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I . INTRODUCTION AND SUMMARY

The concept of utility is twofold. One may think of utility:

1) as a tool to describe a "fair game"
2) as a quantity that ought to be maximized.

The first line of thought was initiated by Daniel Bernoulli in con-
nection with the St. Petersburg Paradox. In recent decades, ac-
tuaries, economists, operations researchers and statisticians (this
order is alphabetical) have been concerned mostly with optimization
problems, which belong to the second category. Mc>st of the actuarial
models can be found in a paper by Borch [4] as well as in the texts
by Beard, Pesonen and Pentikainen [3], Buhlmann [6], Seal [15],
and Wolff [17].

We shall adopt the first variant and stipulate the existence of a
utility function such that the surplus process of an insurance
company is a fair game in terms of utility. This condition is naturally
satisfied under the following procedure: a) a utility function is
selected, possibly resulting from a compromise between an insurance
company and supervising authorities, b) whenever the company
makes a decision that affects the surplus, it should not affect the
expected utility of the surplus.

Mathematically, this simply means that the utility of the surplus
is a martingale. Therefore martingale theory (that was initiated by
Doob) is the natural framework in which we shall study the model.
We shall utilize one of the most powerful tools provided by this
theory, the Martingale Convergence Theorem.

Section. 2 is devoted to the relationship between the probability
of ultimate ruin and the utility function that underlies the surplus
process. Theorems 1 and 2 are in the spirit of and extend results by
DeFinetti, see [7] p. 58-68 and Dubourdieu, see [8] p. 163-174 and
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p. 258-260. These authors have used martingale techniques without
using martingale language. Theorems 1 and 2 show us that (under
mild restrictions for the surplus process) the probability of ruin is
less than one if and only if the underlying utility function is bounded
from above. Apart from the fair game hypothesis, no restrictions
(such as stationarity or Markov property) are made about the
surplus process.

In section 3 we illustrate the general theory in three special
models. For example, Theorems 1 and 2 enable us to show that
Ottaviani's conjecture is true. The ambitious reader should look at
the end of subsection 3.1, where he will find an unsolved problem.

2. THE GENERAL THEORY

While the ideas do not depend on the model chosen (discrete or
continuous time), the continuous time model involves considerably
more technicalities. In order to prevent the latter from obscuring
the ideas, we present the general theory in the discrete time model.

2.1. Definitions and interpretations

What follows is based on a fixed probability space, i.e. a triple
(Q, A, P). Here D. denotes the sample space, A is the a-algebra of
all events, and P is the probability measure defined on it. Further-
more, we are given a sequence Ai, A2, A3, . . . of a-subalgebras of
A satisfying

Ai c A% c A3 c .. . (1)

Intuitively, An is the information available at time n, or more
precisely, the set of all events whose occurrence (or non-noccurrence)
is known at time n. We start at time zero, and therefore assume
that Ao consists only of Q. and its complement (the impossible
event). We are interested in a sequence of random variables
Xi, Xz, X3 • . . such that Xn = Xn(oi), u> e Q, is measurable with
respect to An. We interpret Xn as the surplus of an insurance
company, measured in index adjusted monetary units. Let Xo = x
be the initial surplus. The distribution of the Xn's depends on many
factors, such as claims, premiums, dividends, investment return,
inflation, taxes, expenses. Therefore, under realistic assumptions
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An will be much larger than the a-algebra generated by (Xi, Xi,
.. ., Xn): Even if the actuary is primarily interested in the surplus
of his company at various times, he cannot afford to ignore the
information that can be obtained from the outside world.

The time of ruin T is defined as

T = Minimum {n | Xn < 0} (2)

with the understanding that T = 00 if Xn > o for all n. Thus
[7" < 00] is the event that ruin will ultimately occur. Let

W(x) = P[T < 00] (3)

denote its probability. Here the argument x is just a reminder that
this is our initial surplus; it will not be varied in the following.

If we stop the surplus process {Xn} at time T, we obtain a new
process {Xn} where

Xn= ) XT if T<n (4)

Of course Xn is also measurable with respect to An.

Finally, we shall use the following definition: The process {Xn}
is said to be asymptotically fluctuating, if the probability that
T = 00 and {Xn} converges to a finite limit is zero. In most ap-
plications it is easy to check the validity of this property.

2.2. The fair game hypothesis

Mathematically this crucial assumption is as follows: There
exists a strictly increasing, continuous function u(s), — 00 < s
< 00, such that {u(Xn)} is a martingale with respect to {An}. This
means that

E[u(Xn + 1) 1 An] = u(Xn) a.s. (5)

or equivalently, that

E[u(Xn + k) \An} = u(XJ a.s. (6)

for n = 0, 1, 2, . . . and k = 1, 2 . . .

Intuitively, u(s) is the insurance company's utility for a surplus of
s. The interpretation of conditions (5) and (6) is: At any time, and
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under all circumstances, the company plays a fair game, not in
terms of monetary units but in terms of utility. Thus, for given
utility function, the fair game assumption sets a boundary con-
dition to the company's decisions.

Remarks, i) The fair game hypothesis is the dynamic extension
of the principle of zero utility, see p. 86 in [6]. In a special case it has
been introduced by Ferra, see p. 63-67 in [10].

2) Since the surplus is measured in indexed monetary units, it
is not too unreasonable to assume time independence of the utility
function.

3) It is customary to assume that u(s) is risk averse, i.e. concave
from below. However, the general theory does not depend on this
assumption.

4) Sometimes it is easier to verify that {Xn} is a martingale with
respect to {An}. This condition implies that {Xn} is a martingale,
because stopping does not affect the martingale property.

2.3. The ruin probability in the case of bounded utility

The monotonicity of u(s) implies that u(ao) = lim u(s), s —> 00,
is well defined (possibly infinite). In this subsection we study the
case of bounded (from above) utility, #(00) < 00. Let us introduce
the function v(y), —00 < y < 00, that originates from u(y) by
the following linear transformation:

w(oo) — u(y)
*(y) = ^cy=^ j (7)

Thus v(y) is a decreasing function with v(o) = 1 and vanishing
at infinity. The importance of this function becomes evident in the
following Theorem.

Theorem 1. If the fair game hypothesis is valid, then

v(x)
< E[v{XT) I T < 00]

with equality holding if and only if the process {Xn} is asymp-
totically fluctuating.

Proof. A linear transformation of a martingale is again a mar-
tingale. Thus {v(Xn)} is a positive martingale with respect to {An}.
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Therefore, the Martingale Convergence Theorem (see for example
[2], p. 275, [5] p. 63, or [12] p. 89) is applicable. It tells us that there
is a random variable, say V, such that

v(Xn) _> V for n -+ 00, a.s. (8)

On the set [to | T(o) < 00], i.e. in the event that ruin occurs, this
convergence is of course trivial: there V coincides with V(XT)-

We can decompose V into a sum,

V = iF + 2V (9)

where the auxiliary random variables tV are defined by the fol-
lowing table.

2V =

if T < 00

if r = 00

Similarly, we can write

v(Xn) = tVn + 2Vn (10)

where the auxiliary random variables *Fre are given by the table

xVn =

if T <n

if T >n

Statement (8) implies that for i = i, 2

iVn-+iV for «-->oo, a.s. (11)

Moreover, convergence of the expected values takes place:

E[iVn] -> E[iV] for n —>- 00 (12)

For 1 =.1 this follows from the Monotone Convergence Theorem
(the sequence {iFn} is increasing) and for i = 2 it is a consequence
of the Dominated Convergence Theorem (observe that o < iVn
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From the martingale property, and from formulas (10) and (12)
we get

v(x) = E[v(Xn)] = £[iFn] + E[2Vn]
^E[iV] + E[2V] for n-^oo (13)

Thus

v(x) = E[iV] + E[2V] (14)

Since

£[iF] = E[v(XT) I T < 00] Y(*) (15)

we get the inequality of Theorem 1 by omitting the last term in
formula (14). Furthermore, equality holds iff E[2V] = 0, i.e. iff
tVn —>• o for n —y 00. Since we know that {2Fm} converges with
probability one, the last condition is equivalent to the condition
that {Xn} is asymptotically fluctuating. q.e.d

Remark. Since v(y) > 1 for y < o, we get as a corollary from
Theorem 1 that VF(̂ ) < v(x). This inequality is due to Dubourdieu
(see [8], Theorem F' on p. 262).

2.4. Bounded versus unbounded utility functions

We just saw that w(oo) < 00 implies that ^¥(x) < 1 (if x >o) .
In many cases the converse is also true:

Theorem 2. Suppose that a) {Xn^ } is asymptotically fluctuat-
ing, and b) that supremum E[u(Xn) —] < 00.
Then w(oo) = 00 implies that ^(x) = 1.

Proof. Condition b) assures us that the Martingale Convergence
Theorem is applicable. Thus, with probability one, {u(Xn)} con-
verges as n -> 00. If T = 00, convergence of {u(Xn)} implies con-
vergence of {Xn}, because w(oo) = 00. But condition a) makes this
impossible, therefore P[T = 00] = o. q.e.d

Remark. The above result certainly speaks for bounded (fron
above) utility functions. However the argument loses some of it;
weight, because in many cases where ruin is certain, the expectec
time of its occurrence is infinite!
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2.5. The surplus process as a favorable game

As far as inequalities are concerned, the results of subsection 2.3
carry through to the more general situation where the surplus
process is a favorable game, at any time and under all circumstances,
in terms of utility. Mathematically, this means that {u(Xn)} is a
submartingale, or equivalently, that {v(Xn)} is a super-martingale
with respect to {An}. The latter condition means that

E[v(Xn+lc) \A»]< v(Xn) a.s. (16)

for n = o, 1, 2 . . . and & = 1, 2 . . . . Actually, all that is needed is
that these inequalities hold for n = o. From this we get, starting
with the right side,

v(x) > E[v(Xk)] (17)

By the Monotone Convergence Theorem the last term converges
to E[iV] for n -> 00. Therefore,

v{x) > E[iV] = E[v{XT) I T < 00] W(x) (18)

which is the inequality contained in Theorem 1.

Remark. The assumption that the surplus process is a favorable
game (utilitywise) makes a lot of sense from the insurance company's
point of view. However the consumer, perhaps represented by an
insurance commissioner, is likely to insist that the favorable game
be extreme, i.e. fair.

3. ILLUSTRATIONS AND APPLICATIONS

The general theory was developed for an arbitrary surplus process
satisfying the fair game hypothesis. In view of this, the following
examples may appear rather restrictive.

3.1. The classical claims—premium model

Ignoring factors such as interest, inflation and expenses, we set

Xn = x + Pl — S i + . . . +Pn — Sn (19)

Here Si, S2, . . . are independent and identically distributed
random variables (the claims in subsequent periods). We wish to

https://doi.org/10.1017/S0515036100011247 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011247


314 THE SURPLUS PROCESS

determine the premiums Pi, P2, . . . such that the fair game
hypothesis holds. Having chosen an appropriate utility function,
Pn is obtained as the solution of the equation

E[u{X»-i + Pn — Sn)] = u(Xn^) (20)

Thus Pn = Pn(Xn-i) is a function of Xn-\\ observe that this
quantity is known at the time when the premium Pn is due.

In the special case of an exponential utility function

u(s) = i/R(i — e-**)

v(s) = e~Rs, R > o (21)

the premiums are independent of the surplus

P» = i/R In £[«*&•] (22)

Since the surplus is asymptotically fluctuating, we get from
Theorem 1 that

e-Rx

T « = E[e-^T\T <oo]

which appears as formula (12.14) m [3]> P- I43- The parameter R is
sometimes called the adjustment coefficient.

In this model we can vary the initial surplus, which we did not
do in the general model. The famous asymptotic result of Lundberg-
Cramer refers to the special case of exponential utility and is: There
is a constant C such that

Y(x) eR* -+C for x -> 00 (24)

The question remains whether a more general statement of the
following kind is true: Given a bounded utility function, and certain
regularity conditions, there is a constant D such that

Y(x)
D for x -> 00 (25)7

v(x)

Note that this is equivalent to convergence of the denominator
in Theorem 1. The author has not found the mathematical tools yet
to prove this conjecture (which is believed to be true under mild
regularity conditions for the distribution of the claims).
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3.2. The diffusion model •

In this and the following subsections the time parameter will be
continuous, t > o. Without many scruples we will adopt the results
of the general discrete time model to these two continuous time
models.

We assume that the surplus process {Xt\ is a diffusion process
(see [9] section 10.4, or [5] section 16.2) with

infinitesimal drift y.(y)
infinitesimal variance G2(y) (26)

depending on location (read surplus). It is assumed that they are
continuous functions of y and that o~(y) > C > 0. The last con-
dition excludes complications and guarantees us that the surplus
process is asymptotically fluctuating.

Let us now look at the martingale condition. If u(s) is a twice
differentiate function, then {u(Xt)} is also a diffusion process,
namely with infinitesimal drift

u'(s) (x(s) + \u"{s) c*(s) (27)

and infinitesimal variance
M'2(S)CT2(S) (28)

(see [5] p. 386 for example). But a diffusion process is a martingale
iff its drift vanishes. Therefore the fair game condition becomes the
following differential equation:

M'(S)[X(S) + i>u"{s)o*{s) = 0 (29)

Thus the drift is proportional to the product of variance and risk
aversion. The initial conditions can be chosen arbitrarily. If we set
u(o) = o, u'(o) = 1, and solve the differential equation, we get

u{y) = J e dz (30)
0

which is of primary interest for y > o. Since the samplepaths are
continuous, the surplus at the time of ruin is necessarily zero. Thus
if w(oo) < 00, the denominator in Theorem 1 is one, and we obtain

u(co) — u(x)
<l)(x) = vlx) = : : , X > 0 (31)
Y W K ' w(oo) ' — vo '

If on the other hand u(oo) = 00, Theorem 2 shows that ty(x) = 1.
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Example I. If (i(y) = \x > o, a2(y) = CT2, formula (30) shows
that the utility function is exponential, see formulas (21), with

* = i (32)

Thisleadsto Y(#) = e-'Rz, A; > o .

Example 2. If [x(y) = jx + Sy (S > 0), cr2(y) = a2, we get from
formulas (30) and (31) that

1 — <&{ax + b)

^ = x-Oft) ' ^ ° (33)

where

( 3 4 )

and <!>(•) denotes the standard normal distribution. Note that 8 can
be interpreted as a force of interest.

Remarks, i) Probabilists call u(y) the scale function, and the
process {u(Xi)} is said to be on its natural scale.

2) If w(oo) < 00, there is a possibility that u(Xt) = u(oo) for a
finite t with positive probability (which means that the surplus
drifts to infinity in a finite time span). From proposition 16.43 in
[5] w e gather that this is the case, iff

u(<x>) — u(s)

This condition is not satisfied in the examples above. In the first
example this is easily verified. In the second it requires some
calculations that are left to the reader.

3.3. The Compound Poisson model

In this context it is natural to assume a differentiable utility
function. The surplus changes in time for two reasons: a) because
of the claims to be paid and b) because of the premiums received.
Suppose that the claim number process is Poisson (with parameter
a), and that the individual claim amounts are independent and
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identically distributed random variables with distribution F(y),
— 00 < y < 00. The premiums are received continuously, say at
a rate c(s) if the surplus equals s. The fair game condition becomes

c(s) u'(s) = «.{u{s) -Su(s- y) dF(y)} (36)

This is best seen by interpretation: The left side is the gain of
utility per unit time due to the premiums received (assuming a
surplus of s). And this should be offset by the expected loss of
utility per unit time due to the possible occurrence of a claim.
(Obviously some regularity assumptions about the claim amount
distribution have to be made to make formula (36) meaningful.)

Clearly, the surplus process is asymptotically fluctuating. Let us
now consider a bounded utility function and assume that the
premium density is determined from (36). In two cases Theorem 1
leads to explicit expressions.

1) Only Negative "Claims". Suppose F(o) = 1, which implies
negative "premiums". The surplus at the time of ruin is necessarily
zero, and therefore Y(#) = v(x) as in (31).

2) Exponential Claim Amounts. Suppose that with probability
p (0 < ft < 1) a claim is positive, in which case it follows an ex-
ponential distribution:

F{y) = i—pe-y, y >o (37)

The claim amount distribution for y < 0 is arbitrary but we
assume that c(o) > o. Thus if ruin occurs, it is caused by a pos-
itive claim. Since the exponential distribution has a "lack of
memory", the conditional distribution of XT (given T < 00) has to
be exponential. Hence we can evaluate the denominator in Theorem
1 and get

vix)
TO = "= - (38)

J v{— y) e~y dy

The case p = 1 will be discussed more in detail in the following
subsection.
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Remarks, i) If the utility function is exponential, see formulas
(21), c(s) — c is constant. Equation (36) now reduces to the familiar
formula

J e*v dF(y) = x + R(c/*) (39)

If the utility function is quadratic with level of saturation L > 0,

( £ . _ ( L _ S ) 2 > S < L

«(*) = I L2 f s > L (40)
and if F(o) = o (only positive claims), equation (36) leads to

c(s) = a ydFiy) -\ • y2dF(y) (41)
J 2(L — s) J
0 0

for s < L. Thus the loading is proportional to the infinitesimal
variance of the claims process, where the proportionality factor is
an increasing function of the surplus, exploding at s = L: If the
surplus reaches the level of saturation, the company could only lose
utility by continuing business! (This curiousity is due to the fact
that, contrary to our assumption, the utility function is not strictly
increasing).

2) It is possible that the surplus drifts to infinity in a finite time
interval (see Remark 2 in subsection 3.2.). If F(o) = o, this happens
with positive probability, if for some So > 0 (therefore for all
So > 0)

" ds

< 00 (42)
.„ C{S)

Reason: This integral is the time it takes the surplus to get from
So to infinity in the absence of claims.

3) The model can be generalized such that the premium density
at time t, the claim frequency at time t and the claim amount
distribution at time t depend on At(t > 0). For example, if the claim
number process is a renewal process, (see [1]) the claim frequency
(and therefore the premium density) at any time depends on the
time that has elapsed since the last claim occurred.
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3.4. Ottaviani's problem

As indicated, we continue the discussion of exponential claim
amounts (example 2 of the preceding subsection with p = 1),
F(y) = 1 —e~y for y > 0. Let us assume a = i (operational
time).

Given is a positive and continuous premium density c(y), y > o.
In [13] Ottaviani raised the question about necessary and suf-
ficient conditions for the function c(y) that imply a probability of
ruin less than one. Since Theorems 1 and 2 enable us to answer this
question in terms of the utility function, we simply have to con-
struct such a utility function. Setting z = s — y in formula (36) we
get

c{s) u'(s) = u(s) — J u{z) e- (*-z> dz ^43)
— 00

valid for s > 0, as a necessary condition. Temporarily we assume
that c(s) is differentiate. Taking the derivative leads to

c(s) u"{s) + c'(s) u'{s) = u'(s)—u{s) + I u{z) «-(•-«) dz (44)
— co

By adding the last two equations we eliminate the integral and
get the differential equation

cu" + (c' + c — 1) u' = o (45)

valid for s > o. We solve it, setting (for example) u(o) = o ^'(0) =
= i, and get

u(x) - | e ° dy (46)
0

and from this
x V - _ 1

f ! - J C-± ds
u{x) = c(o) J — e ° dy (47)

Let this be the definition of our function u(x) for x > 0. For
x < 0 let u(x) be any differentiable increasing function such that
w(o) = o, M'(O) = 1 and equation (43) is satisfied for s = 0,

0

c(o) = — J u(z) ez dz. (48)
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The verification that this function u(x), —oo < x < oo, satisfies
the fair game condition (43) is left to the reader.

From Theorems 1 and 2 we gather: For any x > 0, Y(#) < 1 iff
u(co) < 00. Moreover, Y(#) is given by formula (38). Making use of
formulas (7), (47), and (48) this can be stated in terms of the
premium density function as follows:

Theorem. For any x > o, W(x) < 1 iff

dy < 00 (49)J c(y)

Furthermore, if this condition holds, *¥(x) is given by the
formula

?c - i

l~,e ' C S dy

C I - S-r-ds
1 + — e ' c dy

J c{y)
0

Examples. 1) For constant premiums, c(y) = c, condition (49)
holds iff c > 1 (positive security loading). In this case formula (50)
reduces to the well known expression

¥( i c X, x>o (51)
0

2) if c(y) = c + Sy, where c > 0, 8 > o, condition (49) is satisfied
and formula (50) reduces to an expression that is best written
in terms of the Gamma function, see [16], p. 288.

Remarks. 1) If we replace

1 c(y) — 1

W)by x ~ ^ r (52)

and perform the obvious integration, formulas (49) and (50) can be
written in a different form. Formula (50) becomes Ottaviani's
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formula (10') see [13] p. 65. In the case of nonnegative security
loadings, c(y) > 1, condition (49) becomes equivalent to

y r -1

- ~ l c d s

J e dy < co (53)
0

Therefore Ottaviani's conjecture, see p. 66 in [13], which was
formulated for this case, turns out to be true.

2) As a further illustration to the Theorem above, the reader may
verify that the validity of condition (42) implies that condition (49)
holds. By way of interpretation this is clear: If the surplus becomes
infinite in a finite time span (with a positive probability), the
probability of ruin has to be less than one!
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