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Functional linear regression has gained popularity as a statistical tool for studying
the relationship between function-valued variables. However, in practice, it is hard
to expect that the explanatory variables of interest are strictly exogenous, due to,
for example, the presence of omitted variables and measurement error. This issue of
endogeneity remains insufficiently explored, in spite of its empirical importance.
To fill this gap, this article proposes new consistent FPCA-based instrumental
variable estimators and develops their asymptotic properties in detail. Simulation
experiments under a wide range of settings show that the proposed estimators
perform considerably well. We apply our methodology to estimate the impact of
immigration on native labor market outcomes in the US.

1. INTRODUCTION

The recent developments in data collection and storage technologies ignite studies
on how to use more complicated observations such as curves, probability density
functions, or images. This area of study, commonly called functional data analysis,
has become popular in statistics, and researchers in various fields, including eco-
nomics, have benefited from advances in this area. In particular, for practitioners
who are interested in studying the relationship between two or more such variables,
functional linear models are of central importance, and crucial contributions on
this topic include Bosq (2000), Yao, Müller, and Wang (2005), Mas (2007), Hall
and Horowitz (2007), Park and Qian (2012), Crambes and Mas (2013), Benatia,
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2 DAKYUNG SEONG AND WON-KI SEO

Carrasco, and Florens (2017), Imaizumi and Kato (2018), Sun, Du, Wang and Ma
(2018), and Chen, Guo, and Qiao (2022), to name only a few.

The existing statistical approaches for estimating the functional linear model,
including those proposed in the aforementioned literature, are mostly established
under the assumption that the explanatory variable of interest is exogenous,
meaning that it is uncorrelated with the regression error. However, this assumption
is not likely to hold in practice; that is, explanatory variables are often endogenous.
The issue of endogeneity is particularly relevant in the context of functional
linear models because functional observations used in the analysis are typically
constructed by smoothing their discrete, and often sparsely observed, realizations
(see, e.g., Yao et al., 2005). If this being the case, the functional observations may
inevitably involve small or large measurement errors, which leads to the violation
of the exogeneity condition at least to some degree (see, e.g., Sects. 2 and 5.3).
This issue may hinder practitioners from applying the functional linear model.

If the volume of the literature on functional linear regression under the exo-
geneity condition provides any indication, the developments made so far to deal
with endogeneity do not seem to sufficiently meet practitioners’ needs. Although
a few papers, such as Benatia et al. (2017) and Chen et al. (2022), study the
issue of endogeneity in the functional linear model, not much is known about
the asymptotic distributions of their estimators and how to implement statistical
inference on the parameter of interest; this may limit the practical applicability
of the functional endogenous linear model. We will fill this gap to some extent
by providing new estimators and inferential methods based on their asymptotic
properties. This is a crucial point where the present article is differentiated from the
existing ones concerning the issue of endogeneity in the functional linear model.

Specifically, this article provides new estimation results for the functional
endogenous linear model based on (i) the functional principal component analysis
(FPCA) and (ii) the instrumental variable (IV) approach. The former has been
widely adopted by researchers dealing with functional data (see, e.g., Ramsay and
Silverman, 2005; Shang, 2014), and the latter has also been widely adopted in
order to address endogeneity not only in the conventional Euclidean space setting
(see, e.g., Bekker, 1994; Chao and Swanson, 2005; Newey and Windmeijer, 2009),
but also in the setting involving functional observations (see, e.g., Carrasco, 2012;
Florens and Van Bellegem, 2015; Benatia et al., 2017; Chen et al., 2022; Babii,
2022). However, the application of the FPCA to the functional endogenous linear
model has not been fully explored.

We consider the case where the response variable yt, explanatory variable
xt, and instrumental variable zt are all function-valued; of course, with slight
modifications, our results to be subsequently given can be adjusted for the case
where yt is scalar- or vector-valued. Unlike in most of the papers mentioned
above, we do not require the variables of interest to be independent and identically
distributed (i.i.d.), but allow those to exhibit some weak dependence so that our
methodology can be applied to various empirical examples. Given that many
functional observations considered in the literature for applications in the fields of
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 3

energy, environmental and financial economics tend to involve time dependence,
this extension may be attractive to practitioners.

Among the aforementioned papers, the study by Chen et al. (2022) is most
closely related to the present article in the sense that they consider FPCA-based
consistent estimation of function-on-function regression models with endogeneity
introduced by measurement errors. Benatia et al. (2017) earlier considered a
similar model and proposed a consistent estimation method, but their theoretical
results are obtained from a quite different theoretical methodology (ridge-type
regularization). We complement these studies by providing new FPCA-based
estimators and in-depth discussion on their asymptotic properties.

Technically, we view the function-valued variables of interest as random vari-
ables taking values in a Hilbert space of square-integrable functions, and then
propose our FPCA-based functional IV estimator (FIVE). As is well known in
the literature, estimation of a model involving function-valued random variables
is not straightforward because some important sample operators, such as the
covariance of such a random variable, are not invertible over the entire Hilbert
space(s). We circumvent this issue by employing a rank-regularized inverse of
such an operator, and this is the point where we make use of the FPCA. The
reason why we focus on this regularization scheme comes not from its theoretical
superiority, but merely from its popularity in the literature. Other schemes such
as ridge-type regularization (e.g., Florens and Van Bellegem, 2015; Benatia et al.,
2017) may be alternatively considered, and are expected to have their own merits
(see Remark 3). It is worth summarizing some crucial differences between our
estimators and the alternative estimator proposed by Benatia et al. (2017) based on
ridge regularization. To the best of our knowledge, there has not been exploration
of asymptotic inference on specific characteristics of the regression (coefficient)
operator for their estimator; this seems to be because of a nontrivial challenge
associated with a particular asymptotic bias (see Benatia et al., 2017, Sect. 4). In
contrast, in this article, we tackle the issue by employing the FPCA augmented with
a proper extension of the asymptotic approach introduced by Hall and Horowitz
(2007). As a result, this article provides mathematical conditions that support a
valid asymptotic inference on the regression operator. Moreover, Benatia et al.’s
(2017) methodology does not take into account for the more general presence of
weak dependence, although we believe their results can be extended to such a
setting.

This article studies in depth the asymptotic properties of the proposed estima-
tors. It is first shown that, under some mild conditions on the data generating
process (DGP) of {yt,xt,zt}t≥1, the FIVE achieves the weak (convergence in
probability) and strong (almost sure convergence) consistencies as long as the
regularization parameter, which is introduced for a rank-regularized inverse of
a certain sample operator used to construct the estimator, decays to zero at an
appropriate rate. We then establish more detailed asymptotic properties of the
FIVE under some nonrestrictive assumptions on the eigenstructure of the cross-
covariance operator of the explanatory variable xt and the IV zt. By doing so,
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we can see how the cross-covariance structure of xt and zt and the choice of
the regularization parameter affect the convergence of the FIVE toward its true
counterpart. In addition to these results, we show that the FIVE is asymptotically
normal in a pointwise sense if it is centered at a certain operator that is slightly
biased from the true parameter of interest. Moreover, if certain additional condi-
tions are satisfied, such a bias becomes asymptotically negligible and thus, in this
case, the FIVE centered at the true parameter becomes asymptotically normal. The
asymptotic normality results given in this article are quite different from similar
results given in a finite-dimensional setting in the sense that the convergence
rate is (i) possibly random and (ii) not uniformly given over the entire Hilbert
space on which our estimator is defined. This result implies that the proposed
estimator does not weakly converge to any elements in the usual operator topology,
which generalizes what Mas (2007) earlier found in the context of functional
autoregressive (AR) models of order 1. Based on our study of the FIVE, we also
propose a different but closely related estimator, called the functional two-stage
least square estimator (F2SLSE), and obtain its asymptotic properties in a similar
manner. We discuss how our estimators and their asymptotic properties can be used
to implement usual statistical inference on the parameter of interest.

To see how the asymptotic properties of our estimators are revealed in finite sam-
ples, we implement Monte Carlo experiments under various simulation designs.
The simulation results are quite satisfactory. Overall, it seems that our estimators
can be good alternatives or sometimes complements to some existing estimators
that are closely related to ours.

As an empirical illustration, we study the impact of immigration on wages of
native workers in the US. Specifically, we employ a model that is similar to those
considered by Dustmann, Frattini, and Preston (2013) and Sharpe and Bollinger
(2020). The previous literature in this area, including Ottaviano and Peri (2012),
Card (2009), and the aforementioned articles, show that an inflow of immigrants
differently affects native wages depending on skill levels (captured by, e.g., years
of education and experience) of both natives and immigrants. We, in this article,
investigate such heterogeneous effects using our functional linear model, which is
initiated by viewing both the labor supply and the native wage as functions of a
certain measure of workers’ skill (will be detailed in Sect. 5.4). This approach has a
couple of advantages compared to that taken in the earlier literature. For example,
in the previous literature, workers of various skill levels are often classified into a
few skill groups before analysis, which is necessitated to reduce the dimensionality
of the considered model (see Example 1 and Sect. 5.4). However, such a pre-
classification, which may affect estimation results and their interpretation, is not
required in our approach. Moreover, our methodology allows for studying if an
inflow of immigrants in a particular skill group heterogeneously affects workers
equipped with different skill levels. Using the methodology developed in this
article, we find evidence supporting the presence of heterogeneous effects of
immigration.
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 5

This article is organized as follows: Section 2 introduces a functional endoge-
nous linear model and provides motivating examples. In Section 3, we define the
FIVE and discuss its asymptotic properties. Section 4 introduces the F2SLSE
and discusses its asymptotic properties. Section 5 reports simulation results and
details our empirical example. Section 6 concludes. The mathematical proofs of
the theoretical results can be found in the Supplementary Material.

2. FUNCTIONAL ENDOGENOUS LINEAR MODEL

2.1. Endogeneity and Motivating Examples

We suppose that a stationary sequence of random functions {yt,xt,ut}t≥1 satisfies
the following:

yt = cy +Axt +ut, (2.1)

where cy is the intercept function and A is a linear operator satisfying certain
conditions to be clarified. In (2.1), yt, xt and ut will be technically understood
as random variables taking values in separable Hilbert spaces. Section S1.1 of
the Supplementary Material briefly introduces the definitions of a Hilbert-valued
random variable X, its expectation (denoted E[X]), covariance operator (denoted
CXX := E[(X −E[X])⊗ (X −E[X])]), and cross-covariance operator with another
Hilbert-valued random variable Y (denoted CXY := E[(X −E[X])⊗ (Y −E[Y])]),
where ⊗ signifies the tensor product defined by X ⊗Y(·) = 〈X,·〉Y for any random
or nonrandom X and Y taking values in H (see (S1.1) in the Supplementary
Material).

We say that the explanatory variable xt is endogenous if the cross-covariance
of xt and ut, given by the operator E[(xt −E[xt])⊗ (ut −E[ut])], is nonzero. The
present article focuses on estimation and inference of the functional linear model
in the presence of endogeneity. Below we provide specific empirical examples that
motivate this model of interest.

Example 1 (Effects of immigration on the native labor market). In Section 5.4,
we will explore a functional version of a well-known linear regression model
that examines the skill-dependent effects of immigrant inflows on native workers’
wages. In this example, the dependent variable yt and the explanatory variable xt are
functions representing skill-specific changes in wage and the share of immigrants,
respectively, at time t. As will be detailed in Section 5.4, this model suitably
extends existing approaches that typically require pre-classifying workers into only
a few groups (e.g., low, mid, and high skilled groups) and/or may not allow for
spillover effects across different skill groups. As is known in the literature (see,
e.g., Llull, 2018), estimating this model involves challenging issues, including the
endogenous occupational adjustment of workers.

Example 2 (Functional AR model with measurement errors). The functional
AR model has been used in many applications involving functional data. We,
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6 DAKYUNG SEONG AND WON-KI SEO

in this example, consider the functional AR model where each observation is
contaminated by a measurement error; this may be understood as a special case of
the model considered in Chen et al. (2022). An example can be found in the recent
literature on forecasting of probability densities; see, for example, Kokoszka,
Miao, Peterson and Shang (2019). Since true probability density functions are
not observable in practice, they need to be replaced by appropriate nonparametric
estimates that inherently involve estimation errors. Beyond this specific case, it
seems to be quite common in practice that the true functional realization y◦

t cannot
be observed and thus has to be replaced by an estimate yt, obtained by smoothing
its discrete realizations. In these cases, it may be natural to assume that yt contains a
measurement error et, that is, yt = y◦

t +et. If {y◦
t }t≥1 satisfies the stationary AR law

of motion given by y◦
t = Ay◦

t−1 + εt for t ≥ 1, with E[εt] = 0 and E[y◦
t−1 ⊗εt] = 0,

we have

yt = Ayt−1 +ut, where ut = et −Aet−1 + εt.

In this case, E[yt−1 ⊗ut] �= 0 in general, and hence yt−1 is endogenous.

It is expected from Example 2 that endogeneity can arise in many practical
applications of the functional linear model, where xt is incompletely observed.
In such a case, the exogeneity condition is likely to be violated. In particular, due to
advancements in data collection techniques, it is now possible to construct density-
or curve-valued economic variables from large datasets. As a result, the analysis of
these variables has gained popularity, as evidenced by various empirical examples
in the literature (e.g., Benatia et al., 2017; Babii, 2022; Chen et al., 2022; Nielsen,
Seo, and Seong, 2023; Seo, 2024). In economic functional data, the observations
are often incomplete, and the discrete and finite realizations used to construct
functional observations may not be enough to fully capture the entire function.
Therefore, practitioners may remain cautious about potential endogeneity, even if
the considered regressor xt is presumed to be exogenous. This limitation could
hinder the practical use of the functional linear model. As expected from the
literature on the standard linear simultaneous equation model, endogeneity should
be properly addressed for consistent estimation of the regression operator. A
widely used strategy to do this is the IV approach, which will be pursued in our
Hilbert space setting.

2.2. Model, Assumptions, and Notation

To facilitate the subsequent discussions, it may be helpful to introduce some
additional notation. We first let H denote the Hilbert space of square-integrable
functions defined on the unit interval [0,1], where the inner product 〈·,·〉 is defined
by 〈ζ1,ζ2〉 = ∫ 1

0 ζ1(s)ζ2(s)ds for ζ1,ζ2 ∈ H and ‖ · ‖ = 〈·,·〉1/2 defines the norm of
H. LH denotes the space of bounded linear operators acting on H, equipped with
the operator norm ‖T ‖op = sup‖ζ‖≤1 ‖T ζ‖. For any T ∈ LH, we let T ∗, ranT ,
kerT , and ‖T ‖HS denote the adjoint, range, kernel, and Hilbert–Schmidt norm
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 7

of T , which are briefly reviewed in Section S1 of the Supplementary Material;
in that section, various properties of T ∈ LH, such as nonnegativity, positivity,
self-adjointness, compactness and Hilbert-Schmidtness, are also reviewed. For any
nonnegative, self-adjoint and compact T , we may write T = ∑∞

j=1 ajζj ⊗ ζj for
some nonnegative sequence {aj}j≥1 and some orthonormal basis {ζj}j≥1. Then T 1/2

can be well defined by replacing aj with
√

aj.
This article concerns the case where the response variable yt and the endogenous

explanatory variable xt are infinite-dimensional random variables taking values
in separable Hilbert spaces. We hereafter conveniently assume that all of such
variables take values in H. This setup in fact encompasses an apparently more
general scenario where yt and xt take values in different separable Hilbert spaces of
infinite dimension, say Hy and Hx. This is because these spaces are all isomorphic
toH (see, e.g., Conway, 2007, Cor. 5.5, p. 21), and thus there is no loss of generality
by assuming Hy =Hx =H. We further assume for convenience that yt and xt have
zero means, that is, E[yt] = E[xt] = 0; this assumption naturally makes cy in (2.1)
be suppressed to zero. The extension to the case where the means are unknown
and needed to be estimated is straightforward. After adopting all such simplifying
assumptions, the functional endogenous linear model, which will subsequently be
considered, is given as follows: for a linear operator A : H �→ H,

yt = Axt +ut, where E[xt ⊗ut] �= 0 and E[ut] = 0. (2.2)

We then let zt (to be called the IV) be another zero-meanH-valued random variable
satisfying E[zt ⊗ ut] = 0. For notational convenience, we use Czz, Cxz, Cyz and Cuz

to denote the following operators:

Czz = E[zt ⊗ zt], Cxz = E[xt ⊗ zt], Cyz = E[yt ⊗ zt], and Cuz = E[ut ⊗ zt].

Similarly, let Ĉzz, Ĉxz, Ĉyz and Ĉuz denote their sample counterparts that are
computed as follows:

Ĉzz = 1

T

T∑
t=1

zt ⊗ zt, Ĉxz = 1

T

T∑
t=1

xt ⊗ zt, Ĉyz = 1

T

T∑
t=1

yt ⊗ zt, and Ĉuz = 1

T

T∑
t=1

ut ⊗ zt.

We will employ the following assumptions throughout the article: below, Ft

denotes the filtration given byFt = σ
({zs}s≤t+1,{us}s≤t

)
, and Ĉuu =T−1∑T

t=1 ut ⊗ut.

Assumption M. (a) (2.2) holds, (b) {xt,zt}t≥1 is stationary and geometrically
strongly mixing in H×H, E[‖xt‖2] < ∞, and E[‖zt‖2] < ∞, (c) E[ut|Ft−1] = 0,
(d) E[ut ⊗ ut|Ft−1] = Cuu, and sup1≤t≤T E[‖ut‖2+δ|Ft−1] < ∞ for δ > 0, (e) A is
Hilbert–Schmidt, (f) ‖Ĉxz −Cxz‖HS, ‖Ĉzz −Czz‖HS and ‖Ĉuz −Cuz‖HS are Op(T−1/2),
(g) ‖Ĉuu −Cuu‖HS = op(1), (h) kerCxz = {0}.

By Assumption M(b), we allow {xt,zt}t≥1 to be a weakly dependent sequence;
this is because (i) we want to accommodate various empirical examples such as
those given in Horváth and Kokoszka (2012, Chaps. 13–16), by not restricting
our attention to the i.i.d. case and (ii) the variables to be considered in our
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8 DAKYUNG SEONG AND WON-KI SEO

empirical application (Sect. 5.4) naturally exhibit time series dependence. In
Assumptions M(c) and M(d), the error term ut is assumed to be a homoscedastic
martingale difference sequence. Assumption M(c) states the conditions required
for the IV zt in this setting (see Example 3 for a possible IV presented for the
model in Example 2), and this condition implies that ut is uncorrelated with zt.
In Assumption M(d), we impose some requirements on the moments of ut. We
here note that, if {zt,ut}t≥1 is an i.i.d. sequence, as often assumed in the literature,
Assumptions M(c) and M(d) reduce to the following:

E[ut|zt] = 0, E[ut ⊗ut|zt] = Cuu, and E[‖ut‖2+δ|zt] < ∞ for some δ > 0.

The Hilbert–Schmidt condition of A given in Assumption M(e) would become
redundant if we considered a finite-dimensional Hilbert space, but in our setting it
imposes a nontrivial mathematical condition onA. In Assumptions M(f) and M(g),
high-level conditions on limiting behaviors of some sample operators are given,
and these are for mathematical convenience. We first note that {xt ⊗ zt − Cxz}t≥1,
{zt ⊗zt −Czz}t≥1, and {ut ⊗zt −Cuz}t≥1 are sequences in the Hilbert space of Hilbert–
Schmidt operators, denoted by SH (see Section S2.3.1 of the Supplementary
Material). If those sequences are i.i.d. (resp. geometrically strongly mixing), then
Assumption M(f) holds once E[(‖xt‖‖zt‖)υ], E[‖zt‖2υ], and E[(‖ut‖‖zt‖)υ] are
finite for some υ ≥ 2 (resp. υ ≥ 2 + δ for some δ > 0) (Bosq, 2000, Thms. 2.7
and 2.17); such primitive sufficient conditions can also be found for martingale
differences (Bosq, 2000, Thm. 2.16) and weakly stationary sequences (Bosq, 2000,
Thm. 2.18). We also observe that {ut ⊗ ut − Cuu}t≥1 is a martingale difference
sequence in SH, and some primitive sufficient conditions for Assumption M(g)
can be found in, for example, Theorems 2.11 and 2.14 of Bosq (2000). Lastly,
Assumption M(h) enables us to identify the unique bounded linear operator A
satisfying (2.2) using the IV zt, which will be discussed in more detail in Section 3.

Example 3. Consider Example 2 in Section 2.1. Suppose that the sequence
of measurement errors {et}t≥1 satisfies that E[et|Gt−1] = 0 where Gt−1 =
σ

({ys}s≤t−1,{es}s≤t−1,{εs}s≤t
)
. Then yt−� for � > 1 satisfies the exogeneity

condition implied by Assumption M(c). Note that yt−2 satisfies

E[yt−2 ⊗ yt] = AE[yt−2 ⊗ yt−1]+E[yt−2 ⊗ut] = AE[yt−2 ⊗ yt−1]. (2.3)

This reveals a theoretical connection between our approach and the modified Yule–
Walker method, which was introduced to deal with uncorrelated measurement
errors in AR models. In the univariate AR(1) case, the modified Yule–Walker
estimator can be obtained by replacing the population moments in (2.3) by
their sample counterparts; see Walker (1960) and Staudenmayer and Buonaccorsi
(2005, Sect. 4.4). As may be expected from this example, if {yt,xt}t≥1 is a time
series satisfying (2.2), the lagged explanatory variables {xt−�}t≥1 for � = 1, . . . ,L
may be suitable candidates for zt. Chen et al. (2022) noted this and proposed∑L

�=1 xt−� as the IV to obtain a consistent estimator of A. In this regard, our model
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 9

is related to that of Chen et al. (2022), but the theory and methodology that are
subsequently pursued in this article move in an apparently different direction.

Remark 1. Consider the standard Euclidean space setting where Cxz is invert-
ible. From (2.2) and Assumption M(c), the standard IV estimator, Ĉ−1

xz Ĉyz can be
defined and it can be understood as a sample analogue of A∗. Alternatively, (2.2)
and Assumption M(c) imply that C∗

xzCyz = C∗
xzCxzA∗. Thus, based on this equation,

we may define another IV estimator, (Ĉ∗
xzĈxz)

−1Ĉ∗
xzĈyz, which can be understood

as a GMM estimator with an identity weight. Our FIVE is defined as in the
latter case. This choice offers a theoretical advantage especially in our functional
setup because we can utilize well-established mathematical results concerning the
spectral properties of self-adjoint operators ((Ĉ∗

xzĈxz)
−1) to study the asymptotic

properties of the FIVE.

3. FUNCTIONAL IV ESTIMATOR

This section discusses estimation of the model (2.2) given observations
{yt,xt,zt}T

t=1. We first propose the FIVE in detail and study its asymptotic
properties.

3.1. The Proposed Estimator

We find from (2.2) that C∗
yz = E[zt ⊗ yt] = AE[zt ⊗ xt] = AC∗

xz and hence,

C∗
yzCxz = AC∗

xzCxz. (3.1)

As discussed in Mas (2007) and Benatia et al. (2017), A is a uniquely identified
bounded linear operator if and only if kerCxz = {0} (see Assumption M(h)),
and we note that all the eigenvalues of C∗

xzCxz are positive under the condition
(Mas, 2007, Remark 2.1). In the sequel, we thus let {λ2

j }j≥1 denote the collection
of the eigenvalues of C∗

xzCxz ordered from the largest to the smallest, and represent
C∗

xzCxz as its spectral decomposition given by

C∗
xzCxz =

∞∑
j=1

λ2
j fj ⊗ fj,

where fj is the eigenfunction corresponding to λ2
j . Given (3.1), it may be natural

to consider an estimator Ā that satisfies the equation Ĉ∗
yzĈxz = ĀĈ∗

xzĈxz, obtained
by replacing Cyz and Cxz with their sample counterparts. However, it is generally
impossible to directly compute the estimator Ā from this equation since Ĉ∗

xzĈxz

is not invertible over the entire Hilbert space H. We circumvent this issue by
employing a regularized inverse of Ĉ∗

xzĈxz which may be understood as the well-
defined inverse on a strict subspace of H.

To this end, we first note that Ĉ∗
xzĈxz is nonnegative, self-adjoint, and compact,

and hence allows the following representation:
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10 DAKYUNG SEONG AND WON-KI SEO

Ĉ∗
xzĈxz =

∞∑
j=1

λ̂2
j f̂j ⊗ f̂j,

where {̂λ2
j ,̂fj}j≥1 are the pairs of eigenvalues and eigenfunctions, and λ̂2

1 ≥ ·· · ≥
λ̂2

T ≥ 0 = λ̂2
T+1 = . . . . We then define K as the random integer determined by the

threshold parameter α > 0 such that

K = #{j : λ̂2
j > 1/α}. (3.2)

Using the first K eigenfunctions of Ĉ∗
xzĈxz, its rank-regularized inverse, denoted

(Ĉ∗
xzĈxz)

−1
K , and the FIVE, denoted Â, are defined as follows:

Â = Ĉ∗
yzĈxz(Ĉ∗

xzĈxz)
−1
K , where (Ĉ∗

xzĈxz)
−1
K =

K∑
j=1

λ̂−2
j f̂j ⊗ f̂j. (3.3)

The largest eigenvalue of the regularized inverse (Ĉ∗
xzĈxz)

−1
K is bounded above by

α and thus the regularized inverse is a well-defined bounded linear operator for
every α > 0. It is worth mentioning that the FIVE becomes equivalent to the
estimator proposed by Park and Qian (2012) in the case where zt = xt and K is
deterministically chosen by researchers (see Remark 2), so our estimator may be
understood as an extension of their estimator. We also note that the FIVE Â may
be viewed as a sample-analogue of A satisfying (3.1) in the sense that Â is the
solution to Ĉ∗

yzĈxz = ÂĈ∗
xzĈxz on the restricted domain given by ĤK = span{̂fj}K

j=1.

Section S5 of the Supplementary Material discusses how Â can be computed from
the data using the FPCA.

Remark 2. It should be noted that K in (Ĉ∗
xzĈxz)

−1
K is by construction a ran-

dom variable associated with the choice of α. In the literature where a similar
regularized inverse is discussed, K is chosen by practitioners and hence regarded
as deterministic (e.g., Mas, 2007; Park and Qian, 2012). However, even in this
case, it is generally recommended to choose K taking the eigenvalues of Ĉ∗

xzĈxz

into account, and thus treating K as a random variable appears to be natural. This
alternative perspective on K helps practitioners more directly control the degree of
instability of the regularized inverse, measured by its largest eigenvalue, by means
of the parameter α that they choose. Moreover, this approach distinguishes our
asymptotic approach from those in the aforementioned papers.

3.2. General Asymptotic Properties

As may be deduced from our construction of the FIVE, Â= 0 is imposed outside a
subspace whose dimension increases as α gets larger. Thus, for Â to be a consistent
estimator of A defined on the entire space H, the regularization parameter α given
in (3.2) needs to diverge to infinity. Taking this into consideration, we investigate
the asymptotic properties of the FIVE when T → ∞ and α → ∞ jointly. We will
employ the following assumption:
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 11

Assumption E1. λ2
1 > λ2

2 > · · · > 0.

That is, the eigenvalues of C∗
xzCxz are required to be distinct. This is employed to

see asymptotic properties of the FIVE in detail and does not seem to be restrictive
in practice; in fact, similar assumptions have been employed in the literature on
functional linear models, see, for example, Bosq (2000, Sect. 8.3), Mas (2007),
Hall and Horowitz (2007), and Park and Qian (2012), to name only a few.

We now provide the asymptotic properties of the estimator Â when α and T
grow jointly without bound. To this end, we consider the following decomposition
of Â−A:

Â−A = (Â−A�̂K)−A(I − �̂K), (3.4)

where �̂K denotes the orthogonal projection defined by �̂K = ∑K
j=1 f̂j ⊗ f̂j and I is

the identity operator acting onH. Given that the FIVE is computed on the restricted
domain ran�̂K (note that Â = 0 on ran(I − �̂K) by construction) the first term
of (3.4) may be understood as the deviation of Â from A on ran�̂K. Thus, this
term is hereafter called the deviation component on the restricted domain (the DR
component). On the other hand, the second term A(I−�̂K) may be understood as
the bias induced by the fact that Â is enforced to zero on ran(I−�̂K). We thus call
this term the regularization bias component (the RB component). Our first result
below shows that both the DR and RB components are asymptotically negligible
and thus Â becomes weakly consistent once the regularization parameter α

diverges to infinity at an appropriate rate; in the next theorem, we let τ(α) be a
random function that increases without bound as α → ∞, which is defined by
τ(α) = ∑K

j=1 τj, where τj = 2
√

2max{(λ2
j−1 −λ2

j )
−1,(λ2

j −λ2
j+1)

−1}.

Theorem 1. Suppose that Assumptions M and E1 are satisfied, T−1/2τ(α)
p→ 0

and T−1α → 0 as α → ∞ and T → ∞. Then

‖Â−A�̂K‖2
op = Op(T

−1α) and ‖A(I − �̂K)‖2
op = op(1).

The following is an immediate consequence of Theorem 1 and Assump-
tion M(g).

Corollary 1. Suppose that the assumptions in Theorem 1 are satisfied, and let

ût = yt − Âxt. Then ‖T−1 ∑T
t=1 ût ⊗ ût −Cuu‖op

p→ 0.

The condition imposed on τ(α) in Theorem 1 does not place any essential
restrictions on the eigenvalues of C∗

xzCxz. Given that τ(α) increases as α (and thus K)
gets larger, the condition, together with the requirement that T−1α → 0, merely
tells us that α needs to grow at a sufficiently slower rate than T for the weak
consistency of the FIVE. In fact, under some additional conditions, the strong
(almost sure) consistency of the estimator can also be derived; we need more

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000252
Downloaded from https://www.cambridge.org/core. IP address: 18.226.170.240, on 11 Jan 2025 at 00:45:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000252
https://www.cambridge.org/core


12 DAKYUNG SEONG AND WON-KI SEO

mathematical preliminaries to present this result, and thus leave the discussion
to Section S2.3.1 of the Supplementary Material.

Remark 3. The result in Theorem 1 is, at least to some extent, related to a
similar consistency result given by Benatia et al. (2017) for their functional IV
estimator. In order to obtain an estimator from (3.1), the authors employ the ridge
regularized inverse of Ĉ∗

xzĈxz, while we use a rank-regularized inverse of Ĉ∗
xzĈxz. This

makes a significant difference in asymptotic approaches to establish consistency
in the two papers. For example, our result is based on the FPCA and thus we
require the eigenvalues of C∗

xzCxz to be distinct, which is not required in Benatia
et al. (2017). In addition, Benatia et al.’s (2017) approach restricts the range of A
to a certain subspace of H, called the β-regularity space, while we need to restrict
the increasing rate of α or K depending on τ(α).

Under stronger assumptions than what we require for the weak consistency
of Â, we can further find that (i) the decay rate of Â−A is not uniform over
the entire Hilbert space H and (ii) the choice of α can affect the decay rates of
the DR and RB components in different directions. These results are given as
consequences of the following asymptotic normality result of the DR component;
in the theorem below, (C∗

xzCxz)
−1
K denotes the operator given by

∑K
j=1 λ−2

j fj ⊗ fj and
N (0,G) denotes Gaussian random element in H with covariance operator G.

Theorem 2. Suppose that Assumptions M and E1 are satisfied,

α1/2T−1/2τ(α)
p→ 0 and T−1α → 0 as α → ∞ and T → ∞. Then the following

hold for any ζ ∈ H.

(i)
√

T/θK(ζ )(Â−A�̂K)ζ
d→ N (0,Cuu), where θK(ζ ) = 〈ζ,(C∗

xzCxz)
−1
K C∗

xzCzzCxz

(C∗
xzCxz)

−1
K ζ 〉.

(ii) If θ̂K(ζ ) := 〈ζ,(Ĉ∗
xzĈxz)

−1
K Ĉ∗

xzĈzzĈxz(Ĉ∗
xzĈxz)

−1
K ζ 〉, then |θ̂K(ζ )− θK(ζ )| p→ 0.

Depending on the choice of ζ , θK(ζ ) may be convergent or divergent in
probability (see Remark 4), and thus the convergence rate of the DR component
(Â−A�̂K)ζ depends on ζ . This finding is not completely new; similar results
were formerly observed by Mas (2007) and Hu and Park (2016) in the context of
functional AR(1) models. If θK(ζ ) is convergent in probability, then (Â−A�̂K)ζ

converges at
√

T-rate, otherwise it converges at a slower rate given by
√

T/θK(ζ )

which is random (because of the randomness of K). As noted by Mas (2007),
this discrepancy in convergence rates implies that (i) there exists no sequence of
normalizing constants cT such that cT(Â−A�̂K)ζ weakly converges to a well-
defined limiting distribution uniformly in ζ ∈ H, and therefore it is impossible
that Â−A�̂K weakly converges to a well-defined bounded linear operator in the
topology of LH, and (ii) this statement is also true if A�̂K is replaced by A (see
Thm. 3.1 of Mas, 2007). Moreover, it can be deduced from Theorem 2 that as K
increases, the regularization parameter α induces a trade-off between the decay
rates of the DR and RB components when θK(ζ ) is not convergent. If K relative to
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 13

T increases by a larger choice of α, then the operator norm of the RB component
tends to shrink to zero at a faster rate. On the other hand, this change results in
a faster divergence of θK(ζ ), and Theorem 2 shows that the DR component will
decay at a slower rate in such a case.

Remark 4. To see if θK(ζ ) can be convergent or divergent depending on
the choice of ζ , it is useful to assume that xt = zt + vt, where {vt}t≥1 satisfies
that E[zt ⊗ vt] = 0. For j ≥ 1, let {μj,gj}j≥1 be the pairs of eigenvalues and
eigenfunctions of Czz. Then it can be shown that plimT→∞θK(ζ ) is simply given by∑∞

j=1 μ−1
j 〈gj,ζ 〉2, and this quantity is bounded only when ζ belongs to a certain

strict subspace of H; see Carrasco, Florens, and Renault (2007, Sect. 3.2).

In applications involving economic or statistical time series, practitioners are
often interested in the marginal effect of some additive and hypothetical pertur-
bation, say ζ , in xt on yt. In the considered linear model, this marginal effect
is simply given by Aζ , which can be consistently estimated by Âζ . Let {ζK}
be a sequence of random elements given by ζK = �̂Kζ . Then ζK is given by
the orthogonal projection of the new perturbation ζ onto the subspace on which
the sample cross-covariance of xt and zt is the most explained, in a certain sense
(see Remark 5), among all the subspaces of dimension K; that is, ζK is the
best linear approximation of ζ based on the covariation of the explanatory and
instrumental variables. Therefore, ζK may be interpreted as a nice approximation
showing how a hypothetical perturbation ζ can be revealed given the dataset,
and we thus call ζK a data-supporting approximation of ζ . The following is
an immediate consequence of Theorem 2: under the assumptions employed in
Theorem 2,

|θ̂K(ζK)− θK(ζK)| p→ 0 and
√

T/θK(ζK)(Â−A)ζK
d→ N (0,Cuu).

Based on this result, we may implement standard statistical inference on various
characteristics of AζK, which may provide a practical and interpretable insight
for practitioners. We illustrate this by constructing a confidence interval for the
random variable given by 〈AζK,ψ〉 for some ψ ∈H. In fact, various characteristics
of AζK may be written in this form; for example, if ψ(s) = 1{s1 ≤ s ≤ s2} then
〈AζK,ψ〉 = ∫ s2

s1
AζK(s)ds means the locally (if s1 �= 0 or s2 �= 1) or globally

(if s1 = 0 and s2 = 1) aggregated marginal effect on yt. We then consider the interval
whose endpoints are given as follows:

〈ÂζK,ψ〉±�−1(1−�/2)

√
θ̂K(ζK)〈Ĉ̂ûuψ,ψ〉/T, (3.5)

where �−1(·) is the quantile function of the standard normal distribution and Ĉ̂ûu =
T−1 ∑T

t=1 ût ⊗ ût. Based on Theorem 2 and Corollary 1, the intervals that are repeat-
edly constructed as in (3.5) are expected to include 〈AζK,ψ〉 with 100(1−� )%
of probability for a large T. Of course, (3.5) may not be quite satisfactory to
practitioners who want to consider a purely hypothetical perturbation ζ without
a data-supporting approximation. However, (i) the discrepancy between ζ and ζK
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14 DAKYUNG SEONG AND WON-KI SEO

caused by the noninvertibility of Ĉ∗
xzĈxz inevitably arises in our functional setting

and (ii) the magnitude of discrepancy is expected to be small since it is, anyhow,
asymptotically negligible. Therefore, this small bias caused by the data-supporting
approximation may be understood as a cost of implementing standard inference
based on asymptotic normality in our setting. Furthermore and more importantly,
it will be shown in Section 3.3 that, if certain conditions, which are not that
restrictive, are satisfied, then the convergence result given in Theorem 2(i) holds
even if A�̂K is replaced by A (see Remark 11); this, of course, implies that (3.5)
can be understood as a confidence interval for 〈Aζ,ψ〉 with no data-supporting
approximation.

Remark 5. Note that ‖Ĉxz‖2
HS = ∑∞

j=1 λ̂2
j = ∑∞

j=1 ‖Ĉxzζj‖2 holds for any arbitrary
orthonormal basis {ζj}j≥1 of H. We then may define the proportion of the sample
cross-covariance operator explained by the first K orthonormal vectors as

K∑
j=1

‖Ĉxzζj‖2
/ ∞∑

j=1

λ̂2
j =

K∑
k=1

∞∑
j=1

λ̂2
j 〈̂fj,ζk〉2

/ ∞∑
j=1

λ̂2
j .

Provided that {̂λ2
j ,̂fj}j≥1 is the sequence of the eigenelements of Ĉ∗

xzĈxz, it is deduced
from the results given in Horváth and Kokoszka (2012, Thm. 3.2 and Sect. 3.2) that

the above quantity is bounded above by
∑K

j=1 λ̂2
j

/∑∞
j=1 λ̂2

j , and this upper bound

is attained if and only if ζj = ±̂fj for j = 1, . . . ,K. This shows that, among all the
subspaces of dimension K, ran�̂K is the unique subspace that explains the most
proportion of the squared Hilbert-Schmidt norm of Ĉxz.

Remark 6. In Section S7 of the Supplementary Material, we develop a signifi-
cance test to examine whether various characteristics of yt, expressed as 〈yt, ψ〉 for
some ψεH, depend on xt. A crucial input to this test is a consistent estimator of A,
and the FIVE (and also the F2SLSE to be developed in Section 4) can be used.

3.3. Refinements of the General Asymptotic Results

In Section 3.2, we established some general asymptotic properties of the FIVE,
which do not require any specific assumptions on the eigenstructure of the cross-
covariance of xt and zt other than the assumption of distinct eigenvalues. The results
given in the previous section tell us that the FIVE is a reasonable estimator in
this functional setting. However, what can be learned from Theorems 1 and 2 is
not rich enough; we only know that the FIVE is consistent (Thm. 1) and its DR
component is asymptotically normal in a pointwise sense (Thm. 2) if α diverges
to infinity at a sufficiently slow rate. We in this section investigate the asymptotic
behavior of the FIVE in more detail under a set of assumptions which is stronger
than Assumption E1 but not restrictive in practice. By doing so, we will obtain
useful refinements of Theorems 1 and 2. The specific assumptions that we need are
given as follows: in the assumption below, we note that CxzC∗

xz allows the spectral
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 15

decomposition CxzC∗
xz = ∑∞

j=1 λ2
j ξj ⊗ ξj for some orthonormal basis {ξj}j≥1, and let

υt(j,�) = 〈xt,fj〉〈zt,ξ�〉−E[〈xt,fj〉〈zt,ξ�〉] for j,� ≥ 1.

Assumption E2. There exist constants c◦ > 0, ρ > 2, ς > 1/2, γ > 1/2 and m >

1 satisfying the following: (a) λ2
j ≤ c◦j−ρ , (b) λ2

j −λ2
j+1 ≥ c−1◦ j−ρ−1, (c) |〈Afj,ξ�〉| ≤

c◦j−ς�−γ , (d) E[υt(j,�)υt−s(j,�)] ≤ c◦s−m
E[υ2

t (j,�)] for s ≥ 1, and furthermore,
E[‖〈xt,fj〉zt‖2] ≤ c◦λ2

j and E[‖〈zt,ξj〉xt‖2] ≤ c◦λ2
j .

Assumptions E2(a) and E2(b) restrict the eigenstructure of Cxz (or equivalently
C∗

xzCxz), which are adapted from similar conditions in Hall and Horowitz (2007)
and Imaizumi and Kato (2018).1 Assumption E2(c) is a very natural condition
given that 〈Afj,ξ�〉 must be square-summable with respect to both j and �; in
this assumption, it is worth mentioning that ς is the parameter determining the
smoothness of A on ranC∗

xzCxz. As may be deduced from the definition of υt(j,�)
and Assumption M(b), {υt(j,�)}t≥1 is a stationary sequence in R for each j and �,
and the former condition of Assumption E2(d) states that its lag-s autocovariance
function decays at a sufficiently fast rate; this condition is satisfied for a wide class
of stationary processes. Note that both E[‖〈xt,fj〉zt‖2] and E[‖〈zt,ξj〉xt‖2] naturally
decrease as j gets larger and its decay rate is restricted by Assumption E2(d).
Specifically, we require that the second moments of ‖〈xt,fj〉zt‖ and ‖〈zt,ξj〉xt‖ as
functions of j have a constant multiple of λ2

j as their upper envelope; a similar
condition for the i.i.d. case can be found in, for example, Hall and Horowitz (2007).

The following theorem refines the result given in Theorem 1 under
Assumption E2.

Theorem 3. Suppose that Assumptions M and E2 are satisfied and α =
o(Tρ/(2ρ+2)). Then, ‖Â−A�̂K‖2

op = Op(T−1α) as in Theorem 1, and

‖A(I − �̂K)‖2
op = Op(T

−1αmax{1,α(3−2ς)/ρ}+α(1−2ς)/ρ). (3.6)

Thus, ‖Â−A‖op = op(1) for any ρ > 2 and ς > 1/2.

Some comments on the requirement α = o(Tρ/(2ρ+2)) are first in order. This
condition is needed in our proof of Theorem 3 to deal with estimation errors
associated with λ̂j (see Remark 8). This may be replaced by a sufficient and more
convenient condition given by α = o(T1/3), which does not depend on the value of
ρ under Assumption E2 requiring ρ > 2.

Theorem 3 not only gives us a more detailed consistency result than that
given in Theorem 1, but also better clarifies how certain parameters appearing
in Assumption E2 can affect the convergence rate of the FIVE. Specifically, in
the above theorem, the convergence rate is characterized by the regularization
parameter α, the smoothness ς of A on ranC∗

xzCxz, and the decay rate ρ of λ2
j (as a

1In fact, Assumptions E2(a) and E2(b) can be replaced by the following conditions: |λj| ≤ c◦j−ρ/2 and |λj|−|λj+1| ≥
c◦j−ρ/2−1 for ρ > 2. These conditions are directly comparable with similar conditions given for the eigenvalues of
E[xt ⊗ xt] in Hall and Horowitz (2007) and Imaizumi and Kato (2018).
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16 DAKYUNG SEONG AND WON-KI SEO

function of j). From (3.6), it is evident that if α grows to infinity at a sufficiently
slow rate, then the convergence rate of the RB term will be dominantly determined
by the second term (appearing in (3.6)), whose convergence rate is positively
related to α. Therefore, in this case, we expect a slower convergence rate of the
RB component; this is a quite natural property that can also be deduced from our
earlier discussion following Theorem 2 in Section 3.2. Moreover, it can be shown
that the convergence rate of the FIVE is generally positively (resp. negatively)
related to ς (resp. ρ); the former is immediately seen from (3.6), and the latter is
discussed in detail in Remark 9.

Remark 7. In fact, the results given in Theorems 1 and 3 hold even if ‖ · ‖op

is replaced by ‖ · ‖HS, which can be seen in our proofs of those theorems (see
Section S2 of the Supplementary Material).

Remark 8. The requirement α = o(Tρ/(2ρ+2)) is used to ensure the existence of
a small constant, say c̃◦, such that P(|̂λj −λ�| ≥ c̃◦|λj −λ�| for all 1 ≤ j ≤ K and
� �= j) → 1; the detailed reason why this result can be obtained from the require-
ment on α is given in our proof of Theorem 3, which is quite similar to the
discussion given by Imaizumi and Kato (2018) following their Theorem 1.

Remark 9. If the eigenvalues of C∗
xzCxz decay to zero at a fast rate (and thus the

eigenvalues of Ĉ∗
xzĈxz tend to do so), then the rank-regularized inverse (Ĉ∗

xzĈxz)
−1
K

tends to be more unstable (unless K becomes smaller) than in the case with more
slowly decaying eigenvalues. Thus, it is expected that the convergence rate of
the FIVE generally becomes slower as ρ increases. This can be seen from the
asymptotic results given in Theorem 3. Let ρ change with the other parameters
being fixed. In addition, it is assumed that α satisfies the condition α = o(Tρ/(2ρ+2))

both before and after any change in ρ and thus no adjustment in α is required; note
that this can always be done by letting α = o(T1/3) if necessary. From (3.6), it can
be shown that the RB component is (i) Op(T−1α)+ Op(α

(1−2ς)/ρ) if ς ≥ 3/2 and
(ii) Op(T−1α(ρ−2ς+3)/ρ) + Op(α

(1−2ς)/ρ) if ς ∈ (1/2,3/2). In case (i), the decay
rate of the second term is negatively related to ρ, and thus an increase in ρ does
not yield a faster convergence rate. In case (ii), the decay rates of both terms are
negatively related to ρ since (ρ −2ς +3)/ρ is positive and strictly increasing in ρ.

We next refine our pointwise asymptotic normality result under Assumption E2.
To this end, it is convenient to decompose the RB component again as follows:

A(�̂K −I) = A(�̂K −�K)+A(�K −I), (3.7)

where �K = ∑K
j=1 fj ⊗ fj, and this may be understood as the population counterpart

of �̂K. The next theorem refines the results in Theorem 2, but in order to
simplify the subsequent discussion, we for now only consider the case where
ρ/2+2 < ς + δζ ; the result without this condition is given in Section S2.3.2 of
the Supplementary Material.
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 17

Theorem 4. Suppose that Assumptions M and E2 are satisfied, ζ ∈ H satisfies
〈fj,ζ 〉 ≤ cζ j−δζ for some cζ > 0 and δζ > 1/2, ρ/2+2 < ς + δζ and

T−1 max
{
α(3ρ−2δζ +1)/ρ,α(ρ+1)/ρ

} = o(1). (3.8)

Then, Theorem 2 holds and

‖A(�̂K −�K)ζ‖ = Op(T
−1/2) and ‖A(�K −I)ζ‖ = Op(α

(1/2−ς−δζ )/ρ).

Theorem 4 refines Theorem 2 by providing a detailed asymptotic order of the
RB component. Some remarks on the theorem are given in Remarks 10 and 11;
particularly, in the latter remark, an improvement of the asymptotic normality
result in Theorem 2 is discussed.

Remark 10. The growing rate of α required for Theorem 4 depends on both ρ

and δζ . If δζ is sufficiently large so that 2δζ ≥ ρ − 1, then (3.8) can be simplified
to α = o(T1/3). Moreover, the condition δζ > 1/2 is natural since 〈fj,ζ 〉 must be
square-summable with respect to j.

Remark 11 (Pointwise asymptotic normality of the FIVE). A consequence of
Theorem 4 is that, if A is smooth enough and 〈fj,ζ 〉 decays to zero at a sufficiently

fast rate as j increases,
√

T/θK(ζ )‖A(�̂K −I)ζ‖ p→ 0 and thus the result given in
Theorem 2(i) can be strengthened to the following:

√
T/θK(ζ )(Â−A)ζ

d→ N (0,Cuu). (3.9)

In this case, of course, (3.5) is understood as a confidence interval for 〈Aζ,ψ〉.
In particular, if (i) ς + δζ > ρ/2+2 and (ii) Tα(1−2ς−δζ )/ρ = O(1) (note that both
conditions are easier to hold if ς and δζ are large), we have

√
T/θK(ζ )A(�̂K −I)ζ = Op(1/

√
θK(ζ )).

The above quantity converges to zero if θK(ζ )
p→ ∞, which is likely to happen

in practice for many possible choices of ζ ; for example, if we assume that ζ is
arbitrarily and randomly chosen from H, P{θK(ζ ) < c < ∞} → 0 as K → ∞
since θK is convergent only on a strict subspace of H. Given that δζ > 1/2, the
aforementioned conditions for (3.9) are satisfied if (i)′ ς > ρ/2 + 3/2 and (ii)′
Tα−2ς/ρ = O(1) regardless of the value of δζ . The former condition (i)′ requires
A to have a sufficient smoothness depending on the decay rate of the eigenvalues
of C∗

xzCxz, and this seems not to be restrictive; in the literature on functional linear
models, it is common to impose such a smoothness condition on A depending on
the eigenvalues of a certain covariance or cross-covariance operator (e.g., Hall and
Horowitz, 2007; Imaizumi and Kato, 2018; Chen et al., 2022).
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18 DAKYUNG SEONG AND WON-KI SEO

4. FUNCTIONAL TWO-STAGE LEAST SQUARE ESTIMATOR

4.1. The Proposed Estimator

In the context of Euclidean space, where the covariance matrix of zt is assumed to
be invertible, our FIVE reduces to a certain IV estimator, as noted in Remark 1.
As expected from existing results (see, e.g., Hausman, 1983), this IV estima-
tor generally exhibits a larger asymptotic variance compared to the two-stage
least squares estimator (2SLSE) when the model is over-identified. In a Hilbert
space setting, covariance operators are not invertible and have eigenvalues that
decay to zero, making it challenging to extend the conventional 2SLSE approach
straightforwardly. In this section, we show that a functional version of the 2SLSE
can be constructed using appropriate regularization and discuss its asymptotic
properties. To the best of the authors’ knowledge, a similar extension of the
2SLSE was considered by Florens and Van Bellegem (2015) for a scalar-valued
dependent variable but has not been explored in the context of function-on-function
regression. As detailed in Remark 12, despite their resemblance, the theoretical
properties of the proposed estimator differ from those of the conventional 2SLSE,
which is mainly due to the noninvertible covariance of the IV and its eigenvalues
decaying to zero.

In this section, we assume that xt and zt satisfy the so-called first-stage relation-
ship:

Assumption M*. (a) Assumption M holds, (b) xt = Bzt + vt, where B ∈ LH
and E[vt|Ft−1] = 0 (Ft−1 is defined in Assumption M), (c) Ĉvz = T−1 ∑T

t=1 vt ⊗ zt

satisfies that ‖Ĉvz‖HS = Op(T−1/2).

If we consider the case H = R
n, then the 2SLSE is defined as follows:

Ã◦ = Ĉ∗
yzĈ−1

zz Ĉxz
(
Ĉ∗

xzĈ−1
zz Ĉxz

)−1
,

and it is widely known that Ã◦ has many desirable properties as an estimator of A.
Coming back to our functional setting, it is not difficult to see that the use of the
standard 2SLSE is problematic since it involves Ĉ−1

zz and (Ĉ∗
xzĈ−1

zz Ĉxz)
−1 which are

not well defined as bounded linear operators.
To have a well-behaved analogue of the 2SLSE in our setting, we regularize

those inverses as we did in Section 3 and propose an alternative estimator. To this
end, we hereafter let T −1

K denote the regularized inverse of a compact operator T
based on its first K eigenelements (this is defined in the same way as (Ĉ∗

xzĈxz)
−1
K

given in (3.3)). Our proposed estimator is defined as follows:

Ã = P̂Q̂−1
K2

, where P̂ = Ĉ∗
yz(Ĉzz)

−1
K1
Ĉxz and Q̂ = Ĉ∗

xz(Ĉzz)
−1
K1
Ĉxz,

and, if we let {μ̂j}j≥1 (resp. {̂νj}j≥1) be the ordered (from the largest to the smallest)
eigenvalues of Ĉzz (resp. Q̂),2 then K1 and K2 are defined as

2The eigenvalues of Ĉzz and Q̂ are almost surely positive since they are nonnegative and self-adjoint by construction.
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 19

K1 = #{j : μ̂2
j > 1/α1} and K2 = #{j : ν̂2

j > 1/α2}.
Note that by definition, K2 ≤ K1 holds almost surely because (Ĉzz)

−1
K1

is of finite

rank K1. We conveniently call Ã the F2SLSE.
To investigate the asymptotic properties of the F2SLSE, it is necessary to

establish some preliminary results and fix notation. First, we note that the operator
Q defined byQ= C∗

xzC−1
zz Cxz can be understood as a well-defined compact operator.

To be more specific, Lemma S3 (and the following discussion given in Section S3
of the Supplementary Material) shows that C−1/2

zz Cxz = RxzC1/2
xx for some unique

bounded linear operator Rxz, which may be understood as the correlation operator
of xt and zt, and thus Q= C1/2

xx R∗
xzRxzC1/2

xx . From similar arguments, it can be easily
shown that the operator P = C∗

yzC−1
zz Cxz is also well defined. We then let {μj,gj}j≥1

(resp. {νj,hj}j≥1) be the eigenelements of Czz (resp. Q), that is,

Czz =
∞∑

j=1

μjgj ⊗gj and Q =
∞∑

j=1

νjhj ⊗hj.

Since Czz and Q are self-adjoint and nonnegative, μj and νj are all nonnegative. We
know from (2.2) that the population relationship P = AQ holds.

4.2. General Asymptotic Properties

This section discusses the asymptotic properties of the F2SLSE under the follow-
ing assumption:

Assumption E1*. μ1 > μ2 > · · · > 0 and ν1 > ν2 > · · · > 0.

It should be noted that the operator A satisfying P = AQ is uniquely identified
if Assumptions M* and E1* are satisfied. To see this in detail, note that A
satisfying C∗

yzCxz = AC∗
xzCxz (resp. P = AQ) is identified if and only if Cxz (resp.

C−1/2
zz Cxz) is injective. If Assumption E1* is satisfied and hence Czz is injective, then

kerCxz(= kerC∗
xzCxz) becomes identical to kerC−1/2

zz Cxz(= kerQ).
As in Section 3.2, we also consider the following decomposition:

Ã−A = (Ã−A�̃K2)−A(I − �̃K2), (4.1)

where �̃K2 denotes the orthogonal projection defined by �̃K2 = ∑K2
j=1 ĥj ⊗ ĥj and

{̂hj}K2
j=1 is the collection of the eigenvectors of Q̂ corresponding to the first K2

leading eigenvalues. The two terms in (4.1) are similarly interpreted as in the
case of the FIVE (see (3.7)), and we thus call the first (resp. second) term the
DR (resp. RB) component.

We first show that both the DR and RB components are asymptotically
negligible (and thus Â is weakly consistent) if the regularization parameters
α1 and α2 diverge to infinity at appropriate rates: in the theorem below, we
let τ1,j = 2

√
2max{(μj−1 − μj)

−1,(μj − μj+1)
−1} and τ2,j = 2

√
2max{(νj−1 −

νj)
−1,(νj −νj+1)

−1}.
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20 DAKYUNG SEONG AND WON-KI SEO

Theorem 5. Suppose that Assumptions M* and E1* are satisfied, and

T−1/2(
∑K1

j=1 μjτ1,j)(
∑K2

j=1 τ2,j)
p→ 0, (

∑∞
j=K1+1 μj)(

∑K2
j=1 τ2,j)

p→ 0, α−1
1 α2 → 0,

and T−1α1 → 0 as α1 → ∞, α2 → ∞ and T → ∞. Then

‖Ã−A�̃K2‖2
op = Op(T

−1α
1/2
1 α

1/2
2 ) and ‖A(I − �̃K2)‖2

op = op(1).

An immediate consequence of Theorem 5 is given as follows:

Corollary 2. Suppose that the assumptions in Theorem 2 are satisfied and let

ũt = yt − Ãxt. Then ‖T−1 ∑T
t=1 ũt ⊗ ũt −Cuu‖op

p→ 0.

As in the case of the FIVE, the conditions imposed on the quantities
(
∑K1

j=1 μjτ1,j)(
∑K2

j=1 τ2,j) and (
∑∞

j=K1+1 μj)(
∑K2

j=1 τ2,j) are understood not as special
restrictions on the eigenvalues, but as requirements on the growing rates of
α1 and α2 in our asymptotic theory. Specifically, the condition on the former
quantity merely requires α1 and α2 to increase slowly so that K1 and K2 tend to
grow with sufficiently slower rates than T. Moreover, given that, for fixed α2,
(
∑∞

j=K1+1 μj)(
∑K2

j=1 τ2,j) can be arbitrarily small by choosing α1 large enough, the
condition on the latter quantity merely tells us that the growing rate of α1 needs to
be sufficiently higher than that of α2. In addition to the weak consistency given by
Theorem 5, the strong consistency of the F2SLSE can be derived under additional
conditions; this is discussed in Section 3.3.1 of the Supplementary Material.

We also obtain an asymptotic normality result similar to that given by Theorem 2
for the FIVE:

Theorem 6. Suppose that the assumptions in Theorem 5 are satisfied,

T−1/2α
1/2
1

∑K1
j=1 τ1,j

p→ 0, T−1/2α
1/2
2 (

∑K1
j=1 μjτ1,j)(

∑K2
j=1 τ2,j)

p→ 0, α1/2
2 (

∑∞
j=K1+1 μj)

(
∑K2

j=1 τ2,j)
p→ 0, α−1

1 α2 → 0, and T−1α1 → 0 as α1 → ∞, α2 → ∞ and T → ∞.
Then the following hold for any ζ ∈ H.

(i)
√

T/φK2(ζ )(Ã−A�̃K2)ζ
d→ N (0,Cuu), where φK2(ζ ) = 〈ζ,Q−1

K2
ζ 〉.

(ii) If φ̂K2(ζ ) := 〈ζ,Q̂−1
K2

ζ 〉, then |φ̂K2(ζ )−φK2(ζ )| p→ 0.

As shown, we need more stringent requirements on the growing rates of α1

and α2. This is mainly due to that the F2SLSE involves the doubly regularized
inverse Q̂−1

K2
, which may be ill-behaved if α1 and α2 do not grow at sufficiently slow

rates. This implies that there is no reason why the F2SLSE is generally preferred
to the FIVE in this functional setting, unlike what we can expect from the general
preference for the 2SLSE by practitioners in the Euclidean space setting.3

3Moreover, the two estimators have different RB terms whose magnitudes depend on various parameters (e.g., the
eigenvalues of C∗

xzCxz and Q), and thus the RB component of the FIVE can have a smaller asymptotic order.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000252
Downloaded from https://www.cambridge.org/core. IP address: 18.226.170.240, on 11 Jan 2025 at 00:45:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000252
https://www.cambridge.org/core


FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 21

Remark 12. While the functional form of the F2SLSE closely resembles
the conventional 2SLSE in the Euclidean space setting, a crucial distinction
exists. In the conventional case, the 2SLSE gains its theoretical superiority by
efficiently combining regressors using a larger number of instruments. However,
in our setting, one endogenous functional regressor is instrumented by another
functional variable. This explains, at least to some degree, why the F2SLSE does
not supersede the FIVE and why the standard properties of the 2SLSE do not
naturally extend to our functional framework. For example, for any element ζ ∈H,
Theorems 2 and 6 tell us that the DR components of the FIVE and F2SLSE,
respectively, converge to the same Gaussian random element with

√
T/θK(ζ )-rate

and
√

T/φK2(ζ )-rate, which are possibly random quantities depending on ζ . Given
this, it is not generally possible to conclude that the F2SLSE is asymptotically
better than the FIVE, although we disregard the RB components of the FIVE
and F2SLSE. As our extension to the F2SLSE, it may be possible to extend
the generalized least squares (GLS) methods by employing a regularized inverse
of the (estimated) covariance of the error term. However, due to the additional
regularization, we expect that the well-known properties of the GLS estimator
in a finite-dimensional setting may not be easily translated into the considered
functional setting. The insight of this remark originates from comments by the
editor and an anonymous referee, to whom we are indebted.

4.3. Refinements of the General Asymptotic Results

We provide refinements of Theorems 5 and 6 under the following set of
assumptions which is stronger than Assumption E1*: below, we let υ̃t(j,�) =
〈zt,gj〉〈zt,g�〉−E[〈zt,gj〉〈zt,g�〉] for j,� ≥ 1.

Assumption E2*. There exist constants c◦ > 0, ρμ > 2, ρν > 2, ςμ > 1/2,
ςν > 1/2, γμ > 1/2, γν > 1/2 and m > 1 satisfying the following: (a) μ2

j ≤
c◦j−ρμ , (b) μ2

j − μ2
j+1 ≥ c−1◦ j−ρμ−1, (c) ν2

j ≤ c◦j−ρν , (d) ν2
j − ν2

j+1 ≥ c−1◦ j−ρν−1,
(e) 〈hj,Ah�〉 ≤ c◦j−γν �−ςν , (f) 〈hj,Bg�〉 ≤ c◦j−γμ�−ςμ and γμ≤ ρν/4+1/2,
(g) E[υ̃t(j,�)υ̃t−s(j,�)] ≤ c◦s−m

E[υ̃2
t (j,�)] for s ≥ 1, E[‖〈zt,gj〉zt‖2] ≤ c◦μ2

j , and
E[‖〈xt,hj〉zt‖2] ≤ c◦‖Cxzhj‖2.

The conditions are somewhat similar to those in Assumption E2, and thus we
omit detailed comments except the following two points: (i) from a technical point
of view, Assumption E2*(g) is similar to Assumption E2(d) employed for our
study of the FIVE and helps us obtain convergence rates of the eigenelements of
Q̂ (which are crucial inputs to our main results of the F2SLSE), and (ii) we require
a smoothness condition on B which characterizes the linear relationship between
xt and zt whereas such a condition is not necessary in the case of the FIVE. This
reveals that the DGP is more restricted for our asymptotic analysis of the F2SLSE.

Our next result refines Theorem 5 by providing a more detailed result on the RB
component.
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Theorem 7. Suppose that Assumptions M* and E2* are satisfied, α1 =
o(Tρμ/(2ρμ+2)) and α2 = o(α

ρν/(2ρν+2)

1 ). Then, ‖Ã−A�̃K2‖2
op = Op(T−1α

1/2
1 α

1/2
2 )

as in Theorem 5, and

‖A(I − �̃K2)‖2
op = Op(α

−1
1 α2 max{1,α(3−2ςν)/ρν

2 }+α
(1−2ςν)/ρν

2 ). (4.2)

Thus, ‖Ã−A‖op = op(1) for any ρμ > 2, ρν > 2, ςμ > 1/2 and ςν > 1/2.

The convergence rate of the RB component, described in the above theorem,
depends not only on the regularization parameters, but also on smoothness of A
as in the case of the FIVE. However, the convergence rate described in (4.2) is
generally slower than that of the FIVE, and this is somewhat expected from the
fact that the F2SLSE involves a doubly regularized (and thus less stable) inverse.
Despite this disadvantage of the F2SLSE over the FIVE, our simulation results
support that the F2SLSE performs comparably well among a set of competing
estimators (including the FIVE), and thus this estimator can also be used in
practice.

Using Assumption E2*, the next theorem refines Theorem 6, but as in
Section 3.3, we for now only focus on the case where ρν/2+2 < ςν +δζ . The result
without this condition is provided in the Supplementary Material (see Section
S3.3.2). In the theorem below, we, as in (3.7), consider the decomposition of the
RB component given by

A(�̃K2 −I) = A(�̃K2 −�K2)+A(�K2 −I),

where �K2 = ∑K2
j=1 hj ⊗hj is understood as the population counterpart of �̃K2 .

Theorem 8. Suppose that Assumptions M* and E2* are satisfied, ζ ∈ H
satisfies 〈hj,ζ 〉 ≤ cζ j−δζ for some cζ > 0 and δζ > 1/2, ρν/2 + 2 < ςν + δζ , and
the following hold:

α1 = o(Tρμ/(2ρμ+2)), α−1
1 max

{
α

(3ρν−2δζ +1)/ρν

2 ,α
(ρν+1)/ρν

2

}
= o(1). (4.3)

Then Theorem 6 holds, and furthermore,

‖A(�̃K2 −�K2)ζ‖ = Op(α
−1/2
1 ) and ‖A(�K2 −I)ζ‖ = Op(α

(1/2−ςν−δζ )/ρν

2 ).

Obtaining a pointwise asymptotic normality result that is not dependent on the
RB component as in Remark 11 requires more stringent conditions, which will be
detailed in Remark 13.

Remark 13 (Pointwise asymptotic normality of the F2SLSE). In order to
strengthen the result given by Theorem 6(i) using Theorem 8 as in the case of the
FIVE, we need more stringent conditions. For example, as in Remark 11, suppose

that A is smooth enough so that ςν > ρν/2+3/2 and Tα
(1−2ςν−2δζ )/ρν

2 = O(1). We

know from Theorem 8 that
√

T/φK2(ζ )‖A(�̃K2 − I)ζ‖ = Op(

√
Tα−1

1 /φK2(ζ )),
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FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 23

and find that
√

T/φK2(ζ )(A�̃K2 −A)ζ
d→ N (0,Cuu) if φK2(ζ ) diverges at a faster

rate than that of Tα−1
1 . In the case of the FIVE and under an analogous smoothness

condition, recall that only θK(ζ )
p→ ∞ is needed to obtain a similar result; see

Remark 11.

5. NUMERICAL STUDIES

We first investigate the finite sample performance of our estimators via Monte
Carlo studies. In Sections 5.1–5.3, the number of replications is set to 1,000 and
all the considered random variables are demeaned before computing the estimators
of A. Section 5.4 provides an empirical application.

5.1. Experiment 1: Functional Linear Simultaneous Equation Model

We consider the following functional linear simultaneous equation model: for
t ≥ 1,

yt = Axt +ut, xt = ϑBzt + vt, (5.1)

where ut = 0.8vt + 0.6εt, {vt}t≥1 and {εt}t≥1 are mutually independent i.i.d.
sequences of standard Brownian bridges satisfying E[vt ⊗ ε�] = 0 for all t,� ≥ 1.
The constant ϑ is chosen in such a way that the first-stage functional coefficient
of determination (see Yao et al., 2005), defined by E[‖ϑBzt‖2]/E[‖xt‖2],
has a specific value of r2. In this section, we will focus on empirical MSEs
of a few estimators at various levels of r2, and in particular we consider
r2 ∈ {0.1,0.2, . . . ,0.5}.

The DGP here is specially designed to examine the performance of our estima-
tors when the employed assumptions (Assumptions M, E1, E2, M*, E1*, and E2*)
are satisfied (see Section S4.1 of the Supplementary Material). Specifically, we let
{zt}t≥1 be an i.i.d. sequence of standard Brownian bridges satisfying E[zt ⊗ vt] =
E[zt ⊗ ut] = 0. Then, we have μj = (jπ)−2 and gj(s) = √

2sin(jπs) for s ∈ [0,1],
see, for example, Jaimez and Bonnet (1987). The operators A and B are defined
as follows:

A =
∞∑

j=1

ajgj ⊗gj, B =
∞∑

j=1

bjgj ⊗gj, aj = j−na, bj = j−nb, na ∈ {3,5}, nb ∈ {0.75,1.5}.

In this setup, fj = gj. In view of the fact that function-valued random variables
are only partially observed in practice, we assume that the discrete realizations of
yt, xt, and zt at 50 equally spaced points on [0,1] are available. Then, following
the literature, for example, Ramsay and Silverman (2005, Chap. 5), we represent
functional variables yt, xt and zt by using 31 Fourier basis functions.

We will compare the performance of our estimators with the ridge regularized
IV estimator (RIVE) of Benatia et al. (2017, eqn. (34)) with denoting their
regularization parameter to α−1 to keep notational consistency. To compute the
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Figure 1. Boxplots of the empirical MSEs (T = 500).
Notes: Boxplots of the empirical mean squared errors (MSEs) of the FIVE (red), the F2SLSE
(blue), and the RIVE (green) are reported for each value of the first-stage functional coefficient of
determination r2 ∈ {0.1,0.2,0.3,0.4,0.5}.

FIVE and RIVE, we consider δαT−0.4‖Ĉxz‖2
HS as candidates for the inverse of α.

This candidate value is calculated at 20 equidistant points of δα ranging from 0.1
to T0.2. Among such candidates, we choose the value that minimizes the empirical
MSE of each estimator. The F2SLSE needs two regularization parameters: α1

and α2. The parameter α1 is chosen as the FIVE and RIVE with ‖Ĉxz‖2
HS being

replaced by ‖Ĉzz‖2
HS. Once α1 is chosen, we similarly choose the inverse of α2

from δα2(α
−1
1 ‖Czz‖2

HS)
1/2‖Q̂K1‖2

HS with δα2 being 20 equidistant points between
T0.05 and T0.2. This setup enforces α1 to grow at a faster rate than that of α2.

To save space, we report estimation results only for the case with T = 500;
the results with a smaller sample size are qualitatively similar and are reported in
Section S4.4 of the Supplementary Material. Figure 1 reports boxplots (without
outliers) of the empirical MSE estimated with the FIVE (red), the F2SLSE (blue),
and the RIVE (green). The first interesting observation in the figure is that our
estimators tend to produce smaller MSEs when the signal from xt to yt is more
concentrated on the first few components, that is, when na = 5. This observation
is consistent regardless of the values of nb and r2. This may not be surprising
because when na is large, the first few fj’s (=gj’s) summarize the most significant
information of A.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000252
Downloaded from https://www.cambridge.org/core. IP address: 18.226.170.240, on 11 Jan 2025 at 00:45:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000252
https://www.cambridge.org/core
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In the figure, as the value of r2 decreases, the considered estimators tend
to exhibit larger MSEs. Similar observations can be found in the standard IV
literature, in which the so-called concentration parameter is used to measure the
strength of IVs. Given that the coefficient of determination r2 is closely related
to the concentration parameter in the IV literature, such a larger MSE may be
understood as the distortion related to weak instruments.

In the subsequent sections, we will consider a more general setting to investigate
the robustness of our estimators when the assumptions are unlikely to hold.
Unlike the DGP considered in this section, it is nearly impossible to verify if
all the required conditions are satisfied for the DGPs under consideration. Given
the practical challenges of confirming these conditions, practitioners may find it
valuable to observe the performance of our estimators in the presence of potential
violations of the required conditions.

5.2. Experiment 2: A Modification of Benatia et al.’s (2017)
Simulation DGP

In this section, we consider a simulation DGP similar to that in Benatia et al.’s
(2017). Specifically, we let B in (5.1) be the identity operator I and let A be the
integral operator with kernel κA(s1,s2) = 1 − |s1 − s2|2 for s1,s2 ∈ [0,1]. In this
setup, the first-stage signal is solely determined by the constant ϑ . The IV zt is
given as follows:

zt(s) = z̃t(s;at,bt)+ηt(s) and z̃t(s;at,bt) = �(at)�(bt)

�(at +bt)
sat−1(1− s)bt−1 (5.2)

for s ∈ [0,1], where at and bt are randomly drawn from the uniform distribution
U[2,5] for each t. That is, zt is obtained by adding an additive noise ηt to the beta
density function with parameters at and bt. The IV in (5.2) is analogous to that used
for the simulation experiments in Benatia et al. (2017), in which the additive noise
ηt(s) is given by qt for all s ∈ [0,1] with qt being randomly drawn from N (0,1). In
this section, we allow a more general form of ηt by letting ηt = ∑nJ

j=1 σjqt,jξj where
nJ = 31, {ξj}j≥1 is the Fourier basis functions with the constant basis function ξ1,
and qt,j ∼i.i.d. N (0,1) across t and j. Benatia et al.’s (2017) setup can be understood
to the case nJ = 1 under our notation. Then, we consider three different designs
of {σj}j≥1. First, we consider the case σj = c1ση for j ≤ 2 and σj = c1ση(0.1)j−2

for j > 2; this is called the sparse design. Second, we set σj = ση(0.9)j−1 and call
this setting the exponential design. In the last design, which we call the geometric
design, we let σj = c2σηj−1. The parameter ση is set to 0.5 and 0.9, and the constants
c1 and c2 are chosen in such a way as to have the same Hilbert–Schmidt norm of
E[ηt ⊗ηt] in all three designs. Lastly, the parameter ϑ is chosen as in Section 5.1
with r2 being set to 0.5; this can be done by using that E[‖vt‖2] = 1/6, E[‖ηt‖2] =∑31

j=1 σ 2
j , and the value of E[‖z̃t(si;at,bt)‖2] can be approximated from a large

number of simulations.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000252
Downloaded from https://www.cambridge.org/core. IP address: 18.226.170.240, on 11 Jan 2025 at 00:45:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000252
https://www.cambridge.org/core


26 DAKYUNG SEONG AND WON-KI SEO

Table 1. Simulation results for Experiment 2: empirical MSEs and coverage
probabilities

Sparse design Exponential design Geometric design

ση 0.5 0.9 0.5 0.9 0.5 0.9

T 200 500 200 500 200 500 200 500 200 500 200 500

Empirical MSE

FIVE 0.043 0.030 0.042 0.030 0.111 0.057 0.108 0.055 0.046 0.033 0.046 0.034

F2SLSE 0.043 0.030 0.042 0.030 0.168 0.081 0.142 0.076 0.045 0.033 0.045 0.033

RIVE 0.041 0.030 0.040 0.029 0.141 0.082 0.134 0.079 0.045 0.031 0.043 0.031

Coverage probability for 〈A�̂Kζ,ψ〉 or 〈A�̃K2ζ,ψ〉
FIVE 0.947 0.950 0.943 0.949 0.923 0.938 0.929 0.936 0.948 0.951 0.951 0.952

F2SLSE 0.947 0.950 0.943 0.949 0.907 0.930 0.905 0.927 0.950 0.954 0.949 0.956

Coverage probability for 〈Aζ,ψ〉
FIVE 0.944 0.940 0.943 0.941 0.932 0.950 0.937 0.945 0.942 0.946 0.938 0.944

F2SLSE 0.944 0.940 0.943 0.941 0.855 0.923 0.882 0.930 0.941 0.948 0.937 0.946

Note: Based on 1,000 replications. In the top, each cell reports the empirical mean squared error (MSE)
of three estimators: FIVE, F2SLSE, and Benatia et al.’s (2017) RIVE. The last four rows report the
coverage probabilities of the designated quantities; the nominal level is 95%.

Table 1 summarizes simulation results. Overall, the MSEs of our estimators and
those of the RIVE are similar to each other. However, in the exponential design,
our estimators tend to have smaller MSEs compared to the RIVE.

We note that our estimators and related asymptotic results can be used to discuss
the coverage probability of the interval (3.5) that is computed from the FIVE. The
interval is expected to contain the random quantity 〈A�̂Kζ,ψ〉 with (100−� )%
of probability; moreover, if certain conditions are satisfied (see Remark 11)
the interval (3.5) can be understood as the (100 − � )% confidence interval for
〈Aζ,ψ〉 which is nonrandom. Based on Theorem 6 (and also Remark 13), we
may construct a similar interval with the F2SLSE and the interval is expected to
include 〈A�̃K2ζ,ψ〉 (and also 〈Aζ,ψ〉 under certain conditions) with (100−� )%
of probability; the coverage of this confidence interval will also be examined in
this experiment. In order to compute the coverage probabilities, we let ψ = �1

and let ζ be randomly generated by ζ = ∑11
j=1 q̈1,j�j for each realization of the

DGP, where {�j}j≥1 is the polynomial basis with the constant basis function �1

and q̈j ∼i.i.d. N (0,j−4) across j. The simulation results are reported at the bottom
of Table 1. We note that, in all the considered cases, the coverage probabilities
for 〈A�̂Kζ,ψ〉 or 〈A�̃K2ζ,ψ〉 are close to the nominal level, which supports our
findings in Theorems 2 and 6. Moreover, even if the reported coverage probabilities
for 〈Aζ,ψ〉 tend to be worse than those for 〈A�̂Kζ,ψ〉 or 〈A�̃K2ζ,ψ〉, they are
still reasonably close to the nominal level of 95%. This is what can be expected

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466624000252
Downloaded from https://www.cambridge.org/core. IP address: 18.226.170.240, on 11 Jan 2025 at 00:45:24, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466624000252
https://www.cambridge.org/core


FUNCTIONAL INSTRUMENTAL VARIABLE REGRESSION 27

from Remarks 11 and 13. In unreported simulations, we further experimented with
different choices of ζ and ψ , but found no significant difference.

5.3. Experiment 3: AR(1) Model of Probability Density Functions

In this section, we examine the performance of the proposed estimators in the
AR(1) model of probability density functions. What is mainly different from
the earlier experiments given in Sections 5.1 and 5.2 is that endogeneity is not
explicitly imposed, but implicitly introduced by estimation errors.

We let {p◦
t }t≥1 be a sequence of probability densities supported on [0,1], and

consider the linear prediction model of p◦
t given p◦

t−1. Each density may be treated
as a random variable taking values in H, but the collection of probability densities
in H is not a linear subspace. As a result, a direct application of the statistical
methods developed in a Hilbert space setting may not be recommended; see, for
example, Delicado (2011), Petersen and Müller (2016), Hron, Menafoglia, Templ,
Hrůzová and Filzmoser (2016), Kokoszka et al. (2019), and Zhang, Kokoszka, and
Petersen (2021). As a way to circumvent such issues, we consider the centered-
log-ratio (clr) transformation y◦

t (s) = logp◦
t (s)−∫

logp◦
t (s)ds, s ∈ [0,1] (see, e.g.,

Egozcue, Díaz-Barrero, and Pawlowsky-Glahn, 2006). Then, {y◦
t }t≥1 turns out to

be a sequence in Hc, the collection of all ζ ∈H satisfying
∫ 1

0 ζ(s)ds = 0, and Hc is
obviously a Hilbert space. Any element in Hc may be understood as a probability
density via the inverse transformation y◦

t (s) �→ exp(y◦
t (s))/

∫ 1
0 exp(y◦

t (s))ds. Thus,
the linear prediction model of p◦

t given p◦
t−1 may be recast into that of y◦

t given y◦
t−1

in Hc. We thus consider the following prediction model:

y◦
t = cy +A(y◦

t−1 − cy)+ εt,

where y◦
t−1 and εt are uncorrelated. To mimic situations commonly encountered in

practice, we assume that p◦
t (and thus y◦

t ) is not observed, but only random samples
{si,t}nt

i=1 drawn from p◦
t are available. If so, by replacing the density p◦

t or the log-
density logp◦

t with its proper nonparametric estimate, we may obtain an estimate yt

of y◦
t . As shown in Example 2, {yt}t≥1 satisfies yt = cy +A(yt−1 −cy)+ut, but now

yt−1 and ut are generally correlated due to errors arising from the nonparametric
estimation. We will compute the FIVE and F2SLSE by assuming that yt−2 is a
proper IV, as in Example 3. Of course, this assumption may not be true depending
on how estimation errors are generated. Even with this possibility, it may be of
interest to practitioners, who very often have no choice but to replace p◦

t or logp◦
t

with a standard nonparametric estimate, to see if a naive use of our estimators can
make any actual improvements in estimating A. This is the purpose of simulation
experiments in this section.

Specifically, we first estimate y◦
t from n random samples that are generated from

p◦
t by (i) the local likelihood density estimation method proposed by Loader (1996)

(see Section S4.2 of the Supplementary Material for more details) and (ii) the stan-
dard kernel density estimation method with the Gaussian kernel and Silverman’s
rule-of-thumb bandwidth (Silverman, 1998). Even if the former is more suitable for
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the estimation of y◦
t (Seo and Beare, 2019, Sect. 4.2), the latter is considered as well

because of its popularity in empirical studies. Once yt is computed, it is represented
by the first 30 nonconstant Fourier basis functions for implementation of the FPCA
in Hc. We let cy be the clr transformation of the normal density function with mean
0.5 and variance 0.252 that is truncated on [0,1]. In addition, εt = ∑∞

j=1 σjqt,jξ
c
j ,

where {ξ c
j }j≥1 is the set of Fourier basis functions except for the constant basis

function, and qt,j ∼i.i.d. N (0,1) across t and j.4 Below we consider two different
specifications of σj, which are, respectively, called the exponential design and the
sparse design; in the exponential design, σj = 0.1(0.9)j−1, and in the sparse design,
σj = cσ for j ≤ 2 and σj = cσ (0.1)j−2 for j > 2, where cσ is chosen to ensure the
same Hilbert–Schmidt norm of E[εt ⊗ εt] in both designs. These two designs are
respectively obtained by setting ση to 0.1 in the sparse and exponential designs
considered for ηt in Section 5.2; the reason that we choose a relatively smaller
scale of σj in this experiment is only to avoid as much as possible that the simulated
densities have shapes that are rarely observed in practice (e.g., densities that are
U-shaped or highly multimodal). We let A be defined by

∑∞
j=1 ajξ

c
j ⊗ξ c

j ,5 and, for
each realization of the DGP, the coefficients {aj}j≥1 are independently determined
across j as follows:

a1 ∼ U[0.4,0.9], a2 ∼ U[0.4,0.9], aj = au,j(0.5)j−2 and au,j ∼i.i.d. U[0,0.9] for j ≥ 3.

Note that we let the first two coefficients a1 and a2 be bounded below by 0.4 to
ensure that the operator norm of the cross-covariance of y◦

t−1 and y◦
t−2 is bounded

away from zero. If this quantity is close to zero, then the employed IV may become
“weak” and this case is not considered in the present article.

Table 2 reports the empirical MSEs of the proposed estimators and Park and
Qian’s (2012) functional least squares estimator (FLSE) when n = 100 and 150
(recall that n is the number of random samples drawn from the distribution p◦

t to
estimate logp◦

t or p◦
t ). The IV estimators tend to exhibit smaller empirical MSEs

than the FLSE. The superior comparative performance of the IV estimators is more
noticeable when n is small and T is large. This is what can be conjectured from our
earlier discussion; as n gets smaller, yt becomes a less accurate estimate of y◦

t , and
hence the estimators that address the possible endogeneity caused by estimation
errors will work better. The FIVE or the F2SLSE exhibits the smallest MSE in most
cases (see also Table S2 in the Supplementary Material reporting the simulation
results for the case where the lower bound of a1 and a2 increases to 0.6). However,
it is hard to conclude the relative performance between the IV estimators; this may
depend on various factors such as the DGP and the method of density estimation.
Thus, it would be advisable to use these IV estimators complementarily in practice.

4In actual computation, εt can be approximated by
∑L

j=1 σjqt,jξ
c
j for some large L. We set L to 50 in this example

and found no significant difference even from big changes in L as long as L ≥ 50.
5A is approximated by

∑50
j=1 ajξ

c
j ⊗ ξ c

j in actual computation as in the case of εt .
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Table 2. Simulation results for Experiment 3: empirical MSEs (a1,a2 ≥ 0.4)

Sparse design Exponential design

n 100 150 100 150

T 200 500 200 500 200 500 200 500

Loader’s FIVE 0.206 0.158 0.187 0.152 0.400 0.227 0.315 0.194

F2SLSE 0.204 0.157 0.186 0.151 0.392 0.219 0.310 0.189

FLSE 0.255 0.228 0.208 0.187 0.427 0.354 0.333 0.267

Silverman’s FIVE 0.272 0.218 0.223 0.188 0.395 0.257 0.314 0.215

F2SLSE 0.272 0.215 0.223 0.186 0.396 0.247 0.315 0.209

FLSE 0.326 0.291 0.251 0.226 0.418 0.351 0.322 0.258

Note: Based on 1,000 replications. Each cell reports the empirical mean squared error (MSE) of the
three considered estimators: FIVE, F2SLSE, and Park and Qian’s (2012) FLSE. The RIVE considered
in Sections 5.1 and 5.2 is excluded in this experiment since the estimator is developed for i.i.d.
functional data.

5.4. Empirical Application: Effect of Immigration on Native Wages
in the US

In this section, we use our estimation methods to investigate the effect of immigrant
inflows on the US native labor market outcomes of workers with heterogeneous
skills, which has received due attention from both researchers and policymakers,
see, for example, Card (2009), Borjas, Grogger, and Hanson (2011), Ottaviano
and Peri (2012), and Glitz (2012). To begin with, we use national-level data and
generalize a widely used empirical model by viewing the variables of interest as
functions depending on a measure of relative communication skill provision. Our
measure of relative communication skill provision is similar to Peri and Sparber’s
(2009) measure of occupation-specific relative provision of communication versus
manual skills. The number of distinct skill levels, denoted sj, is 223, and by
construction, each occupation is uniquely identified by the skill score sj ∈ [0,1].
Its formal definition is provided in the Supplementary Material.

We merge the percentile scores of relative communication skill provision to
individuals in the monthly CPS data running from January 1996 to December 2019.
The CPS data, which can be downloaded from the Integrated Public Use Microdata
Series (IPUMS)6, provide information on various characteristics of individuals:
hourly wage, citizenship status, age, employment status, and occupation. We
focus on individuals who (i) are aged between 18 and 64 years, (ii) are not self-
employed, and (iii) have positive income. Immigrants are defined by those who
are not a citizen or are a naturalized citizen. The skill-dependent labor supply of
immigrants (�◦

it(sj)) and that of natives (�◦
nt(sj)) are computed by the total hours of

work per week (weighted by the variable WTFINL) provided by the foreign- and

6Flood, King, Rodgers, Ruggles, and Warren (2020).
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native-born workers for each sj. The skill-dependent native wage is computed
by weighted averaging the weekly wages of native workers7 in the occupation
corresponding to sj, and its logged value (w◦

t (sj)) is used for the analysis.
The empirical models used in the labor economics literature (e.g., Dustmann

et al., 2013; Sharpe and Bollinger, 2020) can be written as follows: �w◦
t (sj) =

β◦
j �h◦

t (sj)+ u◦
t (sj), where �w◦

t (sj) = w◦
t (sj)− w◦

t−1(sj), u◦
t (sj) denotes the distur-

bance term, β◦
j is the parameter of interest, the explanatory variable �h◦

t (sj) is
the first difference of h◦

t (sj), and h◦
t (sj) = �◦

it(sj)/(�
◦
nt(sj)+ �◦

it(sj)). In this model,
an inflow of immigrants in the occupation with sj is assumed to affect only the
wages of natives in the occupation requiring the same skill level, which seems to
be restrictive. To resolve this issue, one may instead allow spillover effects across
occupations, but this requires researchers to estimate too many parameters; for
example, if we allow a spillover effect from the occupation corresponding to si

to another occupation corresponding to sj for any arbitrary i,j ∈ {1, . . . ,223}, then
there are 2232 elements to be estimated. As an alternative, we view observations
w◦

t (sj) and h◦
t (sj) for each t as imperfect realizations of curves wt and ht, and use

our methodology developed in the previous sections. To this end, we first estimate
each of those curves with the standard Nadaraya–Watson estimator employing the
second-order Gaussian kernel and the bandwidth that minimizes the least squares
cross-validation criterion. The smoothed curves are represented by 15 cubic
B-Spline functions and are denoted by wt and ht, respectively. Then, we estimate
the following model:

�wt = A�ht +ut, (5.3)

where �wt = wt − wt−1, �ht = ht − ht−1, and �ht is likely to be correlated with
ut due to, for example, the self-selection bias pointed out by Borjas (1987) and
Llull (2018). Thus, we use the changes in the imputed share of immigrants as
an IV, which has been employed in various contexts, including Card (2009), Peri
and Sparber (2009), and Autor and Dorn (2013). Specifically, the imputed share
of immigrants in the occupation corresponding to sj, denoted z◦

t (sj), is defined as
follows:

z◦
t (sj) = �̃◦

it(sj)

�nt(sj)+ �̃◦
it(sj)

and �̃◦
it(sj) = 1

12

B∑
b=1

12∑
t=1

�◦
it1994,b(sj)

�◦
it1994,b

�◦
it,b,

where b denotes the country of birth of immigrants, �◦
it1994,b(sj) is the labor supply

of immigrants in the occupation corresponding to sj from the country b in the
month t of the year 1994, and �◦

it1994,b is its aggregation over sj. The curve of
imputed shares of immigrants, denoted zt, is obtained by smoothing z◦

t (sj), and
the instrument, denoted �zt, is the first difference of zt.

7The weekly wage of a native worker is computed as (hourly wage) × (usual hours of work), and the variables
required to compute this quantity are also available in the CPS. We use the variable EARNWT as a weight.
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Figure 2. Functional data (gray) and their mean functions (black).

The smoothed curves are reported in Figure 2. The solid lines in Figure 2 indicate
the mean functions of wt, ht, and zt. Figure 2a shows that native workers tend to
be better paid if they are in occupations needing relatively higher communication
skills. On the other hand, the share of immigrants tends to decrease in such
occupations, and so does the imputed share of immigrants; this may be because
natives have a comparative advantage in communication intensive tasks.

Then, we apply our estimation method to study if an inflow of immigrants has a
heterogeneous impact on native workers depending on the value of s. For the ease
of interpretation, we focus on the case where immigrants are fully concentrated in
a group of occupations with low, medium or high communication skill intensity,
but they are evenly distributed within the group; that is, we set ζ in Theorem 2
to 1{0 ≤ s < 1/3}, 1{1/3 ≤ s < 2/3}, and 1{2/3 ≤ s < 1}. The regularization
parameter is chosen as in Section 5.1. The results computed from the FIVE are
summarized in Figure 3. The estimation results from the F2SLSE are similar and
thus omitted. Overall, our findings in Figure 3 reconfirm the existing evidence that
an inflow of immigrants heterogeneously affects the labor market outcomes of
native workers according to workers’ skills. For example, in Figure 3a, if the share
of immigrants increases in occupations with a low value of sj, then native wages
are overall positively affected, although the size of this effect depends on the value
of native workers’ sj as well. In particular, Figure 3a suggests that native workers in
occupations with s ∈ [0.1,0.4] will experience the most significant positive wage
effects. This is somewhat consistent with Peri and Sparber’s (2009) finding that
native workers in occupations intensive in manual skills take advantage of having
better-paid jobs when similarly skilled immigrants enter into the market. On the
other hand, in Figure 3b, it seems that the natives in occupations with s ∈ [0.1,0.4]
are negatively affected if the share of immigrants increases in occupations of which
s ∈ [1/3,2/3].

Before concluding this section, recall that the earlier literature mostly relies on
the strategy of reducing the dimensionality of the model by classifying workers into
a few groups according to a measure of their skill. We will make a comparison of
our estimation results with those based on this strategy. To this end, we let ζj(J) =
J ×1{j−1 < Js ≤ j}. Then, the inner product 〈�wt,ζj(J)〉 computes the average of
changes in the log wages of natives in occupations of which s is between (j−1)/J
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Figure 3. Estimated effects of immigration computed from the FIVE.
Note: The solid line reports Âζ . The dashed lines represent the collection of confidence intervals for
the local averages of A�̂Kζ over finely defined interval [(m−1)/M,m/M], where M = 50. For each
m, the interval is constructed as in (3.5) with 95% significance level by noting that the local average
is given by 〈A�̂Kζ,ζm(M)〉, and this interval, of course, may be viewed as the confidence interval for
the local average of Aζ under certain conditions (see Remark 11).

Figure 4. Group characteristics (first difference of log native wages, 〈�wt,ζj(3)〉).

and j/J, at time t. We then estimate the following using the standard 2SLSE:

�wt(J) = β�ht(J) +ut(J), (5.4)

where �wt(J) = (〈�wt,ζ1(J)〉, . . . ,〈�wt,ζJ(J)〉)′ and �ht(J) = (〈�ht,ζ1(J)〉, . . . ,〈�ht,

ζJ(J)〉)′. The IV that is used to compute the 2SLSE is �zt(J) = (〈�zt,ζ1(J)〉, . . . ,〈�zt,

ζJ(J)〉)′. For example, if J = 3, we have 〈�wt,ζ1(3)〉, 〈�wt,ζ2(3)〉, and 〈�wt,ζ3(3)〉,
which are plotted in Figure 4. In the following, we consider three different values
for J: 3, 7, and 11.

We compare the performance of estimators by using the root mean squared
prediction error (RMSPE), which is computed with a rolling window for three
test sets, with setting their starting points respectively as 2013/01, 2015/01, and
2017/01. Specifically, if we let ūh be the forecasting error computed from the
FIVE, F2SLSE or RIVE, then the RMSPE is given by (H−1 ∑H

h=1

∫
ūh(s)2ds)1/2

and their regularization parameters are chosen in such a way as to minimize
the RMSPE. Let ûh,j(J) denote the jth element of the forecasting error ûh(J)

computed from the 2SLSE for each J. The standard RMSPE of the 2SLSE is
given by (H−1 ∑H

h=1

∑J
j=1 û2

h,j(J))
1/2. Because this measure is nondecreasing in

J and thus does not provide a fair comparison between RMSPEs, we instead
consider the normalized RMSPE, given by ((JH)−1 ∑H

h=1

∑J
j=1 û2

h,j(J))
1/2, which
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Table 3. Root mean squared prediction errors

Test period FIVE F2SLSE RIVE
2SLSE

J = 3 J = 7 J = 11

2013/01∼ 0.1886 0.1889 0.1883 0.1514 0.2025 2.5877

2015/01∼ 0.1828 0.1829 0.1823 0.1432 0.1884 3.4587

2017/01∼ 0.1679 0.1678 0.1676 0.1236 0.1734 1.0399

Note: Each cell reports the estimated (normalized) RMSPE which is computed using three test sets.

can be reasonably compared to the RMSPEs of our estimators. This is because
for each h ≥ 1, (i) both ûh,j(J) and 〈ūh,ζj(J)〉 are estimates of the local average of
uh over the interval [(j − 1)/J,j/J] and (ii)

∫
ūh(s)2ds may be approximated by

J−1 ∑J
j=1〈ūh,ζj(J)〉2.

Estimation results are reported in Table 3. We first note that the results from our
estimators and those from the RIVE are very similar to each other. These estimators
report smaller RMSPEs than those of the 2SLSE except for the case J = 3. Even
if the 2SLSE reports the smallest RMSPEs when J = 3, we should note that in this
case, 223 different skill levels are aggregated into only three groups, resulting in
a lot of information loss. Moreover, the normalized RMSPE of the 2SLSE rapidly
increases as we consider more finely defined skill groups. This may be because,
as J gets larger, the number of parameters to be estimated rapidly increases. In
addition, for a large J, the sample (cross-)covariance matrices for computing the
2SLSE tend to be singular, and thus the 2SLSE is expected to perform poorly. This
result also suggests that the pre-classification strategy can have a significant effect
on the estimation results and their interpretation. Therefore, the results given by
Table 3 imply that our functional IV methodology can be an appealing alternative
to practitioners.

6. CONCLUSION

This article extends the existing results on the endogenous functional linear model
to a more general setup, allowing for weakly dependent errors and without assum-
ing a specific type of endogeneity. Additionally, it suitably extends the asymptotic
approach of Hall and Horowitz (2007) to encompass cases with endogeneity, a
common occurrence in practical applications. Consequently, this article proposes
two novel estimators and provides their detailed asymptotic properties under this
broader setting. Notably, even in the case where there is no endogeneity and
hence the FIVE reduces to the FLSE of Park and Qian (2012) (see Sect. 3.1),
most of the asymptotic results that we obtain in the present article have not been
explored in the literature, to the best of the authors’ knowledge. Given the potential
prevalence of endogeneity in the functional linear model (see Sect. 2.1), we believe
that the theoretical results presented in this article hold value beyond the existing
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findings. From a practical perspective, our methodology can be applied to study
relationships between economic functional variables of which availability has been
being increasing; potential examples include the density-on-density regression
model (see, e.g., Park and Qian, 2012).

SUPPLEMENTARY MATERIAL

Seong, D. and W.-K. Seo (2024): Supplement to “Functional instrumental variable
regression with an application to estimating the impact of immigration on native
wages”, Econometric Theory Supplementary Material. To view, please visit:
https://doi.org/10.1017/10.1017/S0266466624000252.
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