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ABSTRACT

Sundt and Jewell have shown that a nondegenerate claim number distribution
Q = {qn}n(Efi satisfies the recursion

for all n > 0 if and only if Q is a binomial, Poisson or negativebinomial distri-
bution. This recursion is of interest since it yields a recursion for the aggre-
gate claims distribution in the collective model of risk theory when the claim
size distribution is integer-valued as well. A similar characterization of claim
number distributions satisfying the above recursion for all n > 1 has been
obtained by Willmot. In the present paper we extend these results and the
subsequent recursion for the aggregate claims distribution to the case where
the recursion holds for all n > k with arbitrary k. Our results are of interest in
catastrophe excess-of-loss reinsurance.

1. INTRODUCTION

A claim number distribution is a sequence Q = {<?„}„ e N satisfying qn > 0 for all
n G No: = {0,1,...} and ^,™=oqn = l- ^ c l a i m number distribution {qn} is said
to be nondegenerate if qn < 1 holds for all n € No.

A nondegenerate claim number distribution Q = {<?„}„ e N is said to be the
Panjer distribution with parameters a, b e R and k e No if qn = 0 for all n <
k-\ and

for all n > k; in this case we write Q - Panjer (a, b; k). The Panjer distribution
Panjer (a, b; k) is also said to be a Panjer distribution of order k and the collec-
tion of all Panjer distributions of order k is called the Panjer class of order k.
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Sundt and Jewell (1981) have shown that the Panjer class of order 0 is iden-
tical with the collection of all (nondegenerate) binomial, Poisson, or negative-
binomial distributions, and Willmot (1988) has identified all distributions of
the Panjer class of order 1. In the present paper, we identify all distributions
of the Panjer class of order k with arbitrary k (Section 3).

The Panjer class of order 0 is important since Panjer (1981) has shown
that, in the collective model of risk theory, the aggregate claims distribution
can be computed by recursion when the claim number distribution is a Panjer
distribution of order 0 and the claim size distribution is concentrated on the
nonnegative integers (and hence is a claim number distribution itself). In the
present paper, we also obtain an extension of Panjer's recursion to the Panjer
class of order k with arbitrary k (Section 4).

The proofs of these results rely on a differential equation which character-
izes the probability generating function of a Panjer distribution (Section 2).

To complete the discussion of Panjer distributions and their compound
distributions, we also present some results on their binomial moments which
imply that every distribution of a Hofmann family has finite moments of any
order (Section 5).

Let us finally note that Panjer distributions of order k > 1 are suitable for
portfolios of risks which are subject to catastrophe excess-of-loss reinsurance
where, as a rule, the priority is exceeded only when at least k claims occur.

2. A DIFFERENTIAL EQUATION

In the present section we characterize the Panjer distribution Panjer (a, b; k)
by a differential equation for its probability generating function. This result
will be used to identify all distributions of the Panjer class of order k and to
extend Panjer's recursion for the aggregate claims distribution in the collective
model of risk theory.

For a claim number distribution Q = {<7n}n6N , the probability generating func-
tion mQ: [0,1] -» [0,1] is defined by °

mQ{t):=%nt
n.

n = 0

Then we have qn = m^O) / n\ for all n e No.

2.1. Theorem. LetQ = {qn}neN be a nondegenerate claim number distribution.
For a,beR and k e No, the following are equivalent:
(a) Q = Panjer (a, b; k)
(b) For every / > 1, mQ satisfies the differential equation

with t € [0 ,1) and the initial conditions /zW(0) = 0 for all] <k-\.
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(c) »ig satisfies the differential equation

(1 - at)h(k+x\t) = ((k + \)a + b)h(k\t)

with te[0,1) and the initial conditions /zW(O) = 0 for allj <k-\.

Proof. Assume first that (a) holds. Then we have

in ^

(k\±-i
n = k + \

t-'

j=k j=k

and hence

Therefore, (a) implies (b). Obviously, (b) implies (c). Assume now that (c) holds.
By induction, we obtain

(1 - at)m%+l\t) = ((» + \)a + b) m*\i)

for all n > k. Letting t: = 0, the previous identity yields

for all n > k and the initial conditions yield qn = 0 for all n < k - 1. Therefore,
(c) implies (a). •

Theorem 2.1 is known in the case k = 0; see Schmidt (2001; Satz 7.2.2).

For a claim number distribution Q = {qn} and / e No, the binomial moment
of order is defined to be
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The binomial moment of order / is finite if and only if Iim(-Img(/) is finite,
and in this case we have

HQ ~ /! •

Furthermore, a binomial moment is finite if and only if the (ordinary)
moment of the same order is finite. The following result is immediate from
Theorem 2.1:

2.2. Corollary. Assume that Q = Panjer (a, b; k) with a<\. Then Q has finite
moments of any order.

3. THE DISTRIBUTIONS OF THE PANJER CLASS OF ORDER k

A claim number distribution Q - {qn} is the

• binomial distribution B(m, 9) with parameters me{l,2,...} and 9e(0,1) if

holds for all n e No.

• Poisson distribution P(a) with parameter ae(0 , °o) if

-a a"

holds for all n e No.

negativebinomial distribution NB(/?, 9) with parameters /? e (0,°°) and 9 e (0,1)
if

holds for all n e No.

logarithmic distribution Log (9) with parameter 9 e (0,1) if

holds for all « > 1.
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extended negativebinomial distribution ENB(m,/?, S) with parameters me {I,
2, ...},Pe{~m,-m+ 1) and 9e(0, 1] if

„ >
°n ~ m -1 ,c-v-SCVV

holds for all n > m.

• extended logarithmic distribution ELog(ra, 9) with parameters m e {2, 3,...}
andf l e (0 , l ] i f

holds for all « > w.

These distributions will be refered to as basic claim number distributions.

3.1. Remarks

• In the ratio defining the probabilities of the extended negativebinomial
distribution, the numerator is either strictly positive for all n > m or strictly
negative for all n > m and we also have

n = 0 \ ' / n=0

Therefore, the extended negativebinomial distribution is well-defined.

• For m > 2, we have

= m
m )

Therefore, the extended logarithmic distribution is well-defined.

Willmot (1988) used the term extended truncated negativebinomial distribu-
tion for ENB(1,/?, 9); see also Klugman, Panjer and Willmot (1998) and
Willmot and Lin (2001). Although there is an obvious justification for this
terminology, we prefer to omit the adjective truncated here since our results
suggest to reverse the order of truncation and extension and to consider

https://doi.org/10.2143/AST.32.2.1030 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.2.1030


288 KLAUS TH. HESS, ANETT LIEWALD AND KLAUS D. SCHMIDT

extended negativebinomial distributions and truncated extended negativebi-
nomial distributions.

• Apparently, the distributions ENB(m, /?, 9) with m > 2 and ELog(w, <9) have
not been considered before; see Johnson, Kotz and Kemp (1992).

It is easily seen that every basic claim number distribution is a Panjer distribu-
tion. Table 1 below contains for every basic claim number distribution Q con-
sidered as Panjer (a, b; k) the parameters a, b, k and the probability generating
function mQ:

Q

P(«)

ELog(m, 3)

3.2. Remarks

a

0

3

3

BASIC CLAIM

a

03-1)5

TABLE 1

NUMBER DISTRIBUTIONS

k

& 0

0

0

m

mQ(t)

log(l - d?)
log(l -1>)

2°° («)~v

Table 1 shows that there exist Panjer distributions Panjer (a, b; k) with a-\;
this has first been observed by Willmot (1988) who discovered ENB(1,/?, 1)

• For ENB(m, y5, 1) = Panjer (1, / ? - 1; m) the moment of order / is finite if
and only if / < m-\, and for ELog(m, 1) = Panjer(l,-w; m) the moment
of order / is finite if and only if l<m-2. This shows that Corollary 2.2
cannot be extended to the case a = 1.

For a claim number distribution Q = {qn} and k e No satisfying qk > 0 and
> 0, define

neN,'0
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(k)

where q\ . - 0 for all n < k - 1 and

for all n > k. Then Q is a nondegenerate claim number distribution satisfying

The distribution g ' is said to be the k-truncation of Q.

Table 2 below defines the notation for the ̂ -truncation Q ' of the basic claim
number distribution Q:

TABLE 2

^-TRUNCATIONS OF BASIC CLAIM NUMBER DISTRIBUTIONS

Q

B(m,9)
P(a)
NB(/?, 3)
Log (3)

ELog(w, S)

k

{0, 1, . . . ,/n-l}
{0, 1, ...}
{0, 1, ...}
{1,2,...}
{m, m+l, ...}
{m, m+l, ...}

B(w, 9; k)
P(a; A;)
NB(y?, 3; A:)
Log(S; it)
ENB(m,j8,3; A:)
ELog(w, 9; k)

In particular, we have

P(a) = P(a;0)
) = NB0?,,9;O)

Log(5) =

ELog(m,5) = ELog(m, 5;m)

Since every basic claim number distribution is a Panjer distribution, it is clear
that the ^-truncation of a basic claim number distribution belongs to the
Panjer class of order k. In order to prove that the converse of this assertion
holds as well, we need the following lemma:

3.3. Lemma. Assume that Q = Panjer (a, b; k). Then

(k + \)a + b>0.

Moreover, a + b > 0 implies a < 1, and a + b < 0 implies a<\.
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Proof. The first inequality is immediate since Q is nondegenerate. Let us now
assume that a > 0 and a + b > 0. Then we have, for all n > k.

na

and hence
- k +1 n-k

Since the series 2^= k ̂ "+1 a" ~ diverges for a > 1, we obtain a < 1. Let us next
assume that a > 0 and a + b < 0. Then we have, for all n > k,

_(n- k)a + (k
'q»-HT:

and hence

Since the series S^ t i f c + i) a"~ diverges for a > 1, we obtain a < 1. •

We can now characterize the distributions of the Panjer class of order k:

3.4. Theorem. Let Qbe a nondegenerate claim number distribution. For k e No,
the following are equivalent:

(a) Q belongs to the Panjer class of order k.
(b) <2 is the k-truncation of a basic claim number distribution.

Proof. Assume first that (a) holds and consider Q = {qn} - Panjer (a, b; k).
By Theorem 2.1, we have °

dt W ~ \-at

for all t E [0, 1) and mf(0) = 0 for all n< k - 1. To solve the differential equa-
tion, we distinguish three cases depending on a:

• The case a < 0: In this case we obtain

for some c s R. Since
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_ (n - k)a + (k + \)a + b
in+i- ^ n q»

holds for all n > k, Lemma 3.3 yields the existence of some m> k satisfying
qm+1 = 0 < qm. We obtain m = (a + b)l (- a), and hence

m"Q'(t) = c{\-at)

The general solution of this differential equation has the form

mQ® = kiic]t> + ck{\-ai)m

j = 0

and the initial conditions together with me(l) = 1 yield

i - 2

Therefore, we have Q = B((a + b)/(- a), (- a) I (1 - a); k).

• 77ae case a - 0: In this case, Lemma 3.3 yields b e (0, °°) and we obtain

for some c e R. The general solution of this differential equation has the
form

and the initial conditions together with me(l) = 1 yield

Therefore, we have 2 =

The case a > 0: In this case we obtain
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for some c E R. TO solve this differential equation, we distinguish five cases
depending on b:

O The case b > -a: In this case we have a + b > 0 and Lemma 3.3 yields
a e (0,1). Letting p:=(a + b)/a,we obtain ft e (0, °o) and

The general solution of this differential equation has the form

and the initial conditions together with we(l) = 1 yield

7 = 0 <

Therefore, we have Q = NB((o + b) I a, a; k).

0 The case b = - a: In this case we obtain

for some c e R. The general solution of this differential equation has the
form

k-l
J

and the initial conditions together with mQ{\) = 1 yield

I o g ( l - a 0 k^{at)j

lQg(l-fl) fy j
m(t) = - ^

7 = 1 •>

Therefore, we have Q = Log(a; k).

O The case-{m + \)a<b<-ma with me {1, 2,...,k}\ In this case we have
a + b<0 and Lemma 3.3 yields ae(O, 1]. Letting /? : = (a + b)la, we
obtain [Se(-m,-m+\). Proceeding as in the case b>-a, but taking
into account the possibility of a = 1, we obtain
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j = Q\

7 = 0 \ J

Therefore, we have Q = ENB(m, (a + b)/ a, a; k).

O The case b = -ma with m e {2, 3,..., k}: In this case we have a + b < 0
and Lemma 3.3 yields ae(0,1]. We obtain

for some csR. The general solution of this differential equation has the
form

j i tj x
mQ(t) = jicj tj + ck{\ - at)m-x\og{\ - at)

7 = 0

and the initial conditions together with me(l) = 1 yield

m (j\= "

0

-1

Am
n = k V

Therefore, we have Q = ELog(m, a; k).

O The case b < -(k + I)a: This case is impossible because of Lemma 3.3.
Therefore, (a) implies (b). The converse implication is obvious, as noticed
before. •

In the cases k = 0 and k=\, Theorem 3.4 is due to Sundt and Jewell (1981)
and Willmot (1988), respectively.

4. PANJER'S RECURSION

Let TV be a random variable such that the distribution Q of N is a claim num-
ber distribution, let {Xn}nf=u be a sequence of random variables which is i.i.d.
and independent of N, and define

N

S:=?,Xn.
n = \

In the collective model of risk theory, TV is interpreted as the number of
claims, Xn is interpreted as the claim size of claim n and S is interpreted as the
aggregate claim size of the portfolio.
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If the distribution F of each Xn is a claim number distribution, then this is also

true for the distribution F*k= {/„**} of ^n = lXn
 ar>d for the distribution

Comp(Q,F) of S; we have mF-k(i) = {mF(i))k and mComp(Q^(t) = mQ(mF(t)). The
following result extends Theorem 2.1:

4.1. Theorem. Let Q - {qn} be a nondegenerate claim number distribution.
For a,bsR and k E NO, the following are equivalent:
(a) Q = Panjer(a, b;k).
(b) For every claim number distribution F = {fn}n e N withfo = O and for every

/ > 1, mComp(Q p) satisfies the differential equation0

with te[0, 1) and the initial conditions /zW(0) = Ofor allj < k- 1.

Proof. Assume first that (a) holds and let G := Comp((2, F). Then we have

mG{t) - mQ(mF(t))

and hence
m'G{i) = m'Q(mF(t))mF(t)

Because of Theorem 2.1, this yields

(1 - amF (0) m'G (?) = (1 - amF (/)) m'Q(mF (t)) m'F (i)

= ((a + b)mQ(mF(t)) + qkk(mF(t))k-l)m'F (?)

= (a + b)mG(t)m'F (t) + qk m'F-k (t).

This is the differential equation of (b) in the case 1=1, and the general case
now follows by induction. Furthermore, Theorem 2.1 yields

for ally < k- 1. Since mF(0) =/0 = 0, differentiation of both sides of the iden-
tity mG{t) = mQ(mF(t)) yields

for ally < k- 1. Therefore, (a) implies (b). Assume now that (b) holds. For the
claim number distribution F= {/n}«eNo with/ , = l, we have mF(t) = t and
hence Comp(£), F) = Q, and the differential equation becomes
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By Theorem 2.1, this yields Q = Panjer(a, b; k). Therefore, (b) implies (a). •

When the distribution F= {/n}nsNo considered in Theorem 4.1 is obtained as
an approximation of a continuous distribution, then the condition f0 = 0 may
be violated. For this case, we have the following variant of Theorem 4.1:

4.2. Theorem. Assume that Q = Panjer(a, b; k). If F= {fn}ne^0 is a claim number
distribution and if G = Comp(g, F), then mG(t) = mQ(mF{t)) and the identity

holds for all I >\.

With t - 0, Theorem 4.2 yields the following extension of Panjer's recursion
for the probabilities of a compound distribution:

4.3. Corollary. Assume that Q = Panjer(a, b; k). If F= {/^}neNo is a claim number
distribution with f0 < 1 and if G- {g«}nsNo = Comp(g, F), then g0 = mQ(f^ and
the identity

holds for all n>\.

With t= I, Theorem 4.2 yields the following recursion for the binomial moments
of a compound distribution:

4.4. Corollary. Assume that Q - Panjer(a, b; k) with a<\. IfFis a claim num-
ber distribution and if G = Comp(g, F), then /?[? = 1 and the identity

i rn ["]
, -= 1\ -i - F k F'k

holds for all n>\ such that fy"' is finite.

The results of this section are known in the case k = 0; see Schmidt (2001;
Abschnitt 7.3). Corollary 4.3 can also be obtained from Sundt (1992; Theo-
rem 11); see also Sundt and Jewell (1981; Theorem 5). Corollary 4.4 is a vari-
ant of a result of DePril (1986) who obtained a recursion for the (ordinary)
moments in the case k = 0; see also Schmidt (1996; Theorem 5.4.3).

5. AN APPLICATION TO HOFMANN FAMILIES

In this section, we consider a family {2Jse[o~) °f claim number distributions
Qs = WJBeNo- For n e No, define Un : [0, °°) ̂  [0, 1] by
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n«(5) := qsn.

The family (SsLeio,-) *s said to be the Hofmann family H(d,p, c) with para-
meters ds [0, oo) and/?, ce (0, °°) if there exists a differentiable function 9 : [0, °o)
-> R with the following properties:

0(0) = 0

The Hofmann family was introduced by Hofmann (1955). Kestemont and
Paris (1985) pointed out that every distribution of a Hofmann family can be
written as

Qs = Comv(Ps, Rs)

where Ps is a Poisson distribution and Rs is a claim number distribution. The
following theorem makes this statement more precise. Let Dirac(l) denote the
claim number distribution Q = {qn}ne^0 with q\ = l.

5.1. Theorem. Assume that {Qs}s^[0^=H(d,p,c). Then

Qs = Comp(P(S(j)), Rs)

holds with

Dirac(l) if d = 0

if
D — I

* )lMg(csl(l+cs)) if d =

_ ) ; l ) ifde(l,oo)

and for all s e [0, °°). /« particular, Qs has finite moments of any order.

Proof. By the Bernstein-Widder Theorem, there exists a probability distribu-
tion Q concentrated on (0, «=) such that

holds for all neN0 and s e[0,«>). Using this explicit formula for Un(s), straight-
forward computation yields

https://doi.org/10.2143/AST.32.2.1030 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.2.1030


AN EXTENSION OF PANJER'S RECURSION 297

and we also have

«o«p(p(»w),j.J)(0 = exp( -d( s ) ( l -^ ( / ) ) ) .

Now the first assertion follows from

ps if d = 0
n

cs) if d ~\

cstd-l ,.
[c \-d

and the second assertion follows from Corollary 4.4 and Corollary 2.2 •
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