence of gravity alone with acceleration g. No
motion occurs at infinite depth.

For a one-sided boundary containing water in x > 0, the motion may be described
by a velocity potential of the form Re[<p(x, y)e~""] that allows suppression of the
time henceforth. Then the complex-valued potential <p satisfies the well-known basic
requirements

V24> = 4>xx+4>yy=O, (2.1a)

K<p + 4>y = 0 on y = 0, (2.2a)

0 -» 0 as y -> oo (2.3a)

in the region x > 0, y > 0, where K — o2/g. Further

0, + ikcf> = 0 on x = 0 (2.4a)

if the porous boundary (a 'wall') is fixed, where k > 0 is a porosity constant. This
condition was determined by Chakrabarti and Sahoo [2], following the approach of
Chwang [3] noted below. The traditional impermeable or 'hard' wall corresponds to
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k — 0 and a completely porous or 'soft' wall to k —»• oo, when (2.4a) becomes 4>x = 0
and 0 = 0 respectively.

For a two-sided boundary containing water on both sides, let 0 = 0j (x > 0),
<t> = 02 (x < 0). Then the potential pair <f>x, 02 satisfies the basic requirements

V201=O = V202, (2.1b)

K<j>x + <ply = 0 = K<f>2 + <foy o n y = 0 , (2.2b)

0i, </>2 ->• 0 as y - • oo (2.3b)

in their regions. Now there are two coupling conditions

4>lx = -ikifa -(p2) = fax on x = 0 (2.4b)

if the porous boundary (a 'barrier') is fixed; this condition was essentially determined
by Chwang [3] by reference to experimental work of Taylor [10], assuming that the
boundary has fine pores. The cases k = 0, k ->• oo correspond to hard and soft
barriers that either allow no interaction between the regions or else are removable;
these are not significant.

Other conditions apply in specific problems to give single or coupled linearised
boundary-value problems. Note that straightforward modifications to (2.4) are needed
if the boundary is moving; these are noted later.

Two simple results involving only progressive wave solutions e~
Ky±iKx of (2.1

- 2.3) having wave number K are now obtained, before going on to some more
complicated problems.

3. Incident waves against a wall

The problem for incident progressive waves with potential e-
Ky~iKx that are reflec-

ted by a vertical porous wall x = 0 is considered first. Here the extra condition on the
potential is

0 -> e-
Ky~iKx + Re~Ky+iKx as J-4OO

in addition to (2.1 -2.4a), where the reflexion constant R is part of the solution. This
problem is easily solved as for k = 0 by trying a purely progressive wave solution
of this form with no local disturbance, which satisfies the remaining porous-wall
condition (2.4a) if

K - KR - k{\ + R) = 0

so that

K -k
R =

K+k
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Hence the solution is

_ o-Ky-iKx<p = e
K -k

t—Ky+iKx

107

(3.1)

Note that there is always an energy loss for k > 0 as \R\2 < 1, and in fact the
incident waves are completely absorbed (R = 0) if k = K. The known result for
k = 0is

= g-Ky-iKx (3.2)

and in this case {R = 1) energy is conserved as \R\2 = 1; the same is also true for
& -> oo (/? = — 1). The energy graph is shown in Figure 1.

FIGURE 1. Graph of \R\2 = (1 -/x)2/U + M ) 2

wave energy that is reflected by a wall.
= k/K. This indicates the proportion of incident

4. Incident waves against a barrier

The similar problem for incident progressive waves that are partly reflected and
partly transmitted by a vertical porous barrier x = 0 is also considered. Here the extra
conditions on the potentials are

Te 'Ky~iKx

as x -*• oo,

as x ->• -oo
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in addition to (2.1 - 2.4b), where the reflexion and transmission constants R, T are
part of the solution. These problems are also easily solved by trying progressive wave
solutions of these forms, which satisfy the porous-barrier conditions (2.4b) if

K - KR = )k(l + R - T) = KT

so that

K + 2k'

Hence the solutions are

<t>, = e~Ky-iK*

2k

K

K + 2k

Q-Ky+iKx

2k

<t>2 =
• K + 2k

e-Ky-iKx

(4.1)

(4.2)

Note that there is an energy loss again for k > 0 as | R|2 + | T \2 < 1, but this cannot
now be complete as \R\2 + \T\2 > 0.5 also. The energy graphs are shown in Figure 2.

FIGURE 2. Graphs of \R\Z = 1/(1 + X)2, \T\2 = X2/(l + A)2 and \R\2 + \T\2 = (1 + A.2)/(l + X)2

vs X = Ik IK. These indicate the proportions of incident wave energy that are reflected, transmitted and
scattered by a barrier.
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5. Wave source in front of a wall

The problem for a wave source situated at (X, Y) in front of a vertical porous wall
x = 0 is now considered. Here the extra conditions on the potential are

tf>~ln/o as p = [(x-X)2 + (y-Y)2f2 -+0,
0 -> a multiple ofe~Ky+iKx as x -+ oo

for X > 0, Y > 0 in addition to (2.1 - 2.4a), the first of which does not hold at (X, Y).
This problem is solved by correcting the solution x// (say) for k = 0, which satisfies
fa = 0 on x = 0 and is easily obtained by taking a source at (X, Y) in a horizontally
unbounded region and superposing an equal image source at (—X, Y) in the wall.
These well-known fundamental wave sources have the potentials

/

oo -u\x^X\

u(u2 + F{u; y)F(u; Y)du -

respectively from Thome [11], where F{u; s) = u cos us - K sinus (u > 0, s > 0),
so that

f = G(x, y; X, Y) + G(x, y; -X, Y)

= _4re-"xcoshuX (uy)F(uY)du

Jo "(« + K )
- 4itie-K<y+r)+IKX cos Kx (0 < x < X) (5.1)

in particular. Now put 0 = rfr+</>', where the correction potential 0'is regular in x > 0
and has the form of an integral superposition of e~uxF(u; y) for u > 0 and multiple
of e-

Ky+iKx in terms of basic solutions of (2.1 - 2.3a). Since <j>'s + ik<p' = -ikf on
jc = 0, we find that

/•oo e-u(x+X)

</>' = - Aik I — —— T^ZF(U; y)F(u; Y) du
Jo u{u — ik)(u2 + K2)

K + k

Hence on adding (5.1), (5.2),

,.-K(y+Y)+iK(x+X)

r°° e
 uX(u coshux-iksinhux)

4> = -4 , F(u;y)F(u;Y)du
Jo u(u - ik)(u2 + K2)

_ ^ . K cos ATJC - ik sin ^Jr^_^ ( y + m i j , x < ^ <
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and likewise

'(ucoshuX — ik sinhuX)
•F(u;y)F(u;Y)duu(u - ik)(u2 + K2)

Denote this potential by <f> = Gmoi(x, y; X, Y; k) for later use; then also ty =
Gmod(x, y; X, Y; 0). Note from (5.3), (5.4) the evident reciprocity property between
source and observation positions as for k = 0, which may also be established inde-
pendently by applying Green's theorem over the region to a pair of equal sources; the
contribution from the wall vanishes identically in a similar way to that from the free
surface. There is now no obvious identification of the image potential for a porous
wall as there is for k — 0, except that an equal and opposite source at (—X, Y) is
obtained for k -> oo. The potential for a source of double strength on the wall is
obtained by formally putting X = 0 in (5.4).

6. One-sided wave-maker problem

The problem for the motion with outgoing progressive waves due to the horizontal
simple harmonic oscillations of a one-sided vertical porous wave-maker x = 0 is
considered next. Here the condition (2.4a) on the potential is replaced by

<f>x + ik<j> — U(y) on x = 0

if the wave-maker has velocity Re[U (y)e~it"] in the *-direction and the extra condition
in addition to (2.1 - 2.3a) is

0 - • a multiple of e'
Ky+iKx as x ->• oo

if it is assumed that U(y) —*• 0 as y -> oo. This problem may be solved by applying
Green's theorem over the region with Gmod in Section 5 to obtain the form

0(X, Y) = — [ Gmod(0,y,X,Y)U(y)dy. (6.1)

Thus from (5.3)
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on interchanging the variables, where

a(n)= / U(Y)F(u;Y)dY (n>0),
Jo

-f
Jo

U(Y)e-KYdY.

The solution (6.2) may also be obtained by simple modification of the known
solution of Havelock [5] for it = 0 to accommodate the new condition on x = 0.
Using the source reciprocity property in the form (6.1), the solution can be represented
by a distribution of sources on x = 0 as

Gmod(X, Y; 0, y)U(y) dy.

Chakrabarti and Sahoo [2] considered incident waves against a nearly vertical
porous wall using perturbation techniques, determining the unperturbed and first-order
perturbation solutions from first principles with Fourier transforms; these potentials
are just the vertical wall and wave-maker solutions (3.1), (6.2) above for a special
U(y).

7. Reduction method for two-sided boundaries

To obtain the solutions of the last two problems for two-sided boundaries, a general
reduction procedure can be set up to deduce them from the one-sided solutions. This is
first developed for fixed boundaries; the modification for moving boundaries is noted
later.

The barrier potentials <f>u fo satisfy (2.1 - 2.4b) in x > 0, x < 0 respectively.
Define a second potential 0* in x > 0 by

^{x,y) = ^{-x,y),

which clearly satisfies (2.1 - 2.3b). Further

(j>\x = —ik(<j>\ — 0 * ) = —<(>*x o n x = 0

from (2.4b). Now define two reduction potentials

O ^ 0 i — (f)i, ^ ^ (b\ -\- (ft.

in JC > 0, which clearly satisfy

V24> = V 2 * = 0,

AT<D + <Py = KV + * y = 0 on y = 0,

4>, * —> 0 as y —> oo.

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)
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Further

<£>x + 2ik$ = * , = 0 on x = 0 (7.7)

from (7.2), which are uncoupled. Hence by reference to (2.1 - 2.4a) <t>, * are just the
potentials for waves in the presence of porous and impermeable walls respectively;
the porosity constant it —> 2k for the former and k = 0 for the latter. The boundary-
value problems are completed with other conditions in specific problems. Once the
reduction potentials are found, the required solutions are calculated using

0! = - ( 4 / + dj>), (h* = -(\l/ — $) (7.8)
2 2

from (7.3) and then

<hOc y) = <t>*x ( - * , y ) (7-9)

from (7.1).
A similar method was developed in Rhodes-Robinson [8] for two superposed

liquids in symmetric layers with two coupling conditions at their interface.
To illustrate the method, the problem of incident waves against a barrier in Section 4

is solved again using the result of Section 3 for a wall. Here the extra conditions on
the reduction potentials are

<&,*-> e-
Ky-'Kx + (R =F T)e~Ky+iKx as x -*• oo

respectively in addition to (7.4 - 7.7). By reference to Section 3 the potentials <I>, *
describe problems for the same incident waves, and the solutions are deduced from
(3.1), (3.2) as

e

e-Ky+iKx

Thus by (7.8), (7.9),

as in (4.1), (4.2).
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8. Wave source in front of a barrier

The problem for a wave source at (X, Y) in front of a vertical porous barrier x = 0 is
now solved by the reduction method, using the result of Section 5 for a wall. Suppose
first that X > 0. Then the extra conditions on the potentials are

<pi ~ In p as p —• 0,

0,,</>2 - • multiples of e~
Ky±iKx as x -+ ±oo

respectively in addition to (2.1 - 2.4b), the first of which does not hold at (X, Y) for
(pi. Hence the extra conditions on the reduction potentials are

$, * ~ In p as p -*• 0,

<J>, * -> multiples of e"**"1"1'** as * - • oo

in addition to (7.4 - 7.7), the first of which does not hold at (X, Y). By reference to
Section 5 the potentials <J>, 4* describe problems for the same source, and the solutions
are

<D = Gmod(x, y; X, Y; 2k), * = Gmod(x, y; X, Y; 0).

Thus by (7.8), (7.9),

0, = I [GmodU, y; X, y; 0) + Gmod(x, y; X, 7; 2*)],

fc = I [Gmod(-x, y; X, K; 0) - Gmod(-x, y; X, 7; 2*)]

and it is deduced from (5.3), (5.4) that

=-4/
Jo

°° e uX[(u — ik) cosh ux - ik sinh ux]
u(u-2ik)(u2-

r
= -4

Jo

F{u;y)F(u\Y)du

K + 2k

-F{u\y)F{u; Y)du
u(u- 2ik)(u2 + K2)

K + 2k

and
eu(x-X)

o M(M — 2ik)(u2 -

_Z^J!i_e-K(y+Y)-iK(x-X)
K + 2k

F(u;y)F(u;Y)du
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For X < 0 it is found likewise that

e-u(x-X)r
= 4ik

Jo
u{u - 2ik)(u2 + K2)

A-Kik

F(u;y)F(u;Y)du

_e-K(y+Y)+iK(x-X)

K + 2k

and

r°° euX[(u- ik)cosh uxf
Jo0 u(u — 2ik)(u2-

(K + k) cos Kx + ik sin Kx _Kry+Y)_iKx

00 eux[(u - ik) cosh uX + ik sinhwX]
r
0 M(« - 2ik)(u2

These may also be deduced from (8.1), (8.2) by reversing the horizontal coordinate
direction.

Again note from (8.1-8.4) evident source reciprocity properties on the same side
and opposite sides of the barrier, which may also be established independently using
the reduction procedure and reciprocity property noted in Section 5.

9. Two-sided wave-maker problem

In conclusion the problem for the antisymmetric motion with outgoing progressive
waves due to the oscillations of a two-sided vertical wave-maker x = 0 is now solved
by the reduction method, using the result of Section 6 for a one-sided wave-maker.
Here the conditions (2.4b) on the potentials are replaced by

</>i* = U(y) - ik(<t>x -<j>2) = (j>2x o n x = 0

if the wave-maker has the same velocity again and the extra conditions are

0,,02->- multiples of e'
Ky±iKl as x -> ±oo

respectively in addition to (2.1 - 2.3b). Note from (7.1) that

4>*(x, y) = 4>2(-x, v) = - 0 i ( x , v)
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due to the antisymmetry, and (7.3) simplifies to 4> = 20j, ^ = 0. Thus $ remains
to be found and then 0, = i<I> from (7.8), which it is sufficient to find. Hence, to
continue, the condition (7.7) on this potential is replaced by

<t>x + 2ik<i> = 2U(y) on x = 0

and the extra condition is

<J) -> a multiple of e~
Ky+iKx as x ->• oo

in addition to (7.4 - 7.6) for <I>. By reference to Section 6 the potential <I> describes
a one-sided porous (k -» 2k) wave-maker {U -> 2U) problem, and the solution is
deduced from (6.1). Thus

o (" — 2ik)(u2 + K2) K

where a(u), A are the same again.

10. Modifications for surface tension

If there is surface tension T in addition to gravity the free-surface condition (2.2a)
for a one-sided boundary becomes

K<p + 4>y + M<t>yyy = 0 on y = 0, (10.1a)

where M = T/pg (p is the density of the water), and progressive waves now have
wave number K satisfying the cubic equation MK3 + K — K = 0. Also for uniqueness
a condition at the edge (0,0) is needed, which is determined below and generalizes
the condition prescribing 0^(0+, 0) for k = 0. Because of this no realistic simple
solutions now exist as in the absence of surface tension (M = 0), and there are
significant changes to our previous results.

Now it is reasonable to suppose that for a porous wall there is a potential corres-
ponding to the familiar slope potential Go for k = 0, which satisfies GOx = 0 on
x = 0, G0xy(0+, 0) = n/M, and represents outgoing waves as x —> oo (see Rhodes-
Robinson [7, 9]). To determine this generalised slope potential we follow the same
procedure as for k = 0 and construct it from the potential for a wave source in front
of a wall (or one form thereof^ for the moment leaving the modified edge condition
unspecified.
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The simplest potential (j> for a wave source at (X, Y) in front of a wall is found as
for M = 0 in Section 5 by superposing the fundamental source potentials

———
u[u2{\ -

3MK2

2

Mu2)

from Rhodes-Robinson [7] to obtain the solution for k = 0, where now F(u;s) =
u(\ — Mu2) cos us — X" sin MS (« > 0, s > 0), and then adding on the correction
potential

-u(x+X)

Mr2 k
-K(y+Y)+iKix+X)

+k
to satisfy (2.4a). Hence

e~"x(ucoshux — iksinhux)f°° e~"x(
Jo u(u- i , , r 2 n , . 2..k)[u2(l - Mu2)2 + K2]

1WX (0<x<x)^ ( 1 0 2 )

1+3M/C2 K+k
00 e~"x(u coshuX - 1* sinhaZ)

•F(u;y)F(u;Y)du
'0 u(u - ik)[u2(l - Mu2)2 + K2]

~. ~ . .—T ; & \X --* X). (10.3)
1+3M/C2 /c + *

Denote this potential by <j> = Gmod(x, y\ X, Y; k) again. To determine the gen-
eralised slope potential <p now apply Green's theorem with Gmod over the region to
give

M
0 ( A , / ) = [<P*y(O+> ")G (0, 0; A , / ) — CJ (U, 0; A , / )<p>,(U, 0)J

2.JT K
Mr -,

'" ")) + ik<t>y(0,0)] G™011 ,̂ 0; X, Y),

since G"™1 (0,0; X, Y) = -ikG^iO, 0; X, 7). Details are omitted as they are similar
to a calculation for A: = 0 in Rhodes-Robinson [7], Section 4. Hence for uniqueness

, 0) +i*0y(0,0) = £
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must be prescribed at the edge, the value for k — 0 being taken for consistency. Thus

1
<KX,Y) = ^Gy

v«(O,O;X,Y)

=2f
Jo

ue-uX

(u - ik)[u2(l - Mu2)2 + K2]
(w; Y)du

+ — ^ ^e-ir+KX ( 1 0 4 )

1 + 3MK2 K+k

from (10.2).
Denote this potential by <f> = GQ(X, y; k) in terms of the original variables. Then

Go = GQ(X, y; 0). Note that it is not defined for M = 0. It follows in our other
problems that

<j)xy{0+, 0) + ik(j)y{Q, 0) = nk (10.5a)

(say) must be prescribed in terms of an edge constant k for uniqueness; the formal
solutions then contain the multiple MkG^, since G*Q has edge constant l/M. Note that
this is not necessary in selecting source potentials for use in Green's theorem, when
the simplest form corresponding to k = 0 as in (10.2), (10.3) for Gmod is sufficient.

To extend the earlier solutions the easiest method is to first subtract out the solutions
corresponding to k = 0, which are inferred from the earlier ones. This leaves the
same problem each time with solution MkG*0. Hence, for example, the solution for
incident waves e~Ky~'KX against a wall is

0 = «-*'-"* + ^LLL-"J-+ '« + MkG*0(x, y; k), (10.6)
K + k

in which the reflected amplitude constant is

1 f
R=-—7\K-k

k I 1 + 3 M K 2 J '

The known solution for k = 0 is

0 = e-*y-** + e-'y+i*x + MkG*0(x, y; 0) (10.7)

as in Rhodes-Robinson [9].
Note finally that a dynamical edge condition is still needed in such problems,

presumably relating 0^(0,0) and <f>xy(0+, 0) as for k = 0, in order to determine the
actual values of A. by applying the condition to formal solutions like (10.6). This has
been done for k = 0 using the condition from Hocking [6]. However, the appropriate
condition needed here is not known at present on the good authority of the last-named
author.
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For a two-sided boundary the free-surface conditions (2.2b) become

^</>l + <t>\y + M(plyyy = 0 = Kfo + (j>2y + Mfcyyy Ol\ y = 0 (10.1b)

and the edge conditions taken are

(puy(Q+, 0) - nXx = -iklhyiO, 0) - <ky(0,0)] = <fc^(0-, 0) - nX2 (10.5b)

(say) in terms of edge constants XUX2. The reduction method is unchanged, except
that the conditions (7.5) on the reduction potentials become

<D, + MQyyy = K V + Vy + M^yyy = 0 OU > = 0 (10.8)

and also

, 0) + 2/fc4>y(0, 0) = 7r(X, + A2), * x , ( 0 + , 0) = w(X, - X2) (10.9)

from (10.5b), and so a similar interpretation in terms of one-sided boundaries may
again be made. Hence, for example, the solutions for incident waves against a barrier
are deduced from (10.6), (10.7) as

e
K + 2k

^G*0(x, y; 0) + G*0(x, y; 2k)]

- l-M\2[Gl(x, y; 0) - G*Q(x, y; 2k)], (10.10)

-«y-i><*

^ G K - x , y; 0) - G*0(-x, y; 2k)]

- l-M\2[GK-x, y; 0) + G*0(-x, y; 2k)], (10.11)

in which the reflected and transmitted amplitude constants are

R =

T =

1
K + 2niM-

- kk2

+ 3MK2

,%4kXx -(K + k)X2

: + 2niM —
1 + 3M/t2

I

]•
Again the values of X{, X2 would be determined from appropriate dynamical edge
conditions.
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Note that there are now two generalised slope potential pairs having edge constants
1/M, 0 and 0, \/M that can be identified in solutions such as (10.10), (10.11), which
contain the multiples Mk{, Mk2 respectively of these pairs.

Gorgui, Faltas and Ahmed [4] have considered the two-sided wave-maker problem
and incident wave problem against a barrier, but their edge conditions appear to be
incorrect.

11. Extension to finite depth

The results found above may all be extended to water of finite constant depth h,
when the regions are in 0 < y < h and the conditions (2.3) are replaced by 4>y = 0
and <j>ly — 0 = <p2y on the bottom y = h. This includes the reduction method. Some
selected results for a one-sided boundary are now stated in conclusion, derived as for
infinite depth.

In the absence of surface tension the potential for normalised incident waves against
a wall is

, coshk0(h-y) f _.. k0 - k ..

cosh koh

and the potential for a wave source in front of a wall is

> cos kox — ik sin k^x cosh ko(h — y) cosh ko(h — Y)e'k°x

Gmoa = -4ni-
ko + k koh + sinh koh cosh koh

kn cosh knx — ik sinh knx cos kn(h — y) cos kn (h — Y)e~k"x

n=i kn — ik knh + sin knh cos knh (11.2)

(0 < x < X), etc. (x > X) by reciprocity, where k® tanh&0^ = K, K tan knh + K =
0 (n = 1,2,...). Chwang [3] has previously solved the two-sided wave-maker
problem using the method of Havelock [5].

In the presence of surface tension the generalised slope potential with edge constant
I/Mis

. * o c o s h / c p / ; coshK0(h - y)eiK°x

0
KO + k Koh(l + MKQ) + (1 + 3MKQ) sinhKOh coshKOh

Y ^ Kn cos Knh cos Kn (h — y)e~""x

~^ Kn — ik Knh(\ — MKI) + (1 — 3MK^) sinKnhcosKnh' ,..

where KO{\ + MK%) tanh/co/i = K, Kn{\ - MK2
K) tax\Knh + K = 0 {n = 1, 2, . . . ) .

Chakrabarti [1] has considered the two-sided piston wave-maker problem, but only
for A, = 0 = A.2.

https://doi.org/10.1017/S0334270000009243 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009243


120 P.F.Rhodes-Robinson [17]

References

[1] A. Chakrabarti, "A note on the porous wave-maker problem", Ada Mech. 77 (1989) 121-129.
[2] A. Chakrabarti and T. Sahoo, "Reflection of water waves by a nearly vertical porous wall", J. Austral.

Math. Soc. Ser. B 37 (1996) 417-429.
[3] A. T. Chwang, "A porous wave-maker theory", J. Fluid Mech. 132 (1983) 395^*06.
[4] M. A. Gorgui, M. S. Faltas and A. Z. Ahmed, "Capillary-gravity waves in the presence of infinite

porous plates", // Nuovo Cimento 1SD (1993) 793-808.
[5] T. H. Havelock, "Forced surface waves on water", Philos. Mag. 8 (1929) 569-576.
[6] L. M. Hocking, "Waves produced by a vertically oscillating plate", J. Fluid Mech. 179 (1987)

267-281.
[7] P. F. Rhodes-Robinson, "On the forced surface waves due to a vertical wave-maker in the presence

of surface tension", Proc. Cambridge Philos. Soc. 70 (1971) 323-337.
[8] P. F. Rhodes-Robinson, "On waves at an interface between two liquids", Math. Proc. Cambridge

Philos. Soc. 88 (1980) 183-191.
[9] P. F. Rhodes-Robinson, "Note on the reflexion of water waves at a wall in the presence of surface

tension", Math. Proc. Cambridge Philos. Soc. 92 (1982) 369-373.
[10] G. I. Taylor, "Fluid flow in regions bounded by porous surfaces", Proc. Roy. Soc. Ser. A 234 (1956)

456-475.
[11] R. C. Thorne, "Multipole expansions in the theory of surface waves", Proc. Cambridge Philos. Soc.

49(1953)707-716.

https://doi.org/10.1017/S0334270000009243 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009243

