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Abstract
We present a solution to the conjugacy problem in the group of outer automorphisms of 𝐹3, a free group of rank 3.
We distinguish according to several computable invariants, such as irreducibility, subgroups of polynomial growth
and subgroups carrying the attracting lamination. We establish, by considerations on train tracks, that the conjugacy
problem is decidable for the outer automorphisms of 𝐹3 that preserve a given rank 2 free factor. Then we establish,
by consideration on mapping tori, that it is decidable for outer automorphisms of 𝐹3 whose maximal polynomial
growth subgroups are cyclic. This covers all the cases left by the state of the art.
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1. Introduction

In this paper, we solve Dehn’s conjugacy problem in Out(𝐹3), the group of outer automorphisms of the
free group 𝐹3 of rank 3:

Theorem 1.1. There exists an algorithm which takes two automorphisms 𝜙, 𝜓 ∈ 𝐴𝑢𝑡 (𝐹3) and correctly
outputs yes or no whether their outer classes are conjugate in Out(𝐹3).

The conjugacy problem has already been solved within certain classes of outer automorphisms of
free groups: the atoroidal fully irreducible ones by Sela [Sel95], all the irreducible ones by Los [Los96],
all the atoroidal ones by [Dah16], the linearly growing ones by Kristić, Lustig and Vogtmann [KLV01],
and the unipotent polynomially growing ones by Feighn and Handel [FH19].
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In the case of a free group of rank 2, Out(𝐹2) � GL(2,Z) is well-known and virtually free, and there
is an algorithm to solve its conjugacy problem.

In the case of a free group of rank 3, Out(𝐹3) is more complicated, and our conjugacy decision
algorithm operates by classifying the pair of input automorphisms by means of invariants, in subclasses,
in which specific methods can be applied.

Let us mention key conjugacy invariants that are relevant in these classifications and are computable.
They give a first frame of reference.

◦ Irreducibility (whether there is an invariant conjugacy class of free factor system, or not), [Kap14],
[FM22];

◦ exponential growth (whether there is a conjugacy class whose iterated images grow exponentially
fast, or not), [BFH05];

◦ rank of the maximal polynomially growing subgroups (the maximal subgroups whose elements have
iterated images that grow at most polynomially in conjugacy length), and polynomial degree of growth
in these subgroups (Proposition 2.7);

◦ arrangement of these subgroups (their orbit under the automorphism group of the ambiant free group)
(Gersten’s algorithm);

◦ ranks of the free factors carrying the so-called attracting lamination (Proposition 2.9).

Example 1.2. The map 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏𝑎, 𝑐 ↦→ 𝑐𝑏 extends to the free group of basis {𝑎, 𝑏, 𝑐} as an
automorphism that is reducible (〈𝑎, 𝑏〉 is an invariant free factor of rank 2), polynomially growing of
degree 2 (the growth of c is quadratic).

Example 1.3. A pseudo-Anosov mapping class on a twice punctured torus gives an automorphism that
is reducible (each puncture corresponds to a free factor of rank one that is preserved), of exponential
growth, with two conjugacy classes of maximal polynomially growing subgroups (corresponding to the
punctures), both cyclic, on which the automorphism has polynomial degree 0. They are both rank 1
free factors, but not in a same free factor system. The attracting lamination is supported by the entire
group.

Example 1.4. Take T a torus with one hole 𝜕𝑇 , with a base point on its boundary, and a circle C with a
base point, and take the wedge of these spaces, identifying the two base points: its fundamental group
is 𝐹3. Consider a pseudo-Anosov mapping class on T, fixing the boundary pointwise, and a map that
sends C on the concatenation 𝐶 · ℓ for a chosen loop ℓ in T. The defined map on 𝑇 ∧ 𝐶 induces an
automorphism of 𝐹3 that is reducible, of exponential growth, with an invariant free factor of rank 2 (the
group of T). The cyclic group of the boundary 𝜕𝑇 of T is polynomially growing of degree 0. Depending
on the choice of ℓ, it might or might not be a maximal polynomially growing subgroup: if ℓ is a power
of the loop 𝜕𝑇 , the maximal polynomially growing subgroup containing 𝜋1 (𝜕𝑇) is actually of rank 2,
on which the automorphism has polynomial degree 0 or 1, and it is not a free factor of 𝐹3 but rather a
factor of a decomposition of 𝐹3 as some amalgamated free product

𝜋1 (𝑇) ∗𝜋1 (𝜕𝑇 ) 𝜋1 (𝐶 ∧ 𝜕𝑇).

The attracting lamination is carried by the rank 2 free factor 𝜋1 (𝑇). We show in Proposition 6.5 that
any exponentially growing automorphism of 𝐹3 with a nontrivial and noncyclic polynomially growing
subgroup must be of this form.

It is nevertheless not sufficient to collect these invariants to have characterised the conjugacy class
of an outer automorphism. For instance, knowing that the automorphisms are irreducible, with pure
exponential growth (i.e., the only polynomially growing subgroup is the trivial one) still requires
stamina to decide the conjugation between such outer automorphisms. Actually, all the solved cases
listed in the beginning of this introduction all correspond to some particular situation in this frame of
reference.
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Figure 1. Our algorithm to solve the conjugacy problem in Out(𝐹3). If at any time the given automor-
phisms 𝜙 and 𝜓 follow different arrows, they are not conjugate.

In our study of Out(𝐹3), we will observe that, given the state of the art, only three configurations in
this frame of reference need to be treated. We will cast two of them in the point of view of automorphisms
preserving a specific rank 2 free factor. We will cast the last one in the point of view of toral relatively
hyperbolic mapping tori. The first configurations is that of the polynomial growth of degree 2 on the
group 𝐹3 (well illustrated by Example 1.2). The second configuration is the case of exponential growth
in which a rank 2 free factor is invariant and ‘attracts’ all the growth. In that case (that is well illustrated
by our example 1.4), there is only one class of maximal polynomially growing subgroup, it is not a free
factor, and it is either cyclic (generated by the commutator of a basis in the invariant rank 2 free factor),
or of rank 2 (attached to this free factor). The last case (illustrated by Example 1.3) is when the growth
is exponential, with a rank 1 free factor preserved, and the maximal polynomial growth subgroups are
of rank 1 (there might be two of them up to conjugacy).

Our algorithm is shown in Figure 1, and its correctness is derived from the correctness of every
classification step as well as every terminal step. There are several ways to separate cases toward the use
of Theorem 3.1 or the use of Theorem 6.4 or of methods in Section 6 since they overlap, but considering
complexity, it seems reasonable to leave the later for the smaller number of cases.
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In Section 3, we show how to solve the conjugacy problem in Out(𝐹3) among all outer automorphisms
with a given invariant rank 2 free factor. This result, in a sense, is a type of induction step from Out(𝐹2)
to Out(𝐹3), but as will be explained in Remark 3.11, it will not generalize similarly to higher ranks.
This case is critically important as we will show that most problematic situations (which actually fall
in the case where the given automorphism induces a polynomial growth automorphism on a noncyclic
subgroup) lead to an invariant free factor of rank 2.

In Section 4, we show that quadratically growing outer automorphisms have an invariant rank 2 free
factor. In Section 5, we use train track methods to study the types of attracting laminations that arise. One
possibility gives rise (again) to an an invariant rank 2 free factor. In Section 6, we show that the other
possibility implies that the outer automorphisms are so-called almost toral relatively hyperbolic and the
conjugacy problem for this class of outer automorphisms is established by the main result of [DT21] in
its particular case where the so-called peripheral subgroups are Z × Z or Z � Z, the fundamental group
of the Klein bottle.

Our examples

In order to explain our flowchart, we describe how to distinguish the conjugacy classes of the three
automorphisms given at the start of this section.

To start with, each of the automorphisms is reducible. In Example 1.2, there are invariant free factors
of rank one and two – namely, 〈𝑎〉 and 〈𝑎, 𝑏〉. In Example 1.3, each puncture corresponds to an invariant
rank one free factor. Finally, in Example 1.4. the torus with one hole is an invariant rank 2 free factor.

(However, in Example 1.3, if the punctures are permuted, then it is irreducible but not fully irreducible,
which would entail that it could not be conjugate to the other two).

The next stage of the flowchart would construct a relative train track to determine growth. The
automorphisms are essentially already presented in this way with Example 1.2 having quadratic growth,
whereas Examples 1.3 and 1.4 have exponential growth. This would already mean that the first is not
conjugate to the other two.

One can then find the free factor carrier of the attracting lamination for each of the exponential
growth automorphisms, and one finds that in Example 1.3, it has rank three, whereas for Example 1.4,
it is carried by the invariant rank two free factor.

Hence, these three automorphisms are not conjugate in Out(𝐹3).
We note that the flowchart is presented ‘efficiently’ by using a common algorithm for both quadratic

polynomial growth automorphisms and for exponential growth automorphisms whose attracting lam-
ination is carried by a rank two free factor. This algorithm – given by Theorem 3.1 – will indeed
distinguish the conjugacy classes of those automorphisms, but our global algorithm already determines
growth which is a conjugacy invariant.

Remark. We would like to comment that the methods used in this paper are somewhat broad but roughly
break down into using mapping torus techniques and relative hyperbolicity versus train track methods
and Culler-Vogtmann space.

In choosing which methods to use, we have tried to take the shortest routes that served our proof
strategy rather than the most coherent ones. This unfortunately makes the background reading quite
extensive. However, in producing this paper, we often produced multiple versions of the argument,
and so we are aware that one could rewrite the proofs leaning more towards mapping tori tech-
niques rather than train track techniques and vice versa. For instance, one could solve the conju-
gacy problem for the exponentially growing case using purely mapping torus techniques or using
purely train track techniques. We have opted to mix and match and rely on existing results as far as
possible.

The main place where these main techniques are not entirely applicable is in the quadratic growth
case, Theorem 3.1, which is somehow a mapping torus situation in the absence of relative hyperbolicity.
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2. Computability of a few invariants

Notations

We begin by some general notations and definitions.

Notation 2.1.

◦ In a group G, the conjugation of g by h is 𝑔ℎ := ℎ−1𝑔ℎ.
◦ Aut(𝐺) acts on the right: for 𝜙 ∈ Aut(𝐺), 𝑔 ∈ 𝐺, the image of g under 𝜙 is 𝑔𝜙.
◦ Ad(𝑔) denotes the automorphism of G that is conjugation by g: 𝑥Ad(𝑔) = 𝑥𝑔. Hence, Ad(𝑔) Ad(ℎ) =

Ad(𝑔ℎ).
◦ Out(𝐺) = Aut(𝐺)/Inn(𝐺), for Inn(𝐺) = {Ad(𝑔), 𝑔 ∈ 𝐺}.
◦ 𝐹3 = 〈𝑎, 𝑏, 𝑐〉 denotes a free group of rank 3.
◦ We will prefer the notation K for free factors, and H for subgroups.
◦ We write outer automorphisms with capital greek letters, and automorphisms with small greek letter:

if Φ is an outer automorphism, 𝜙 ∈ Φ is an automorphism in its class. In this convention, (according
to context) X reads Chi, and 𝜒 ∈ X is an automorphism.

For Φ ∈ Out(𝐹), we say a subgroup 𝐻 ≤ 𝐹 is Φ-invariant if for any 𝜙 ∈ Φ, we have that H is
conjugate to 𝐻𝜙.

A free factor system of F is a set of conjugacy classes of subgroups of F, {[𝐾1], . . . , [𝐾𝑚]} such that
there exists a free subgroup 𝐹𝑟 < 𝐹 for which 𝐹 = 𝐾1 ∗ · · · ∗ 𝐾𝑚 ∗ 𝐹𝑟 . It is proper if the 𝐾𝑖 are neither
{1} nor F. It is Φ invariant if all 𝐾𝑖 (not necessarily 𝐹𝑟 ) are Φ invariants.

A free factor system {[𝑌1], . . . , [𝑌𝑠]} is smaller than {[𝐾1], . . . , [𝐾𝑚]} if for each i, there exists j
such that 𝑌𝑖 has conjugate inside 𝐾 𝑗 .

Irreducibility

A first conjugacy invariant, and decidable, property is the irreducibility of outer automorphisms.

Definition 2.2. An outer automorphism Φ is called reducible if it admits an invariant proper, nontrivial,
free factor system; see [BFH00]. Otherwise, it is said to be irreducible.

An automorphism is fully irreducible if every positive power is irreducible.

Remark 2.3. An automorphism is fully irreducible if and only if the only periodic free factors preserved
up to conjugacy are given by either the trivial subgroup or the whole group. Every fully irreducible
automorphism is irreducible, but not conversely.

An example of an irreducible automorphism which is not fully irreducible is as follows: take a surface
with 𝑝 > 1 punctures. Consider a pseudo-Anosov map on the surface which cyclically permutes the
punctures. Then the outer automorphism induced on the fundamental group is irreducible but not fully
irreducible. In fact, any example of an exponential growth automorphism which is irreducible but not
fully irreducible arises in this way; see [Mut21] Corollary A.5.

Fully irreducible is often referred to as ‘iwip’ – irreducible with irreducible powers – in the literature.

There is an algorithm to detect whether Φ ∈ Out(𝐹𝑛) is fully irreducible given in [Kap14], and
whether it is irreducible in [FM22]. A more recent algorithm given in [KB19] decides whether Φ is
fully irreducible in polynomial time.

Growth

A second set of conjugacy invariant, and decidable, properties is related to growth.

Definition 2.4. Given 𝜙 ∈ Φ ∈ Out(𝐹𝑛) and 𝑔 ∈ 𝐹𝑛 and a fixed basis X of 𝐹𝑛, we define the growth
rate of g as follows:
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◦ The element g has polynomial growth of degree at most d under Φ if ‖𝑔𝜙𝑛‖𝑋 = 𝑂 (𝑛𝑑).
◦ The element g has exponential growth if there exists 𝜆 > 1 for which 𝜆𝑛 = 𝑂 (‖𝑔𝜙𝑛‖𝑋 ).1

This growth rate is independent of the choice of X and 𝜙 ∈ Φ. Moreover, by [BH92], the growth rate
of every 𝑔 ∈ 𝐹𝑛 is either at least exponential or at most polynomial.

Definition 2.5. An outer automorphism Φ of 𝐹𝑛 is said to have

◦ polynomial growth if all elements 𝑔 ∈ 𝐹𝑛 have polynomial growth rate,
◦ exponential growth if some element 𝑔 ∈ 𝐹𝑛 has exponential growth rate.

In the case of a polynomial growth outer automorphism of 𝐹𝑛, there exists 𝑑 ≥ 0 for which all
elements of F have polynomial growth of degree at most d, and moreover, the smallest such d satisfies
𝑑 ≤ 𝑛 − 1; see [BFH05], [Lev09].

Definition 2.6. A polynomial growth outer automorphism of 𝐹𝑛 is unipotent if it induces an automor-
phism of the abelianisation Z𝑛 that is represented by a unipotent matrix.

Such a matrix of the abelianisation of an automorphism of 𝐹𝑛 of polynomial growth only has
eigenvalues of modulus 1, and in 𝐺𝐿(𝑛,Z), so its |𝐺𝐿(𝑛,Z/3) |-th power is unipotent; see [BFH00],
Corollary 5.7.6.

The following is known to specialists and is important to us. We explain a proof, using the theory of
CT maps [FH18], that are certain homotopy equivalences on graphs, representing outer automorphisms
on their fundamental groups; the interested reader is referred to this reference.

Proposition 2.7 [FH11, FH18]. Given an automorphism, Φ ∈ Out(𝐹𝑛), there is an algorithm to decide

◦ if Φ has polynomial or exponential growth and,
◦ if Φ has polynomial growth, decide the degree of polynomial growth.

Proof. By [FH18], there is an algorithm to construct a CT map (which is, in particular, a relative train
track map) representing a rotationless power of Φ. Since the properties needed here are invariant under
taking positive powers, we may as well assume that Φ itself is so-called rotationless (the power needed
can be determined in advance). In particular, a rotationless automorphism of polynomial growth would
be unipotent; see [FH11, Lemma 4.2.2].

So take a CT map, 𝑓 : 𝐺 → 𝐺 representing Φ.
It then follows immediately that if f admits an exponential stratum, then Φ will have exponential

growth. So we can algorithmically distinguish between exponential and polynomial growth.
So if Φ has polynomial growth, then all strata will be NEG (non-exponentially growing); note that

by [FH11], Theorem 2.19, there will be no zero strata in the absence of exponential strata. Then Lemma
4.2 of [FH11] shows that each such NEG stratum consists of a single edge, E, such that 𝑓 (𝐸) = 𝐸 · 𝑢,
where the dot denotes a splitting. In particular, the growth of 𝑓 𝑘 (𝐸) is polynomial of one degree higher
than that of u. Hence, by induction, we can determine the growth of every edge.

This almost determines the growth of the automorphism, Φ, in the sense that Φ has polynomial
growth of degree 𝑑 > 1 if and only if some edge grows polynomially with degree d. However, it is
possible to represent the identity map as a CT map where some edge grows linearly, and this is the only
exception. See [Mac02, Lemma 2.16] and [AHK22, Lemma 2.3].

However, since we have already passed to a rotationless power (in particular, it will be UPG), our
automorphism will have growth of degree 0 if and only if it represents the identity and this is immediately
checked. �

For an outer automorphism of 𝐹𝑛 of exponential growth, there exists a canonical finite collection of
conjugacy classes of finitely generated subgroups of 𝐹𝑛, such that an element 𝑔 ∈ 𝐹𝑛 has polynomial

1Note that (for nonnegative functions), 𝑓 (𝑛) = 𝑂 (𝑔 (𝑛)) means 𝑓 (𝑛) ≤ 𝑀𝑔 (𝑛) for some constant M. The reason for the
asymmetric definition of growth is the idea to bound polynomial growth from above and exponential growth from below. It is
easy to see that there is always an exponential upper bound.
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growth rate if and only if it is conjugate in one of these subgroups [Lev09]. Those are the maximal
polynomially growing subgroups.

Given H such a maximal subgroup, and 𝜙 ∈ Φ, there is an integer 𝑚 > 0 and 𝑔 ∈ 𝐹𝑛 for which
𝐻 (𝜙𝑚 Ad(𝑔)) = 𝐻. The automorphism 𝜙𝑚 Ad(𝑔) of H is then a polynomial growth automorphism. We
again refer to [Lev09]. Through standard arguments of quasi-isometry, its polynomial degree of growth
rate does not depend on 𝜙 ∈ Φ, m and g satisfying the above. We thus call it the degree of growth of Φ
on H.

Proposition 2.8. There is an algorithm that, given Φ ∈ Out(𝐹𝑛) of exponential growth, computes a
basis for each conjugacy-representative of maximal polynomially growing subgroup of 𝐹𝑛, and the
degree of growth of Φ on it.

Proposition 2.8 follows from the relative hyperbolicity of 𝐹𝑛 � Z given by Φ [Gho23, DL20], and
the computability of its peripheral subgroups [DG13]. This detects the maximal polynomially growing
subgroups of 𝐹𝑛. Then, Proposition 2.7 determines the induced growth on each of them.

Lamination carriers are computable

A more involved conjugacy invariant for outer automorphisms of free groups that have exponential
growth is that of the carrier of the attracting laminations [BFH00, Section 3]. This is a specific con-
jugacy class of free factor systems of 𝐹𝑛 that in some sense, attracts all the exponential growth of the
automorphism.

More concretely, let 𝜕𝐹𝑛, denote Gromov boundary of 𝐹𝑛, which for a free group is the same as the
set of ends. Let B̃ = (𝜕𝐹𝑛 × 𝜕𝐹𝑛 − Δ)/Z2, where Δ is the diagonal subset of 𝜕𝐹𝑛 × 𝜕𝐹𝑛, and the Z2
action is via interchanging the coordinates. That is, B̃ can be thought of as the set of unordered pairs
of distinct points on the boundary of 𝐹𝑛; morally, this is the set of lines in 𝐹𝑛. The action of 𝐹𝑛 on its
boundary extends to an action on B̃.

We then let B = B̃/𝐹𝑛. We say that 𝛽 ∈ B is carried by (the conjugacy class of) a free factor K if 𝛽
lies in the image of 𝜕𝐾 × 𝜕𝐾 − Δ → B. A subset S of B is carried by a free factor system, F , if every
element of S is carried by some free factor in F .

An attracting lamination for Φ is then a closed subset of B which is the closure of a single point, 𝛽,
and has some extra properties (𝛽 is birecurrent, admits an attracting neighbourhood for some positive
iterate of Φ, and is not carried by a Φ-periodic free factor of rank one; see [BFH00, Definition 3.1.5]).

Any automorphism, Φ, then admits a finite set of attracting laminations, L(Φ), which is carried by
a Φ-invariant free factor system ([BFH00, Lemmas 3.1.6 and 3.1.13]). Morally, one has one attracting
lamination for every exponential stratum for a relative train track representative for Φ (or some power),
and moreover, L(Φ) is canonical.

For instance, a fully irreducible automorphism will have a single attracting lamination which is only
carried by the whole group. A polyonomially growing automorphism will have no attracting laminations.

Again, the theory of CT maps allows to compute this invariant. We would like to thank Mark Feign
and Michael Handel for the proof of the following Proposition.

Proposition 2.9. Given an automorphism, Φ ∈ Out(𝐹𝑛) of exponential growth, there is an algorithm to
find the smallest free factor system which carries the set of attracting laminations.

Proof. Since the set of attracting laminations is stable under taking positive powers, we are free to
replace Φ with a (rotationless) power and use [FH18] to algorithmically produce a CT map representing
this power of Φ. Since we are dealing with a rotationless automorphism, each exponential stratum
produces exactly one attracting lamination. It is therefore sufficient to produce an algorithm which,
given this CT map and a specific exponential stratum, 𝐻𝑘 of it, finds the smallest free factor carrying
Λ, the associated attracting lamination.

Let 𝑓 : 𝐺 ↦→ 𝐺 be the CT map for the power of Φ and let 𝐻𝑘 be an exponential stratum with
corresponding attracting lamination Λ. Construct a leaf L of Λ by choosing a point fixed by f in the
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interior of an edge e of 𝐻𝑘 and considering

𝑒 ⊂ 𝑓 (𝑒) ⊂ 𝑓 2(𝑒) ⊂ . . .

Note that L is f -invariant.
Choose a segment of L that starts and ends with a copy of the same oriented edge of 𝐻𝑘 and with e

interior to the segment. Glue the initial and terminal edges of the segment to form a loop 𝛾 immersing
to G. For 𝑖 ≥ 0, denote by 𝛾𝑖 the immersed loop (or conjugacy class) [ 𝑓 𝑖 (𝛾)]. Note that 𝛾𝑖 is obtained
from L by gluing segments of the form [ 𝑓 𝑖 (𝑒𝑑𝑔𝑒)]. In particular, these segments are long if i is big.

Claim: The free factor support 𝐹 (Λ) of Λ is equal to the free factor support, 𝐹 (∪𝑖≥0{𝛾𝑖}) of

∪𝑖≥0{𝛾𝑖}.

Comment: The free factor support of a finite collection of elements can be found algorithmically; see
[FH18, Lemma 4.2]. Moreover, the sequence of free factor supports of {𝛾1}, {𝛾1, 𝛾2}, . . . stabilises.

This is because each free factor system has a well-defined complexity (consisting of the ranks of the
components of the free factors which comprise it, ordered lexicographically; see [BFH00], page 531).
There are only finitely many complexities possible, and if one free factor system is strictly contained
inside another, then it will have strictly smaller complexity; see [BFH00], Lemma 2.6.3. This is exactly
our situation since if we label the free factor support of {𝛾1, . . . , 𝛾𝑟 }, F𝑟 , then we clearly get that
F𝑟 � F𝑟+1. Moreover, we know that F𝑟 � 𝐹 (Λ) for all r and F𝑟 = 𝐹 (Λ) as long as F𝑟 is Φ-invariant,
which is algorithmically decidable.

Hence, for an algorithm, it is enough to prove the claim.
Proof of Claim: That 𝐹 (Λ) ⊂ 𝐹 (∪𝑖≥0{𝛾𝑖}) is clear.
For the other direction, we will show that 𝛾𝑖 is contained in every Φ-invariant free factor 𝐹 ′ that

carries Λ. It is enough to assume that i is large.
Let 𝐺 ′ be a marked graph with sub-graph 𝐾 ′ representing 𝐹 ′. Let �̃� ′ ⊂ �̃� ′ and �̃� denote universal

covers. View L (defined above) as a subset of �̃� such that its representation in �̃� ′ is a subset of �̃� ′. Let
T denote the covering translation of G that identifies the segments of L that give 𝛾𝑖 .

If lines in �̃� have long (depending on 𝐺 ′) overlap, then their representations in 𝐺 ′ intersect – this is
a consequence of the bounded cancellation lemma. Let 𝐿 ′ denote the representation in �̃� ′ of L and 𝑇 ′

denote the covering translation of �̃� ′ corresponding to T. In particular, 𝐿 ′ and 𝑇 ′(𝐿 ′) intersect. Since
𝐿 ′ is in �̃� ′ and intersects 𝑇 ′(𝐿 ′), the union of 𝐿 ′ and 𝑇 ′(𝐿 ′) is contained in �̃� ′ – this follows since
translates of �̃� ′ are either equal or disjoint.

More generally, the union as j ranges over the set of integers of 𝑇 ′ 𝑗 (𝐿 ′) is connected, contained in
�̃� ′, and 𝑇 ′-invariant. Hence, 𝛾𝑖 is carried by 𝐹 ′. �

3. The case of a given invariant rank 2 free factor

For a free factor 𝐾 ≤ 𝐹, we define

Out(𝐹, 𝐾) = {Φ ∈ Out(𝐹) : 𝐾 is Φ-invariant}.

For any Φ ∈ Out(𝐹, 𝐾), the restriction to K is not well-defined as an automorphism, but it is well-
defined as an outer automorphism because K is its own normaliser in F.

This section is devoted to the proof of the following.

Theorem 3.1. Let 𝐾 ≤ 𝐹3 be a free factor of rank 2. Then the conjugacy problem in Out(𝐹3, 𝐾) for
pairs elements that induce infinite order outer automorphisms of K is decidable.

It will be enough to consider the case where 𝐾 = 〈𝑎, 𝑏〉 < 𝐹3 = 〈𝑎, 𝑏, 𝑐〉. Before the proof of
Theorem 3.1, we establish some needed results.

https://doi.org/10.1017/fms.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.3


Forum of Mathematics, Sigma 9

Lemma 3.2. Let 𝐺 = Out(𝐹3, 𝐾), and X ∈ 𝐺. Then there exists a unique 𝜒 ∈ X such that there exists
𝜖 = ±1, 𝑔 ∈ 〈𝑎, 𝑏〉 and 𝜒0 ∈ Aut(〈𝑎, 𝑏〉), satisfying

𝜒 :
⎧⎪⎪⎨
⎪⎪⎩
𝑐 ↦→ 𝑔𝑐𝜖

𝑏 ↦→ 𝑏𝜒0
𝑎 ↦→ 𝑎𝜒0.

(1)

In particular, G is isomorphic to an iterated semi-direct product,𝐶2� (Aut(𝐹2)�𝐹2), where the Aut(𝐹2)
action on 𝐹2 is the natural one, and the𝐶2 action on Aut(𝐹2) �𝐹2 is given by the involution which maps
(𝜒0, 𝑔) to (𝜒0 Ad(𝑔), 𝑔−1).

In the light of the decomposition of the lemma, we can represent any Out(𝐹3, 𝐾) uniquely as an
ordered triple, (𝜖, 𝜒0, 𝑔).

Proof. The outer automorphism X preserves the conjugacy class of 𝐾 = 〈𝑎, 𝑏〉; hence, an element of
X preserves 〈𝑎, 𝑏〉. Note that this element is only well-defined up to the normaliser of 〈𝑎, 𝑏〉, which is
again 〈𝑎, 𝑏〉.

Claim: If 𝜒′ ∈ X sends 𝑎, 𝑏 into 〈𝑎, 𝑏〉, then it sends c into 〈𝑎, 𝑏〉𝑐±1〈𝑎, 𝑏〉.
Suppose this was not the case. Then the reduced word for 𝑐𝜒′ would have more than one occurrence of

letters from the set {𝑐, 𝑐−1}. Since 𝜒′ restricts to an automorphism of 〈𝑎, 𝑏〉, there is 𝜒′0 ∈ Aut(𝐹3, 𝐾) that
maps (𝑎, 𝑏, 𝑐) to (𝑎𝜒′, 𝑏𝜒′, 𝑐). Then𝜓 = (𝜒′0)

−1𝜒′ ∈ Aut(𝐹3, 𝐾) maps the triple (𝑎, 𝑏, 𝑐) ↦→ (𝑎, 𝑏, 𝑐𝜒′).
We apply Nielsen moves on this triple to cancel out the 〈𝑎, 𝑏〉-prefix and suffix of 𝑐𝜒′ to get the
tuple �𝑡 = (𝑎, 𝑏, 𝑐𝜖1 . . . 𝑐𝜖𝑟 ) with 𝜖1, 𝜖𝑟 ∈ {±1}. This tuple is Nielsen-reduced and clearly not Nielsen-
equivalent to (𝑎, 𝑏, 𝑐), contradicting the fact that �𝑡 is a basis of 𝐹3 (see [LS01, §I.2].) The claim now
follows.

Thus, X must send c into 〈𝑎, 𝑏〉𝑐±1〈𝑎, 𝑏〉, and therefore (after composing with another inner auto-
morphism by an element of 〈𝑎, 𝑏〉), an element of 𝜒 ∈ X sends c to 𝑔𝑐𝜖 ∈ 〈𝑎, 𝑏〉𝑐𝜖 , for 𝜖 ∈ {−1, 1}.
An inner automorphism preserving 〈𝑎, 𝑏〉 and sending c in 〈𝑎, 𝑏〉𝑐±1 has to be trivial, and therefore, we
obtain the first part of the statement. The set of X ∈ 𝐺 for which 𝜖 = 1 clearly forms a normal subgroup,
𝐺1. In 𝐺1, the set of elements for which 𝜒0 = 𝐼𝑑 is again a normal subgroup, 𝐺2, isomorphic to 〈𝑎, 𝑏〉.
It is clear that the quotient 𝐺1/𝐺2 (isomorphic to Aut(𝐹2)) lifts in 𝐺1, making 𝐺1 � (Aut(𝐹2) � 𝐹2).
Finally, 𝐺/𝐺1 � Z/2 also clearly lifts in G, as the automorphism given by 𝜒0 = 1, 𝑔 = 1, 𝜖 = −1, mak-
ing G an iterated semi-direct product. One verifies that the involution on 𝐺1 given by the later lift is the
one given in the statement. �

Notation 3.3.

◦ Let G be a group and H a subgroup. For 𝑥, 𝑦 ∈ 𝐺, we write 𝑥 ∼𝐻 𝑦 if there exists an ℎ ∈ 𝐻 such that
𝑥ℎ = 𝑦. We do not require 𝑥, 𝑦 to be in H.

◦ We say that ∼𝐻 is decidable if we can construct an algorithm which decides on inputs 𝑥, 𝑦 ∈ 𝐺,
whether 𝑥 ∼𝐻 𝑦. That is, ∼𝐻 is decidable means that it is a recursive subset of 𝐺2, and we have an
explicit algorithm to decide membership.

Lemma 3.4. Let G be a group, H a subgroup of G and 𝐻0 a finite index subgroup of H. Then if ∼𝐻0 is
decidable and we can compute a complete set ℎ1, . . . , ℎ𝑘 of coset representatives of𝐻/𝐻0, then so is∼𝐻 .

Proof. Let ℎ1, . . . , ℎ𝑘 be a computed set of coset representatives of 𝐻0 in H. Then 𝑥 ∼𝐻 𝑦 if and only
if there exists an i such that 𝑥ℎ𝑖 ∼𝐻0 𝑦.

Hence, we can concurrently decide each problem 𝑥ℎ𝑖 ∼𝐻0 𝑦 and therefore decide whether 𝑥 ∼𝐻 𝑦. �

Remark 3.5. Note that the finiteness of the index is crucial here. If one had an infinite recursive set
of coset representatives, ℎ𝑖 , then it would still be true that 𝑥 ∼𝐻 𝑦 if and only if there exists an i such
that 𝑥ℎ𝑖 ∼𝐻0 𝑦. However, we would also require a termination criterion for when to stop checking each
conjugacy, 𝑥ℎ𝑖 ∼𝐻0 𝑦, since after a finite time, only finitely many of these checks can have been made.
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To put it another way, suppose for some N that 𝑥ℎ𝑖 �𝐻0 𝑦, for 1 ≤ 𝑖 ≤ 𝑁 . Then is that because
𝑥 �𝐻 𝑦, or is it because 𝑥ℎ𝑁+1 ∼𝐻0 𝑦?
Remark 3.6. Some care needs to be taken here. It is false – there are counterexamples – that if the
conjugacy problem is solvable in a finite index subgroup, then it is solvable in the group. That is, there
are examples of groups G with finite index subgroups H such that
◦ ∼𝐻 ∩𝐻2 is recursive,
◦ ∼𝐺 is not recursive.
Hence, conjugacy is solvable in H but not in G. This does not contradict the Lemma above since we
have the stronger hypothesis that ∼𝐻 is decidable.

The main tool we will use to solve conjugacy in G is the twisted conjugacy problem.
Definition 3.7. Let 𝜙 ∈ Aut(𝐹𝑛). Then 𝑥, 𝑦 ∈ 𝐹𝑛 are said to be twisted 𝜙 conjugate, written 𝑥 ∼𝜙 𝑦 if
there exists a 𝑤 ∈ 𝐹𝑛 such that

𝑥 = (𝑤𝜙)𝑦𝑤−1.

We need the following later:
Lemma 3.8. Let 𝜙 ∈ Aut(𝐹𝑛) and 𝑥 ∈ 𝐹𝑛. Then for any 𝑘 ∈ Z, 𝑥 ∼𝜙 𝑥𝜙

𝑘 .
Proof. Simply notice that 𝑥𝜙 = (𝑥𝜙)𝑥𝑥−1 and 𝑥𝜙−1 = ((𝑥−1𝜙−1)𝜙)𝑥(𝑥𝜙−1) and that∼𝜙 is an equivalence
relation. �

Theorem 3.9 (Theorem 1.5 of [BMMV06]). Let 𝜙 ∈ Aut(𝐹𝑛). Then the twisted conjugacy problem for
𝜙 is solvable. That is, ∼𝜙 is a recursive subset of 𝐹2

𝑛 .
We will also need the following:

Theorem 3.10. The conjugacy problem is solvable in Out(𝐹2) and Aut(𝐹2). Moreover, for any Φ ∈
𝑂𝑢𝑡 (𝐹2) of infinite order and for any 𝜙 ∈ Φ,
◦ the centraliser of Φ in Out(𝐹2) is virtually cyclic;
◦ there is an algorithm that computes the coset representatives of 〈Φ〉 in its centraliser;
◦ the centraliser of 𝜙 in Aut(𝐹2) has a finite index subgroup

𝐶0 = {𝜙𝑘 Ad(𝑔) : 𝑘 ∈ Z, 𝑔 ∈ 𝐹𝑖𝑥(𝜙)} = 〈𝜙〉 × 〈Ad(𝑔) : 𝑔 ∈ 𝐹𝑖𝑥(𝜙)〉;

◦ the group𝐷 = {𝜒 ∈ Aut(𝐹2) : 𝜙𝜒 = 𝜙Ad(ℎ), ℎ ∈ 𝐹2} has a finite index subgroup 𝐷0 = {𝜙𝑘 Ad(𝑥) :
𝑘 ∈ Z, 𝑥 ∈ 𝐹2}.

Proof. We note that Out(𝐹2) � 𝐺𝐿2 (Z) is virtually a free group of rank 2, and therefore word hyperbolic.
Therefore, the conjugacy problem is solvable, and centralisers of infinite order elements are virtually
cyclic (see [BH99, 𝛤-2.12, and 𝛤-3 Coro. 3.10]). For any element of infinite order, g, in a hyperbolic
group, it is known to be algorithmic to find the coset representatives of 〈𝑔〉 in its centraliser. This is
folklore, but a detailed proof appears in Proposition 4.11 of [BMV10].

The solution for the conjugacy problem for Aut(𝐹2) appears in [Bog00] and also as Corollary 5.2 of
[BMV10].

The rest of the statements about Aut(𝐹2) are then just translations of the corresponding statements
about Out(𝐹2). �

We now address the conjugacy problem in Out(𝐹3, 𝐾) for elements that induce infinite order outer
automorphisms on K.

Proof of Theorem 3.1. Let 𝐺 = Out(𝐹3, 𝐾), and Φ,Ψ ∈ 𝐺, given by data, as in Lemma 3.2, as

Φ = (𝜖1, 𝜙0, 𝑢) and Ψ = (𝜖2, 𝜓0, 𝑣).
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We assume that 𝜙0, 𝜓0 define infinite order outer automorphisms of K. We must decide whether
there exists a conjugator, 𝜒 = (𝜖3, 𝜒0, ℎ) ∈ 𝐺, such that Φ𝜒 = Ψ. By Lemma 3.4, we may assume that
𝜖3 = 1; namely, we take 𝐻 = 𝐺 and 𝐻0 to be the index two subgroup of G where 𝜖 = 1. We calculate
the possibilities for Φ𝜒, listed as a triple:

If 𝜖1 = 1 Φ𝜒 = (1, 𝜙𝜒0
0 , (ℎ

−1𝜙
𝜒0
0 ) (𝑢𝜒0)ℎ)

If 𝜖1 = −1 Φ𝜒 = (−1, 𝜙𝜒0
0 Ad(ℎ), ℎ−1 (ℎ−1𝜙

𝜒0
0 ) (𝑢𝜒0)).

(2)

Hence, if 𝜖1 = 1, then for Φ and Ψ to be conjugate, we would require that 𝜙0 and 𝜓0 are conjugate.
If 𝜖1 = −1, they would need to be conjugate as outer automorphisms.

We next observe that if 𝜖1 = 𝜖2 = 1 and 𝜙0 and 𝜓0 are conjugate in Aut(𝐹2), then there is a conjugator
𝜒 ∈ Out(𝐹3) so that the restriction of Φ𝜒 to 𝐹2 equals the restriction of Ψ to 𝐹2. This is clear from the
equation above.

We also want to say that same in the case when 𝜖1 = 𝜖2 = −1, and we argue as follows. Suppose
𝜙0, 𝜓0 are conjugate in Out(𝐹2) (more correctly, the outer automorphisms they represent are conjugate).
Then there is a 𝜒0 ∈ Aut(𝐹2) and ℎ ∈ 𝐹2 such that 𝜙0

𝜒0 = 𝜓0 Ad(ℎ−1). But then if we set 𝜒 = (1, 𝜒0, ℎ),
we get that

Φ𝜒 = (−1, 𝜙0
𝜒0 Ad(ℎ), ℎ−1 (ℎ−1𝜙

𝜒0
0 ) (𝑢𝜒0))

= (−1, 𝜓0, ℎ
−1 (ℎ−1𝜙

𝜒0
0 ) (𝑢𝜒0)).

Hence, if Φ,Ψ are to be conjugate, we would require 𝜖1 = 𝜖2 (otherwise, we know that they are not
conjugate). Moreover, by solving conjugacy in Aut(𝐹2) or Out(𝐹2), we may assume that 𝜙0 = 𝜓0 as
automorphisms. To summarise, we have reduced the problem to the situation where

◦ 𝜖1 = 𝜖2,
◦ 𝜙0 = 𝜓0 in Aut(𝐹2).

Case 1: 𝜖1 = 𝜖2 = 1.:
In this case, we must have that 𝜙𝜒0

0 = 𝜓0 = 𝜙0. Hence, 𝜒0 centralises 𝜙0. Let 𝐶 = 𝐶Aut(𝐹2) (𝜙0) be
the centraliser of 𝜙0 in Aut(𝐹2). Then 𝜒 lies in the subgroup, 𝐶 � 𝐹2 of G. By Lemma 3.4, it will be
enough to solve the problem where we look at conjugators that lie in the subgroup, 𝐶0 � 𝐹2, where 𝐶0
is the finite index subgroup of C given by Theorem 3.10. Hence, we may assume that 𝜒0 = 𝜙𝑘0 Ad(𝑥),
where 𝑘 ∈ Z and 𝑥 ∈ 𝐹𝑖𝑥(𝜙0).

But then we get that

Φ𝜒 = (1, 𝜙0, (ℎ
−1𝜙0) (𝑢𝜙

𝑘
0 Ad(𝑥))ℎ) = (1, 𝜙0, ((ℎ

−1𝑥−1)𝜙0) (𝑢𝜙
𝑘
0 )𝑥ℎ),

using the fact that 𝑥𝜙0 = 𝑥. Since Ψ = (1, 𝜙0, 𝑣), that means we are trying to decide whether there exist
𝑘 ∈ Z, ℎ ∈ 𝐹2, 𝑥 ∈ 𝐹𝑖𝑥(𝜙0) such that

(ℎ−1𝑥−1)𝜙0(𝑢𝜙
𝑘
0 )𝑥ℎ = 𝑣.

Putting ℎ′ = 𝑥ℎ, this is equivalent to deciding

(ℎ′−1)𝜙0(𝑢𝜙
𝑘
0 )ℎ

′ = 𝑣.

But by Lemma 3.8, this is equivalent to saying that 𝑢 ∼𝜙0 𝑣, which is decidable by Theorem 3.9.
Case 2: 𝜖1 = 𝜖2 = −1.:
As before, we have that 𝜙0 = 𝜓0. This time, by Equation 2, we get that 𝜒0 belongs to the subgroup

D given by Theorem 3.10. Hence, by Lemma 3.4, we may assume that 𝜒0 ∈ 𝐷0. Hence, 𝜒0 = 𝜙𝑘0 Ad(𝑥)
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for some 𝑥 ∈ 𝐹2. Therefore, using Equation 2 and simplifying,

Φ𝜒 = (−1, 𝜙0 Ad(𝑤), ℎ−1 (ℎ−1𝜙0 Ad(𝑤ℎ−1)) (𝑢𝜒0)),

where 𝑤 = (𝑥−1𝜙0)𝑥ℎ. However, since we have reduced to the case where 𝜙0 = 𝜓0, we get the extra
restriction that 𝑤 = 1 is equivalent to ℎ = 𝑥−1 (𝑥𝜙0). And hence for Φ and Ψ to be conjugate, we would
need to simply equate the third entry of the triple:

(ℎ−1𝜙0)ℎ
−1𝑥−1 (𝑢𝜙𝑘0 )𝑥 = 𝑣.

Putting ℎ = 𝑥−1 (𝑥𝜙0), this gives

(𝑥−1𝜙2
0) (𝑥𝜙0) (𝑥

−1𝜙0) (𝑢𝜙
𝑘
0 )𝑥 = (𝑥−1𝜙2

0) (𝑢𝜙
𝑘
0 )𝑥 = 𝑣.

Hence, this problem is equivalent by Lemma 3.8 to 𝑢 ∼𝜙2
0
𝑣 or 𝑢𝜙0 ∼𝜙2

0
𝑣, both of which are solvable

by Theorem 3.9. �

Remark 3.11. A natural question to ask is whether the strategy above can be generalized to higher rank
free groups. We note that ingredients used in the proof above are

◦ the conjugacy problem in Aut(𝐹2). The conjugacy problem in Aut(𝐹𝑛) appears to be harder than the
conjugacy problem in Out(𝐹𝑛).

◦ explicit computations of centralizers in Out(𝐹2). In our case, we were able to exploit the fact that
Out(𝐹2) is virtually free. It was shown in [BFH97] that centralizers of irreducible automorphisms
are virtually cyclic. As for more general automorphisms, the current state of the art for polynomially
growing automorphisms [Rod13, RW15, AM22a] amounts to establishing finiteness properties.

For these reasons, the argument above does not obviously generalize.

4. Polynomially growing automorphisms

Before turning our attention to the quadratic growth case in 𝐹3 (i.e., the largest polynomial growth
permitted there), let us record the combination of classical results on the conjugacy problem for low
degree polynomial growth outer automorphisms of 𝐹𝑛.

Theorem 4.1 [Krs89, KLV01]. The conjugacy problem in Out(𝐹𝑛) is decidable among outer automor-
phisms with growth of polynomial degree 0 or 1.

Recall also that the conjugacy problem among unipotent polynomially growing outer automorphisms
of 𝐹𝑛 has been solved by [FH19].

Quadratic polynomial growth in 𝐹3.

Every Φ ∈ Out(𝐹𝑛) of polynomial growth has a power Φ𝑛 that is unipotent (see [FH18, Coro. 3.14]).
In fact, one can take this power to be uniform for every n; the exponent (or order) of 𝐺𝐿𝑛 (Z3) suffices,
as one can define a UPG automorphism as one of polynomial growth which induces the trivial map in
Z3 homology (see [BFH05, Prop. 3.5]).

Definition 4.2. Two automorphisms 𝜙, 𝜓 ∈ Aut(𝐹𝑛) are said to be isogredientif they are conjugate by
an inner automorphism.

Recall that any outer automorphism of 𝐹𝑛 is a coset of Inn(𝐹𝑛) in Aut(𝐹𝑛). On each such outer
automorphism, the relation of isogredience is an equivalence relation.
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Theorem 4.3 (Bestvina-Handel Theorem, [BH92]). Let Φ ∈ Out(𝐹𝑛). Then,
∑

max{rank(Fix𝜙) − 1, 0} ≤ 𝑛 − 1,

where the sum is taken over representatives, 𝜙, of isogredience classes in Φ.

Theorem 4.4. Let Φ ∈ Out(𝐹𝑛) have quadratic growth. Then,

1 ≤
∑

max{rank(Fix𝜙) − 1, 0} ≤ 𝑛 − 2.

If 𝑛 = 3, this sum is exactly equal to 1 and exactly one isogredience class has a nonzero contribution to
this sum.

Proof. This follows from results in either [Lev09] or [Mar02]. A full discussion of this is also given in
[AM22b].

More specifically, as argued in [AM22b, Theorems 2.4.6 and 2.4.8], any outer automorphism, Φ of
𝐹𝑛, which satisfies the equality from 4.3, namely,

∑
max{rank(Fix𝜙) − 1, 0} = 𝑛 − 1,

must have linear growth. �

Lemma 4.5. Let Φ ∈ Out(𝐹2) be UPG. Then some automorphism in Φ has fixed subgroup of rank 2.

Proof. It is easy to show that there is a basis of 𝐹2, 〈𝑎, 𝑏〉 where (some automorphism of) Φ acts as:
𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏𝑎𝑘 for some integer k. Hence, the fixed subgroup is 〈𝑎, 𝑏𝑎𝑏−1〉 or 〈𝑎, 𝑏〉 when 𝑘 = 0. �

Theorem 4.6. Let Φ ∈ Out(𝐹3) be a UPG automorphism of quadratic growth. Then Φ admits a rank 2
invariant free factor, K which is algorithmically computable. Moreover, K is unique in the sense that if
𝐾1 is any other invariant rank 2 free factor, then 𝐾1 is conjugate to K.

Proof. By [BFH05], there is a basis, 𝑎, 𝑏, 𝑐 for Φ such that some 𝜙 ∈ Φ has the following representation.
In fact, by [FH18], there is an algorithm to produce the following basis:

𝜙
𝑎 ↦→ 𝑎
𝑏 ↦→ 𝑏𝑎𝑘

𝑐 ↦→ 𝑢𝑐𝑣,

where 𝑘 ∈ Z and 𝑢, 𝑣 ∈ 〈𝑎, 𝑏〉 and 𝜙 ∈ Φ.
Notice that 𝑘 = 0 implies that Φ has linear growth, and hence, we deduce that 𝑘 ≠ 0. In particular,

Fix𝜙 = 〈𝑎, 𝑏𝑎𝑏−1〉 (it cannot have higher rank due to Theorems 4.3 and 4.4). Hence, 〈𝑎, 𝑏〉 is the
smallest free factor containing Fix𝜙.

Thus, we have algorithmically produced a Φ-invariant rank 2 free factor, 〈𝑎, 𝑏〉, and all that remains
is to show is that it is unique.

If 𝐾1 were another Φ-invariant rank 2 free factor, then the restriction of Φ to 𝐾1 would again be UPG,
and Lemma 4.5 would imply that some 𝜓 ∈ Φ would have a fixed subgroup of rank 2, contained in 𝐾1.
But Theorem 4.4 then implies that 𝜙 and 𝜓 are isogredient and hence have conjugate fixed subgroups
implying that 〈𝑎, 𝑏〉 and 𝐾1 are also conjugate. �

Corollary 4.7. Let Φ ∈ Out(𝐹3) be an automorphism of quadratic growth. Then Φ admits a unique
invariant rank 2 free factor. Moreover, there is an algorithm to determine this free factor.

Proof. Some positive power, Φ𝑘 of Φ, is UPG. By Theorem 4.6, Φ𝑘 admits a unique invariant rank 2
free factor, K. But 𝐾Φ is also Φ𝑘 invariant, and hence, the uniqueness of K implies that K is conjugate
to 𝐾Φ.
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Finally, if 𝐾1 is any Φ-invariant rank 2 free factor, it must also be Φ𝑘 -invariant, and hence, by
Theorem 4.6 again, 𝐾1 is conjugate to K.

This free factor is produced algorithmically as in Theorem 4.6. �

Conjugacy problem in polynomial growth for Out 𝐹3.

We may conclude for this section.
Recall (Proposition 2.7) that given Φ and Ψ two outer automorphisms of 𝐹3, we may decide whether

they are of polynomial growth, and we may compute their degree.
Assume first that both are polynomial growth of degree 2. We may compute by 4.7 the unique

conjugacy classes [𝐾Φ], [𝐾Ψ] of invariant free factor of rank 2 of 𝐹3. After conjugating Ψ by a
(computable) automorphism that sends 𝐾Φ to 𝐾Ψ, we may assume that these two groups are equal. We
may then apply Theorem 3.1 in order to decide whether Φ and Ψ are conjugate in Out (𝐹3, 𝐾).

Since by Corollary 4.7, the rank 2 invariant free factor of Φ is unique, the two outer automorphisms
are conjugate in Out (𝐹3, 𝐾) if and only if they are conjugate in Out (𝐹3).

This, together with Theorem 4.1, solves the conjugacy problem in Out 𝐹3 for all polynomially growing
outer automorphisms.

5. Exponential growth: laminations

Recall (references in Section 2, Proposition 2.7) that one can decide whether an outer automorphism is
of exponential growth and whether it is irreducible. In that case, we recall the following.

Theorem 5.1 [Los96, Lus07, Kap14, FM22]. The conjugacy problem is decidable among irreducible
elements of Out(𝐹𝑛).

We will now focus on the reducible case.

Invariant free factor systems in 𝐹3

We will now work towards describing reducible exponentially growing automorphisms. Following
[BFH00], we have the following.

Proposition 5.2. Let Φ ∈ Out(𝐹3). Then any relative train track representative of Φ has at most one
exponential stratum.

Proof. Suppose that 𝑓 : Γ → Γ is a relative train track representative of Φ. Suppose that 𝐻𝑟 is an
exponential stratum and that 𝐺𝑟 is the corresponding f -invariant subgraph (the union of all the strata,
up to and including 𝐻𝑟 ).

Similarly, let 𝐺𝑟−1 be the f -invariant subgraph consisting of the union of the strata up to, but not
including, 𝐻𝑟 .

Let 𝐶𝑟 be a connected component of 𝐻𝑟 and let 𝐶𝑟−1 be a connected component of 𝐶𝑟 ∩ 𝐺𝑟−1
(which we allow to be empty). Since the transition matrix of 𝐻𝑟 is irreducible, some power of f must
leave both 𝐶𝑟 and 𝐶𝑟−1 invariant. However, since 𝐻𝑟 is an exponential stratum, the rank of 𝜋1 (𝐶𝑟 ) is
at least 2 more than the rank of 𝜋1 (𝐶𝑟−1). (For instance, take an edge of 𝐻𝑟 incident to 𝐶𝑟−1 and take
a power, k, of f such that 𝑓 𝑘 (𝑒) crosses e at least three times). This immediately gives the result: either
the rank of 𝜋1 (𝐶𝑟−1) is zero and the rank of 𝜋1 (𝐶𝑟 ) is at least two, in which case there can only be zero
or polynomial strata above 𝐻𝑟 , or the rank of 𝜋1 (𝐶𝑟−1) is one, and there can be no strata above 𝐻𝑟 . �

Corollary 5.3. LetΦ ∈ Out(𝐹3) have exponential growth. ThenΦ has exactly one attracting lamination.
This lamination is carried by a Φ-invariant conjugacy class of a free factor, K of 𝐹3.

The rank of K is either 2 or 3. If the rank of K is 2, then it is unique in the following sense: if 𝐾1 is
another free factor of rank 2 which is Φ-invariant (up to conjugacy), then 𝐾1 is conjugate to K.
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Proof. Some positive power of Φ has an improved relative train track representative by [BFH00,
Theorem 5.1.5].

By the proof of Lemma 3.1.13 of [BFH00], there is a one-to-one correspondence between exponential
strata of an eg-aperiodic relative train track map (such as an improved relative train track map) and the
attracting laminations of Φ.

However, by Proposition 5.2, our improved relative train track for Φ only admits one exponential
stratum, and therefore, Φ only has one attracting lamination which is therefore fixed by Φ (and not just
periodic for Φ).

As in [BFH00, Corollary 2.6.5 and Definition 3.2.3], there is a unique free factor whose conjugacy
class carries the lamination of Φ. Since the lamination is fixed by Φ, this free factor is Φ-invariant up
to conjugacy.

For the final part, we note that an exponential stratum cannot have a component which has rank 1 as
a graph (is homotopic to a circle), so K must have rank 2 or 3.

Furthermore, if K has rank 2, and if 𝐾1 is a Φ-invariant free factor (up to conjugacy) also of rank 2,
then we can form – via [BFH00, Theorem 5.1.5] – an improved relative train track representative for
some power of Φ, where 𝐾1 is the fundamental group of some invariant subgraph, 𝐺𝑟 . If the restriction
of the relative train track map to 𝐺𝑟 is polynomial, then the whole automorphism will have polynomial
growth; this is excluded by hypothesis. Hence, by [BFH00, Lemma 3.1.9], there is a lamination carried
by (the conjugacy class of)𝐾1. But there is only one lamination forΦ; hence, K and𝐾1 are conjugate. �

Conjugacy problem for exponential growth with rank 2 lamination

Consider Φ and Ψ two outer automorphisms of 𝐹3 that are of exponential growth, and whose attracting
lamination is carried by a free factor of rank 2, respectively 𝐾Φ and 𝐾Ψ.

By Proposition 2.9 (and the unicity of Corollary 5.3), the groups 𝐾Φ and 𝐾Ψ can be computed.
Since both 𝐾Φ and 𝐾Ψ are free factors of same rank, there exists (and one can compute) an automor-

phism 𝜒 of 𝐹3 sending 𝐾Ψ to 𝐾Φ, and after conjugating Ψ by the outer-class X of 𝜒, we may assume
that 𝐾Φ = 𝐾Ψ, and we denote it K.

Since by Corollary 5.3, this invariant free factor is unique, the two automorphisms Φ and Ψ are
conjugated in Out(𝐹3) if and only if they are conjugated in Out(𝐹3, 𝐾). This can be decided by
Theorem 3.1.

6. Exponential growth: mapping tori

In this section, we take the point of view of analysing the semi-direct products of 𝐹3 that are associated
to automorphisms (see also [Sel95, Dah16, Dah17, DT21]). Although this point of view allows to treat
the conjugacy problem for all the exponentially growing outer automorphisms of 𝐹3, we restrict our
presentation to the remaining case in Flowchart 1 – namely, the case of automorphisms whose attracting
lamination carrier is the entire group 𝐹3.

Given 𝜙 ∈ Aut(𝐹𝑛), the associated mapping torus is 𝐹𝑛 �𝜙 〈𝑡〉. The normal subgroup 𝐹𝑛 < 𝐹𝑛 �𝜙 〈𝑡〉
is called a fiber. If 𝜙 = 𝜓Ad(𝑔), then we have 𝐹𝑛 �𝜓 〈𝑡〉 = 𝐹𝑛 �𝜙 〈𝑡𝑔〉; in particular, Φ = [𝜙] ∈ Out(𝐹𝑛)
has a well-defined mapping torus. The following proposition describes how it relates to conjugacy in
Out(𝐹𝑛). We refer the reader to [DT21] for precise definititions.

Proposition 6.1 (Standard mapping torus criterion for conjugacy). Let G be a group, Φ,Ψ ∈ Out(𝐺)
and 𝜙 ∈ Φ, 𝜓 ∈ Ψ. Then Φ is conjugate to Ψ in Out(𝐺) if and only if there is an isomorphism

𝑓 : 𝐺 �𝜙 〈𝑡〉 → 𝐺 �𝜓 〈𝑡〉

such that 𝑓 (𝐺) = 𝐺 and 𝑓 (𝑡) = 𝑡𝑤 for some 𝑤 ∈ 𝐺.
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The following theorem relates dynamical characteristics of outer automorphisms to the structure of
their mapping tori.

Theorem 6.2 (Relative hyperbolicity in exponential growth). For any Φ ∈ Out(𝐹𝑛), its mapping
torus admits a properly relatively hyperbolic (possibly word-hyperbolic) metric if, and only if, Φ has
exponential growth. Peripheral subgroups of the relatively hyperbolic structure can be taken to be the
mapping tori of Φ restricted to maximal polynomially growing subgroups.

Proof. The converse implication was obtained in [Gho23, Theorem 3.1] and [DL20, Theorem 4]. The
direct implication is found in [Mac02], [Dah17, Prop 1.3] see also [Hag19], [Bri00, Theorem 1.2]. �

Using this strategy, in [DT21], the conjugacy problem in Out(𝐹𝑛) is completely reduced to specific
algorithmic problems in the peripheral subgroups. These problems are the algorithmic tractability for
their subgroups (effective coherence, conjugacy problem, generation problem), the Minkowski property
for certain subgroups, the mixed Whitehead problem, and the conjugacy problem for the induced
automorphisms on maximal polynomially growing subgroups. In this reduction, the exponential growth
part of the outer automorphisms is completely evacuated from the discussion (it is treated during the
reduction).

In the case of exponentially growing automorphisms of 𝐹3, the polynomially growing subgroups
are sufficiently small that we can complete a solution of the conjugacy problem in their case. We will
explain this in the remaining case of Flowchart 1, in which the polynomially growing subgroups are
even simpler.

This will require two steps. The first step is giving the solution to the criterion of Proposition 6.1
in the case the mapping tori of the given autmorphisms are so-called almost toral. The second step
is proving that if the mapping torus of an automorphism is not almost toral, then there is a rank 2
free factor carrying the attracting lamination. This allows to conclude since this later case was already
treated. Treating it alternatively through the criterion of Proposition 6.1 is still possible and involves
cases covered by the larger study [DT23], but it is not done here.

The almost toral case

We say Φ ∈ Out(𝐹𝑛) or its mapping torus 𝐹𝑛�𝜙 Z, 𝜙 ∈ Φ is almost toral relatively hyperbolic if 𝐹𝑛�𝜙 Z
is hyperbolic relative to a collection of subgroups isomorphic to Z×Z or to Z�Z, the fundamental group
of a Klein bottle. By extension, in that case, we say that the automorphism is almost toral relatively
hyperbolic.

In the relatively hyperbolic structure of Theorem 6.2, the peripheral subgroups are semi-direct
products of free groups; hence, the groups Z × Z and Z � Z are the only possible virtually abelian
peripheral subgroups. Actually, the following is immediate from Theorem 6.2 and Nielsen-Schreier
theorem.

Proposition 6.3. The mapping torus of an outer automorphism of 𝐹𝑛 is almost toral if and only if its
maximal polynomially growing subgroups have rank one.

It is furthermore decidable whether the mapping torus of a given automorphism of 𝐹𝑛 is almost
toral, by [DG13] (this is decidable in the following sense: there is an algorithm that will terminate if the
automorphism is exponentially growing, and provide presentations for each conjugacy representative of
peripheral subgroup and indicate whether or not they are abelian or isomorphic to Z � Z).

Theorem 6.4. The conjugacy problem in Out(𝐹𝑛) is decidable among the almost toral relatively hyper-
bolic automorphisms.

Proof. We are given 𝜙, 𝜓 two automorphisms of 𝐹𝑛, such that 𝐹𝑛 �𝜙 〈𝑡〉 and 𝐹𝑛 �𝜙 〈𝑡〉 are relatively
hyperbolic groups with peripheral subgroups either Z2 or 𝐾 = Z � Z.

By [DG13], we may compute the peripheral subgroups of both groups. More specifically, we may
get a list of conjugacy representatives of these subgroups given by generating pairs.

https://doi.org/10.1017/fms.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.3


Forum of Mathematics, Sigma 17

If the numbers of conjugacy classes of peripheral subgroups in 𝐹𝑛 �𝜙 〈𝑡〉 and in 𝐹𝑛 �𝜙 〈𝑡〉 are
different, then the two groups cannot be isomorphic, and 𝜙 and 𝜓 cannot be conjugate in Out(𝐹𝑛). We
thus assume these numbers are equal.

If there are no peripheral subgroups in 𝐹𝑛 �𝜙 〈𝑡〉 and in 𝐹𝑛 �𝜙 〈𝑡〉, these groups are hyperbolic, and
we may use [Dah16] to determine whether 𝜙 and 𝜓 are conjugate in Out 𝐹𝑛. We now assume that there
are peripheral subgroups in both mapping tori.

Using [DT21], in order to determine whether 𝜙 and 𝜓 are conjugate in Out(𝐹𝑛), it suffices to
establish that these possible peripheral subgroups (i.e., Z2 and 𝐾 = Z � Z) and their subgroups form
an algorithmically tractable class of groups, with the (effective) Minkowski property, and with solvable
fiber-and-orientation preserving mixed Whitehead problem.

First, notice that all the subgroups of Z2 and K are themselves isomorphic to either Z2, 𝐾,Z, or {1},
so we only discuss the properties for Z2 and K. Algorithmic tractability is actually immediate (despite
its definition).

We now address the Minkowski property for Z2 and K. Recall that it means finding a characteristic
finite quotient of them such that every finite order outer automorphism of Z2 or K induces a non-inner
automorphism in it.

For Z2, the quotient Z2 → (Z/3)2 is sufficient because (and this is the classic observation of
Minkowski giving the name of the property) 𝐺𝐿2 (Z) → 𝐺𝐿2 (Z/3) has a torsion-free kernel.

For K, let us write it as 𝐾 = 〈𝑎〉 � 〈𝑡〉. Recall that the derived subgroup is 〈𝑎2〉, and its abelianisation
is 𝐾/〈𝑎2〉 � (Z/2) × Z. It follows that 𝐾 → (Z/2) × (Z/3) (sending a to (1, 0) and t to (0, 1)) is a
characteristic quotient. We will show that it is a suitable quotient for the Minkowski property.

Any automorphisms of K preserve 〈𝑡2〉 (the center) and 〈𝑎〉 (the preimage of the torsion of the
abelianisation). Since the set of square roots of 𝑡2 is {𝑎𝑘 𝑡, 𝑘 ∈ Z}, the automorphisms of K are of the
form (𝑎 ↦→ 𝑎 𝜖1 , 𝑡 ↦→ 𝑎𝑘 𝑡 𝜖2) for 𝜖1; 𝜖2 ∈ {−1, 1} and 𝑘 ∈ Z. Since the automorphisms (𝑎 ↦→ 𝑎−1, 𝑡 ↦→ 𝑡)
and (𝑎 ↦→ 𝑎, 𝑡 ↦→ 𝑎2𝑡) are both inner, it follows that

Out𝐾 � (Z/2) × (Z/2),

with representatives being (𝑎 ↦→ 𝑎, 𝑡 ↦→ 𝑎𝑢𝑡 𝜖 ), for 𝑢 ∈ {0, 1} and 𝜖 ∈ {−1, 1}. This shows that the
proposed quotient is suitable for establishing the Minkowski property of K.

It remains to solve the fiber-and-orientation preserving mixed Whitehead problem for Z2 = 〈𝑎〉 × 〈𝑡〉,
and for 𝐾 = 〈𝑎〉 � 〈𝑡〉 (the fiber being 〈𝑎〉). It is the problem of determining whether two tuples of
conjugacy classes of tuples are in the same orbit for the group of automorphisms preserving 〈𝑎〉 and 𝑡〈𝑎〉.

In the case ofZ2 = 〈𝑎〉×〈𝑡〉, this subgroup of automorphisms is {(𝑎 ↦→ 𝑎𝜖 , 𝑡 ↦→ 𝑎𝑘 𝑡), 𝜖 ∈ {−1, 1}, 𝑘 ∈
Z}. The tuples of conjugacy classes of tuples are just tuples of elements in an abelianisation group. This
immediately translates as a trivial divisibility problem for integers.

In the final case of 𝐾 = 〈𝑎〉 � 〈𝑡〉, the subgroup of fiber and orientation preserving automorphisms
consists of only two outer classes (since Out𝐾 � (Z/2) × (Z/2)). The orbit problem is then easily
solved by applying the two automorphisms and using a solution to the conjugacy problem. �

The polynomially growing subgroups in 𝐹3

By Levitt’s theorem [Lev09, Theorem 4.1], given an outer automorphism of 𝐹𝑛, its maximal polyno-
mially growing subgroups have rank ≤ 𝑛, they have rank < 𝑛 if the automorphism has an exponentially
growing conjugacy class, and in the later case, if one such group has rank 𝑛 − 1, it is unique up to
conjugacy.

In the case of 𝑛 = 3, the possible polynomially growing subgroups for an exponentially growing
outer automorphism of 𝐹3 are then either trivial, or cyclic, or of rank 2. Given the previous discussion,
we consider the case of a single conjugacy class of polynomially growing subgroup of rank 2.

It turns out, as we will show, that in this case, the polynomially growing subgroup must be placed
very specifically in the group 𝐹3, revealing a lamination carrier of rank 2. The next proposition shows
in particular that all such automorphisms must be conjugated to automorphisms given in Example 1.4.
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Although this particular detail is not used in the solution to the conjugacy problem, it gives insights into
how to represent the conjugacy classes of outer automorphisms that fall into this case.

Recall that if D is a Φ-invariant subgroup, we can find 𝜙 ∈ Φ such that 𝜙(𝐷) = 𝐷.

Proposition 6.5. If 𝜙 ∈ Aut(𝐹3) is of exponential growth and has an invariant subgroup D of rank at
least 2 on which it induces a polynomially growing automorphism, then it preserves the conjugacy class
of a rank 2 free factor Q on which it induces an exponentially growing outer automorphism.

Moreover, the conjugacy class of such a free factor is unique, and there exists a conjugate 𝐷 ′ of D,
containing a subgroup 𝐶 ′ of 𝑄 ∩ 𝐷 ′, such that 𝐶 ′ is generated by the commutator of a basis in Q, and
𝐹3 = 𝑄 ∗𝐶′ 𝐷 ′.

Proof. We assume without loss of generality that D is a maximal 𝜙-invariant subgroup on which 𝜙|𝐷 is
polynomially growing. By maximality, we cannot have 𝐷 < 𝐻 < 𝐹3 with H of rank 2 and 𝜙-invariant.
Indeed, if this were the case, either 𝜙|𝐻 is either polynomially growing, which contradicts maximality, or
exponentially growing with a polynomially growing invariant subgroup of rank 2, which is impossible
in Out(𝐹2). Furthermore, D cannot be a free factor of 𝐹3, as the expression (1) from Lemma 3.2 would
imply that 𝜙 is also polynomially growing. It follows that (𝐹3, 𝐷) is relatively one-ended.

By [GJLL98, Theorem II.2], 𝐹3 acts faithfully on an R-tree 𝑇∞ with trivial arc stabilizers, and there
is a homotethy 𝐻 : 𝑇∞ → 𝑇∞ such that for all 𝑥 ∈ 𝑇∞ and 𝑓 ∈ 𝐹3, 𝑓 · 𝐻 (𝑥) = 𝐻 (( 𝑓 𝜙)𝑥) (here, a
homotethy is a map satisfying 𝑑 (𝐻 (𝑥), 𝐻 (𝑦)) = 𝜆𝑑 (𝑥, 𝑦) for some fixed stretch factor 𝜆 ≥ 1). Note that
from [GJLL98, §B - §E], the action of 𝐹3 on 𝑇∞ is obtained as a limit of rescaled actions on a fixed
free cocompact action of 𝐹3 on a simplicial metric tree 𝜏. Exponential growth of 𝜙 implies that D fixes
a point in 𝑇∞.

Trivial arc stabilizers and the nontrivial subgroup D (which cannot be in a proper free factor) that
fixes a point (so the action is not free) imply that we may apply [Hor14, Lemma 4.6] to the action of 𝐹3
on 𝑇∞ with the empty free factor system. This lemma gives three possibilities. Two of these imply that
point stabilizers must all either be cyclic or contained in proper free factors of 𝐹3, which is impossible
because of the properties of D. The remaining possibility is that the action of 𝐹3 on 𝑇∞ has a so-called
dynamical proper free factor. This implies that 𝑇∞ is not a simplicial R-tree, since by definition, a
dynamical proper free factor must act on its minimal invariant tree with dense orbits.

We now apply [Gui08, Theorem 5.1]. The triviality of arc stabilizers, one-endeness of 𝐹3 relative
to D, and the faithfullness of the action of 𝐹3 on 𝑇∞ imply that the action of 𝐹3 on 𝑇∞ decomposes
into a graph of actions where each vertex action is either simpicial, Seifert type or axial. Free groups
cannot admit faithful axial actions, and since 𝑇∞ is not simplicial, the graph of actions must contain
a Seifert type vertex. Orbifolds with free fundamental groups are surfaces with boundary. Therefore,
𝐹3 decomposes as a graph of groups Y, and one of the vertex groups 𝑌𝑞 must be isomorphic to the
fundamental group of a surface Σ with boundary, equipped with a measured foliation F with dense
leaves, for which the action of 𝑌𝑞 on the minimal invariant subtree (𝑇∞)𝑌𝑞 is equivariantly isomorphic
to the action of 𝜋1 (Σ) on the R-tree dual to lifted measured foliation on the universal cover (Σ̃, F̃). The
subgroup D, elliptic in 𝑇∞, must also lie in some vertex group 𝑌𝐷 . Since D is a free group of rank 2 that
fixes a point, it cannot be conjugate into the subgroup 𝑌𝑞 , so 𝑌𝑞 ≠ 𝑌𝐷 .

By the definition of a graph of actions (see [Gui08, §1.3]), the edge group incident to 𝑌𝑞 must be
a point stabilizer, which in turn must either be trivial or conjugate to the 𝜋1-image of 𝜕Σ. The former
case gives a free decomposition of 𝐹3 relative to D which contradicts earlier considerations. The latter
case implies that all the edges adjacent to q have cyclic edge groups. It also follows that if we collapse
all edges of Y that have noncyclic edge group to get a new graph of groups 𝑌 , 𝑌𝑞 is still a vertex group
of this collapsed splitting and 𝑌 has another vertex group containing D. It follows that 𝐹3 admits a
nontrivial cyclic splitting relative to D containing 𝑌𝑞 as a quadratically hanging (QH) subgroup – that
is to say, it is isomorphic to 𝜋1 (Σ), where Σ is a compact surface with boundary and the (conjugacy
classes) of the incident edge groups coincide with the 𝜋1-image of 𝜕Σ.

Because 𝐹3 is one ended relative to D, by [GL17, Theorem 9.5], 𝐹3 admits a canonical cyclic JSJ
decomposition J relative to D. By our description of 𝑌 above, we know that J has at least two vertex
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groups and that one of them is a maximal QH subgroup. Arc stabilizers of the Bass-Serre tree dual to J
are cyclic, and there are at least two vertex orbits so we can apply – for example, [GL95] – to conclude
that J has exactly two noncyclic vertex groups and that these vertex groups have rank exactly 2. One of
these vertex groups contains (a conjugate of)𝑌𝑞 and is a maximal QH subgroup. The other vertex group
contains D. The automorphism invariance of JSJ decompositions, [GL17, Corollary 7.4], implies that
𝜙 must preserve J (i.e., 𝜙 maps vertex groups and edge groups to conjugates of vertex and edge groups
(respectively)). Since Q is the unique flexible subgroup of J, we must have that 𝜙(𝑄) is mapped to a
conjugate of 𝑄.

Now the vertex group 𝑌𝑞 from the graph of actions Y sits inside the QH subgroup Q as the 𝜋1-image
of some subsurface since both groups have the same rank, 𝑌𝑞 = 𝑄 (up to conjugacy). By [CV91], the
only Seifert-type action of 𝐹2 is dual to an irrational foliation on a once punctured torus. It follows
that the QH strucutre on Q is that of an orientable surface of genus 1 with one boundary component.
Therefore, there is exactly one edge group incident to Q.

Let 𝐽 be the graph of groups obtained by contracting all edges except the unique edge adjacent to
the unique QH vertex group Q. Then 𝐽 is the amalgamated product 𝐹3 = 𝐷 ′ ∗𝐶 𝑄. 𝐷 ′ must contain a
conjugate of D, and by construction, this splitting is 𝜙-invariant, so 𝐷 ′ = 𝐷. Since C is conjugate to the
𝜋1-image of 𝜕Σ in 𝜋1 (Σ) = 𝑄, we have that Q is one-ended relative to C. Since 𝐹3 is many-ended, by
[She55, Swa86, Tou15], D is forced to admit a free decomposition𝐷 = 〈𝑑〉∗〈𝑐〉 with𝐶 ≤ 〈𝑐〉. This gives

𝐹3 = 〈𝑑〉 ∗ (〈𝑐〉︸������︷︷������︸
𝐷

∗𝐶𝑄).

Since Q must be the fundamental group of a torus Σ with a boundary component, we have that C, the
𝜋1-image of 𝜕Σ, must be a commutator and therefore cannot be a proper power; thus, 𝐶 = 〈𝑐〉, so Q is
a free factor of 𝐹3, as required. Its uniqueness follows from the canonicity of the JSJ decomposition.

By [GJLL98, Theorem II.1], if the stretch factor of the homotethy H is 𝜆 = 1, then 𝑇∞ is simplicial.
Since that Q acts on (𝑇∞)𝑄 with dense orbits, we have 𝜆 > 1. Since up to composition with an inner
automorphism we have 𝜙(𝑄) = 𝑄, we have that 𝜙 induces an exponentially growing automorphism
on 𝑄. �

In particular, we get the following.

Corollary 6.6. Let Φ ∈ Out(𝐹3) be exponentially growing, not fully irreducible, and such that no power
has an invariant proper free factor of rank 2. Then the mapping torus 𝐹3 �𝜙 Z is almost toral relatively
hyperbolic.

This concludes all cases of Flowchart 1, and thus proves Theorem 1.1.
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