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Introduction

A semigroup S is called regular if ae aSa for every element a in S. The
elementary properties of regular semigroups may be found in A. H. Clifford
and G. B. Preston [1]. A semigroup S is called orthodox if S is regular and if the
idempotents of S form a subsemigroup of S.

In this paper we investigate congruences on orthodox semigroups. Specifically,
we obtain a generalization of kernel normal systems of inverse semigroups, intro-
duced by G. B. Preston [6], to orthodox semigroups. A good account of Preston’s
kernel normal systems may be found in [2], § 7.4.

We then investigate idempotent-separating congruences on orthodox semi-
groups, and detemine a necessary and sufficient condition for Green’s equivalence
A to be a congruence on an orthodox semigroup. We also determine the maximal
idempotent-separating congruence on an orthodox semigroup.

Finally, we investigate inverse semigroup congruences on orthodox semi-
groups, and determine the minimal such congruence.

1. Some preliminary results

We denote the set of idempotents ot S by Eg, and the set of inverses of an ele-
ment & in S by ¥ (a). Thus an orthodox semigroup is a regular semigroup S for
which EgEg < Eg. The following three results may be found in the paper by N. R.
Reilly and H. E. Scheiblich [8]. They will be used in the sequel without comment.

LEMMA 1.1. Let a and b be arbitary elements of the orthodox semigroup S and
let o’ and b’ be arbitrary inverses of a and b respectively. Then b'a’ € V (ab).

LeEMMA 1.2. Let a be any element of the orthodox semigroup S and let a’ be an
arbitrary inverse of a. Then a'Ega < Eg.

LemMA 1.3. Let e be any element of the set Eg of idempotents of the orthodox
semigroup S. Then V (e) < Es.

We now give a brief account of some of the results of Preston, all of which
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may be found in [2], § 7.4. Preston first shows that a congruence p on a regular
semigroup S is uniquely determined by its kernel; that is p is uniquely determined
by the set of p-classes which contain idempotents. He then proceeds to determine
a set of conditions on a set &7 = {4, : i € I} of subsemigroups of an inverse semi-
group S under which &/ can in fact serve as the kernel of some congruence p, on
S, and indeed he derives a construction for the associated congruence p, .

We proceed along similar lines for orthodox semigroups. Let & = {4;:iel}
be the kernel of a congruence p on an orthodox semigroup S. Unlike the situation
for inverse semigroups, it is not necessarily true that an element A; of &7 is a regular
subsemigroup of S, as the following counter-example, due to T. E. Hall, readily
shows.

ExampLE 1.4. Let 4 = {a;;:i,je{l1,2}}, and let B = (b, :1,je{1,2}}.
Let S = A U B, and define a multiplication on S by

s J= k
Bt = { by, %K
(1) bij by = by

bijakl = a;j by = by.

It is straightforward to verify that with this definition of multiplication, S is an
orthodox semigroup. We note that Bisa subsemigroup of S : indeed B is a rectan-
gular band. The elements a,; and a;, of S are idempotents whose only inverses
are themselves, and the elements @,, and a,, of S are mutually inverse elements
with unique inverses. Now consider the relation p on S which identifies a;; with
b;;,foralli,je {1, 2}. It is easy to see that p is a congruence on S, and that the set
of all p-classes,

A = {{ay1, b1} {a12, b2}, {021, b1}, {a22, by}t

is the kernel of p. The set {a@,,, b,,} is an element of the kernel of p, but is not a
regular subsemigroup of S. Thus we have seen that the kernel of a congruence p
on an othodox semigroup S does not necessarily consist of regular subsemigroups
of S. In§ 2 we show that a congruence p on an orthodox semigroup S is uniquely
determined by the set of maximal regular subsemigroups of the elements of the
kernel of p.

2. The regular kernel

We make use of the following result due to G. Lallement [51.

LeMMA 2.1. Let ¢ be a homomorphism of a regular semigroup S onto a (neces-
sarily regular) semigroup S'. If €' € Es. , it follows thate'p™' n Eg # L.

We now prove the following two lemmas.
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LeMMA 2.2. A homomorphic image of an orthodox semigroup is orthodox.

ProoF. Let ¢ be a homomorphism from the orthodox semigroup S onto the
semigroup S’. Then since S is regular it follows immediately that S’ is regular.
(See for example [2], § 7.4). Let ¢’ and f” be arbitrary idempotents of S’. By lemma
2.1, ¢’¢~ ! and f'¢p~! both contain idempotents of S, say ece’dp ™! n Eg and
fef'¢~' n Es. Then ef € E since S is orthodox, and so (ef)¢ = e'f’ € E., and
it follows that S’ is orthodox.

LEMMA 2.3. Let S be an orthodox semigroup, p a congruence on S, and
o = {A;:iel} the kernel of p. Then V(A) = A, where A = |);.,; 4;, and
V(A) = Jsea V(a).

ProoF. Let a be an arbitrary element of 4 and let @’ be an arbitrary inverse of
a. Then @’'¢ is an inverse of a¢, an idempotent of S/p, where ¢ is the natural homo-
morphism corresponding to the congruence p, and so a’'¢ is an idempotent of
S/p, by lemma 1.3 and lemma 2.2. Hence @’ € 4, which completes the proof of the
lemma.

Let p be a congruence on an orthodox semigroup S, and let & = {4;:iel}
be the kernel of p. Then the set # = {B; : i € I'} of maximal regular subsemigroups
of the elements of the kernel of p is called the regular kernel of p. We note that
4 is well-defined in the sense that for each element A; of the kernel &7 of p there
is a unique maximal regular subsemigroup B; of 4;. In fact it is easily verified that

(2) B,={xed;:V(x)n A; # 1}

is the unique maximal regular subsemigroup of 4;: for if x and y are elements of
B, there exist elements x" € V(x) N 4;, and 3’ € V(y) n 4;, and so y'x" € V(xy)
N A;, thatis xy € B;. Hence B, is a subsemigroup of 4;. That B; is the unique maxi-
mal regular subsemigroup of A4; is now obvious. We shall make use of the charac-
terization (2) of the B, in the sequel.

THEOREM 2.4. Let p and o be congruences on an orthodox semigroup S having
the same regular kernel %8 = {B;:ieI}. Then p = o.

PROOF. Let o = {4, :ie I} be the kernel of p and let &/’ = {4 :jeJ} be
the kernel of o. Then by definition of the regular kernel 4, I} = |J|, and (with a
suitable indexing of the 4; and the 4}) B; is the maximal regular subsemigroup of
A; and of A;, for all i € I. In view of the result of Preston it suffices to show that
A; = A; for all i e I, and to show this, we show that for all ie [,

A(= A]) = {aeA:d e V(a) implies aa'a’ae B},

where 4 = {xe S:xx" € B;, x' € V(x), implies x’x" € B;}.
Let

C;={aed:a eV(a) implies aa'a’ae B;}.

Let a be an arbitrary element of C;, and let @’ be an arbitrary inverse of a. Then

https://doi.org/10.1017/51446788700009794 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009794

326 John Meakin 4]

ae A and so ad’, a*a’ € B;, some je I. Hence (aa’, a*a’) € p, and it follows that
(ad'a, a*d'a) = (a,a*) e p. Thus ae | 4;, and so a’ €| J;c; 4;, by lemma
2.3. It follows that (@', (a')?) € p and hence that (a, aa’a’a) € p, and since aa'a’a € B,
we deduce that ae 4;. Hence C; < A; for each ie L

Conversely, let a be an arbitrary element of 4; and let a’ be an arbitrary in-
verse of a. Then (a?, a) e p, and so (a’d’, aa’) € p. Furthermore, a’ €| J;.; 4;,
by lemma 2.3, and so ((¢')*, a’) € p. From this it follows that (a(a’)?, aa’) € p,
and hence that a(a’)?, a’a’, and aa’ are all contained in the same p-class, which
must be an element of the kernel of p since aa’ is an idempotent of S. Hence
a(a')?, a*a’, aa’ € A, for some k eI But a(a’)® and a’a’ are mutually inverse
elements of S and so a(@’')?, a’a’ € B,. Clearly, aa’ € B, since aa’ € Eg n A,.
Hence aa’ € B, implies a’a’ € B,, and it follows that a € 4. Furthermore,
(@), a)ep so (a,aa'a’a)e p, and so aa'a’ac B;. 1t follows that ae C; and
hence that A4; = C; for all iel. Since we also have that 4] = C,; for all ie I,
the theorem is proved.

As an immediate corollary to the proof of this theorem we deduce the follow-
ing result.

COROLLARY 2.5. Let p be a congruence on an orthodox semigroup S with kernel
&/ = {A;:iel}and regular kernel B = {B,:iel}. Define A ={xe S :xx'€B;,
x' € V(x), implies x’x' € B;}. Then A =\ ;.1 4;, and for eachie I, A;={ac A :
a' € V(a) implies aa'a’a € B;}.

This result, of course, shows us how to obtain the kernel of a congruence on an
orthodox semigroup when we are given the regular kernel. The following obvious
corollary provides us with a necessary and sufficient condition (on the regular
kernel of a congruence on an orthodox semigroup) for the kernel and the regular
kernel to coincide.

COROLLARY 2.6. A necessary and sufficient condition for the kernel o/ =
{A;:iel} and the regular kernel B = {B, : i € I'} of a congruence p on an orthodox
semigroup S to coincide is that | );.; B; = {x€ S : xx" e B;, x' € V(x), implies
x%x' € B;}.

3. Regular kernel normal systems

In §2 we have shown that a congruence on an orthodox semigroup S is
uniquely determined by its regular kernel #. We proceed to obtain a characteri-
zation of such sets & and derive a construction for the associated congruences.

The set & = {B;:iel} is defined to be a regular kernel normal system of
the orthodox semigroup S if

(K1) each B, is a regular subsemigroup of S;
(K2) B, B; = O ifi # j;
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(K3) each idempotent of S is contained in some B;;

(K4) for each a€ S, o' € V(a), and i € I, there is some j = j(a, @', i) € I such that
aB;a c Bj;

(K5) for each i, j € I, there is some k € I such that B;B; B; < By;

(K6) if a, ab, bb’, b'b € B; for some b’ € V(b), then b € B;;

(K7) for each i eI and for each je I, there is some k € I such that E,E; < E,
where E; is the set of idempotents of B;.

LemMa 3.1. The regular kernel B = {B; : i€ I} of a congruence p on an ortho-
dox semigroup S'is a regular kernel normal system of S.

Proor. Conditions K1, K2, K3, and K7 are trivial to verify. To prove that
K4 is satisfied we first verify that for each a € S, @’ € V' (a), and i € I, there is some
jel such that a’d;a = A;, where &/ = {A,;:iel} is the kernel of p. Choose
e € A; n Eg and note that a’ea € Eg, by lemma 1.2, Hence a’ea € A; for some je I.
But (d'ea, a’'xa)ep for all xe A;, and so a’'d;a = A;. From this we deduce
immediately that a'B,a = a’A;a = A;. Now let a’ba be an arbitrary element
of a’B;a, where b € B;. Since B; is regular, there is an inverse b of b such that
b’ e B;. But then a'b’'ac V(a'ba) na'B,a < V(a'ba)~ A;, and so a'bae B;.
Thus, finally, @'B;a = B;.

To verify that K5 is satisfied, we prove first that for each i € I and for eachje I,
there is some k € I such that 4;4;4; = A,. Indeed this follows easily since in fact
the A; satisfy the stronger condition 4;4; = A, for some /e l. Now let b; b, b,
be an arbitrary element of B;B;B; = A;A;A; = A,, and choose b} € V(b;) N B,
by e V(b;) n B;, and by e V(bs) n B;. Then b3byb} € V(b byb3) N B,B;B; =
V(b bybs) N Ay, and it follows that b, b,b, € B,.

To prove that K6 is satisfied, we first note that if a, ab, bb' € A; tor some
b’ e V(b), then b e A4;. This is easy to prove, since if (a, bb') € p, then (ab, b) € p,
and so beA;. Now suppose that a, ab, bb', b'b € B;. Then in particular,
a,ab,bb’ € A;, so be A;. But then b,bb’,b’be A;, and so b’ € A;. Hence b € B;.
This completes the proof of the lemma.

We now introduce the following notation: if & = {B; : i€ I} is a regular kernel
normal system of the orthodox semigroup S, then we define a ~ b if and only if there
is some i € I such that a € B; and b € B;. Note that ~ is a partial equivalence on S.
Let # = {B;:ie I} be a regular kernel normal system of the orthodox semigroup
S and consider the relation

pa = {(a, b)e Sx S: there exists @' € V(a) and b’ € V(b) such that
ad’, bb’, ab’ € B;, d'a, b'b, a'b € B; for some i,jel}.

3)

In terms of the notation just introduced we have

pa=1{(a,b)e SxS:aa’ ~ bb ~ ab',a'a ~ bb ~ ab,

(3) for some a’ € V(a), b’ € V(b)}.
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We now prove the following lemma.

LEMMA 3.2. Let # = {B;:icl} be a regular kernel normal system of the
orthodox semigroup S and let pg be defined by equation (3) (or equivalently by
equation (3')). Then the transitive closure pg of the relation pg is a congruence on S.

ProoF. It suffices to prove that pg is a reflexive, symmetric and compatible
relation on S. The fact that pg is reflexive follows immediately from K3.

Suppose now that (a, b) € pg. Then there are inverses @’ and b’ of a and b
respectively such that

aa’ ~ bb' ~ ab’ and a’'a ~ b'b ~ a’b.
To prove that (b, a) € pg, it clearly suffices to prove that
4 bb' ~ aa’ ~ ba’ and b'b ~ da ~ ba.

Now
(ab’)(ba') = a(b'b)a’ ~ a(d'a)a’ = aa’, by K4,

(ba')(ab') = b(@'a)b’ ~ b(b'b)b’ = bb, by K.

Hence (ab’) ~ (ab’)(ba’) ~ (ba’)(ab’). From this it follows immediately from K6
that ba' ~ ab’ ~ aa’ ~ bb’, since ba' € V(ab’). The condition b'b ~ a'a ~ b'a
follows from the above proof by interchanging a with &’ and b with b’ through-
out. Hence (b, @) € pg, and thus pg is symmetric. We remark that in fact we have
proved that if aa’, bb', ab’ € B;, and ad'a, b'b, a'b € B;, where a' € V(a) and b’ € V (b),
then it follows that ba' € B; and b'a € B;. We make use of this remark in the sequel
without comment.

We now prove that pg is left compatible. Suppose (a, b) € pg, and let ¢ be an
arbitrary element of S. We aim to prove that (ca, cb) € pg. Since (a, b) € py,
there are inverses @’ of a and b’ of b respectively such that aa’ ~ bb’ ~ ab’ and
aa~b'b~ab. Let ¢’ be an arbitrary inverse of ¢. Since a'c’ € ¥V (ca), and
b'c¢’ € V(cb), it clearly suffices to prove that

and

) (ca)(@c’) ~ (cb)(b'c’) ~ (ca)(b'c’),
and that
(6) (@'’ Yea) ~ (b'c')(cb) ~ (a'c")(cb).

Now (ca)(@'c’) = c(aa’)c’ ~ c(bb’)c’, by K4, so (ca)(a'c’) ~ (cb)(b'c). Also,
(ca)(b'c’) = c(ab’)c’ ~ c(aa’)c’, by K4, so (ca)(b'c’) ~ (ca)(@'c’), and (5) is veri-
fied. To prove (6) we proceed as follows. Note that (a’c’)(ca) = a'(aa’)(c'c)(ad’)a.
But aa’ ~ ab’ and aa’ ~ ba', so (aa’)(c’c)(aa’) ~ (ab')(c’c)(ba’), by K35, since
c'c € B, forsome k € I. Hence a'(aa’)(c'c)(aa’)a ~ a'(ab’)(c'c)(ba’)a, by K4, i.e.

(@'cYca) ~ (dD)[(b'c)(cb))a'a)
~ BB)((bC')(cb)I(6')  (by K5 or K7)
= (b'c’)(ch).
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Thus (a'c’)(ca) ~ (b'c’)(ch).
Now let x = (b'c’)(ch), y = (a’c')(ch), and y' = (b'¢’)(ca). Then y' € V(y),

and
xy = (b'c’c)(ba’)(c'cb)
~ (b'c'c)(bb')(c'ch)  (by K4)
= (b'c’cb)(b'c'ch) = (b'c")(ch), since (b'c’)(cb) € Eg.
Further,

yy' = (a'c'c)(bb’)(c ca)
~ (a'c’c)(aa’)(c’ca) (by K4)
= (d'c’ca)(a’c’ca) = (a'c')(ca) ~ (b'c")(cb) = x,
by what was proved earlier, and
¥y = (b'c’c)(aa’)(c’ch)
~ (b'c’c)(bb')(c'ch)
= (b'c’'chb)(b'c’cb) = (b'c’)(ch).
Hence x ~ xy ~ yy’ ~ y'y, and so x ~ p, by K6. Thus (a’c’)(ca) ~ (b'c")(ch) ~
(a’c’)(cb). Hence (6) is verified, and the left compatibility of pg is established.
The right compatibility of pg4 follows similarly by the dual argument to the above.
This completes the proof that p is a congruence.

We now prove that, with the above notation, & is the regular kernel of the
congruence pg. The following ‘inductive lemma’ is used in the proof.

LeEMMA 3.3. Let s,, S,, ", S,y be elements of the orthodox semigroup S,
and let s{, 5" be inverses of s; for i = 1, - - - n—1 such that relative to some regular
kernel normal system % we have

1 ’ r !
5.8, ~ Spi1Sr41s 828~ 841 Sepqs Jor r=1,--n-—2.

Then the following formulae hold:

(7 S151 ~ (Sp—1 50~ 1 )(Sn—250-2) = * (S151);
(7 S18p ~ (5151) "~ (Sp-25a=2)(Sp—1Su-1);
(®) Su1Sn—1 ~ (a1 Sa—1) =+ * (52'52)(5751);
(8" Su—18nm1 ~ (S151)(528%) " (Sa-18n-1)-
ProOF. To prove (7) we first prove by induction that forr = 1, - - n—1,
) s151 ~ (S, 5.)(Sp—18-1) "+ (515%)-

Evidently, (9) holds true for r = 1, so suppose that (9) holds for r = k. Then

S187 ~ (SeSi)(Sk—y Se—1) ** * (51 81)
= (85K (S5 (k-1 Se—1) =~ * (5151)
~ (St 1564 ) S (Sk—1 Sk-1) -~ (5151)s by K7,
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and so the result (9) is proved by induction, and (7) follows from (9) by applying
(9) with r = n—1. The result (7') follows by the dual of the argument used to
prove (7).

To prove (8) we first prove by induction that forr = 1, - - n—1,

(10) srll,—l Sp—1 ™~ (slll’— 15n— 1) e (sr,ll-‘r+1 Sp—r+ 1)(S:ll—rsn—r)'

Clearly (10) holds for r = 1, so suppose that (10) holds for r = k. Then

r

Sn=1Sn-1 ~ (Su=18n=1) " " (SnZ 1 Sn—ter 1)(Snrc Sn—r)

= (52 18u—1) " (S k 1 Sumrer )82k Suoi)(Sn—s Sa—i)

~ (5n=1Sn-1) " (SnZk 1 Sn—ter 1)(Sn =k Su—i)
(Sh—k=1Sn—k~1)> by K7.

Thus the result (10) follows by induction, and (8) follows immediately from (10).

As before, the result (8') is proved by the dual of the argument used to prove (8).
We now proceed to the proof of the statement that Z is the regular kernel of the

congruence pg. The proof of this is contained in the following two lemmas.

LEMMA 3.4. Let # = {B, : i € I} be a regular kernel normal system of the ortho-
dox semigroup S and let pg be defined by equation (3). Let {A; : j € J} be the kernel
of the congruence p'. Then |I| = |J|, and it is possible to index the A; so that for all
iel, B;is a regular subsemigroup of A;.

Proor. First note that if @ ~ b, then (a, b) € pig: for if a, b € B;, then there
are inverses @’ of @ and b’ of & such that a’, b’ € B;. But then ad’, bb’, ab’, a’a, b'b,
a'b e B;, and hence (a, b) € py < p%. Thus B; is a subsemigroup of some pl-
class apg. But since B; contains an idempotent (being regular), we see that apl
contains an idempotent, and so apy = A; for some j € J. Thus each element B; of
% is a subsemigroup of some element A; of the kernel of pj.

It remains to verify that distinct sets B; and B; are contained in distinct ele-
ments of the kernel of pj and that every element of the kernel of pf; contains
some set B; € #. The latter assertion follows because every element of the kernel
of pi contains at least one idempotent of S and every idempotent of S is contained
in some element B; of # by K3. To verify the former assertion it clearly suffices to
prove that if two idempotents of S lie in the same element A; of the kernel of pl,
then they lie in the same set B; € #.

Let e, fe Es and suppose that (e, ) € pz. Now pi = (Jil; pl, where pl is
the n-fold composition of pg4 with itself, and so (e, f) € p% for some n = 1. We
consider the cases n = 1 and n > 1 separately. Suppose first that (e, f) € pg.
Then there are inverses ¢’ of e and f* of f such that ee’ ~ ff’ ~ ef’(~ fe’) and
e~ f'f~ef(~f'e). Then e = ee'e = e(e’e’)e = (ee')e'e) ~ (ff')(f'f) by K7,
so e ~ ff'f = f, as required.

Now suppose that (e, f) € pg for some n > 1. Then there exist s,, 55,
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._1 €S such that (e, s,) € pg, (51, S2)€pg, " (Sy—1. f) € pgy, and thus there
existe' € V(e),f e V(f),and s/, s;" e V(s;),fori = 1,-- - n—1, such that

s,

ee’ ~ s,s] ~ es], e'e ~ sis; ~ e's,
't ! ’ 1t 4 r :
(11) ;S ~ Sit1Siet ~ SiSiv1> SiSi~ Sit1Si+1 ~ 8i'Siyq fori=1,---n-2,
rr ? ’ r ’ 1
Su—1Sn—t ~Jf ~Ssui s SpmaSumy ~ U~ s S

Now e = (ee')(e’e) ~ (sys1)(s15,), by K7. Thus by (7) and (7’) of the inductive
lemma, and by K7, we have,

e~ (SuotSne1) "+ (5252)(s151)(s151)(5252) =~ (Sn—15a-1)
= (Sue 1 Sn= ) (Suo 1 Snm1) * (5252)(515)(5151)(5282) * = * (Sn~1 Sum1)(Sh- 1 85— 1)
~ (fF ) sum18n=1) o (5252) (51 SD)(s151)(5282) * * * (Sp= 1 Su- D)) = Sof,
where
s =f'(sn-18n=1) " (5252)(sy s1)(s181) - (Sp-x Su—1)f -
Now f* = (ff)ff') ~ (su=15n-1)(Sa-15~1), by K7, so
s~ (S5 1 Sam 1 )(Sne 1 Su= 1 M Sum1Snm 1)+ (S255)(s1 s1)(s751)(52 52)
(St Sam1)(Sn 1 1 Sa—1)(Sa 1 1
= (Sl 1 8am )(Sum 1 Sa—1) - (515D 51) (St e 1) (S 1 Su=1)-

Thus by (7), (7), (8) and (8’) of the inductive lemma, and by K7, we have

s~ (SalySam1) o (82'2)(s1s1)(s1 5)(s7 81)(s187)(s2 5’2’) SR A
= (8,1 Spm1)* - (s2/52)s [sy 5878781 5157(528%)  + - (Sp— 151

= (- 18a-1) " (5252)(5Ys (51 S7)(5285) * -+ (Spm180-1)s

since 5157 € V(s,5,). Hence by (7) and (7') of the inductive lemma and by K7, we
finally obtain

S~ (s"tl—l sn—l)(sn—l Srlll—l) ~ (fif)(ff’) =f” and 50 by K7
e ~ f5f ~ ff'f = f, as requied. This completes the proof of the lemma.

LeMMA 3.5. Let B = {B;:icl} be a regular kernel normal system of the
orthodox semigroup S and let pg be defined by equation (3). Let {A;:iel} be
the kernel of the congruence ply, indexed in accordance with lemma 3.4. Then for
all i € I, B; is the maximal regular subsemigroup of A;.

PROOF. Let a be any element of A4, for which V(a) n 4; # [, and let a* € V(a)
N A;. We show that in fact a € B;, from which the result follows by virtue of the
characterization (2) of the maximal regular subsemigroups of the 4;.

Let e be any idempotent of B;. (Such an idempotent exists since B; is a regular
subsemigroup of S.) Now 4, is the pg-class containing B;, so (a, €) € pg, and hence
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(a, e) € p% for some natural number n = 1. We consider the casesn = 1 andn > 1
separately. Note first that e, aa*, a*a € B;.

Suppose first that (a, ¢) € p,. The there are inverses a’ of @ and ¢’ of e respec-
tively such that

aa’ ~ ee’ ~ ae' (~ ed’) and d'a ~ e'e ~ d'e (~ €'a).
Let w = ee’aa*. Then w ~ ad'aa* = aa* € B;, by K7. Furthermore, wa =
e(e'a)(a*a) € B; for some je I, by K5. But we B; and a € 4;, so wa € B;. Hence
w, wa, aa*, a*a e B;, and it follows by K6 that a € B;.

Suppose now that (a, e)e py for some n > 1. Then there are elements
C15Cyy * " Cyy €S such that (e, c,) € pg, (¢1,c2)€EPm, " (ch-y,a) € pg, and
hence there exist &’ € V(e), @’ € V(a), and ¢/, ¢; € V(c;), for i = 1,...n—1 such
that

ee’ ~c ¢y ~ecy, ee~cic; ~ee,
(12) { crct ~ CrprCror ~ i1y €6~ CratCray ~ GGy, fOrr=1,n-2,

Cp1Coy ~ad ~ Cp_y @'y, € 1Cuq~da~c_a.
Put w, = e(ci 1y 1)~ (Ve (erei) -+ (n-ycyr)(aa®). Then

Wy ~ 9(0;1’—10,.—1) T (ci’cl)el(clclll) (e n—lcn—l)e
= e(e'e)(c, o) " (cYcr)e (crcy) - (camrenl i Nee)e
~ e(ci cl)(c:;'ﬂcn—l)e,(cn—15:.'~1)("1 cie
~ e(ci cl) e (crlt—lcn—l)(c”—lcn—l)e,(cn—lcrlli—l)(cn—lcr,l—l) T (Cl C;)e
= e(c} ¢1)(CpiCu1)€(Chm16n1) " (cici)e
~ e(cicr)e(cici)e
~ e(e'e)e’(ee')e = e.
Hence w, € B;. Also,

e(cr_cnq) - (cler)e(egey) - (ca-165-1)(aa)*a

= e(c,_qCumq) (e e )€ er)(c] er) -+ (cn 1a)(a* a).

Hence w,a € B, for some k € I by repeated application of K5. But w, e B; and
ae A;, so w,ae A;. Hence B, = B;, and so w,a € B;. Then, since w,, w,a, aa*,
a*a € B;, we deduce that a € B;, by K6.

We may summarize the results obtained so far in the following theorem.

w,a

I

THEOREM 3.6. If p is a congruence on an orthodox semigroup S then the regular
kernel B of p is a regular kernel normal system of S, and p = py, the transitive
closure of the relation p 4 defined by (3). Conversely, if & is a regular kernel normal
system of S, then there is precisely one congruence p on S such that % is the regular
kernel of p and p = ply.
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REMARK. In the previous theorem we have been concerned with the transitive
closure of the relation pg. In fact this complication is forced on us because the
relation pg is not necessarily transitive for an arbitrarily prescribed regular kernel
normal system & of an arbitrary orthodox semigroup, as the following example
readily shows.

ExaMPLE 3.7. Let S be the semigroup of example 1.4 and consider the rela-
tion p on S which partitions S into the two classes S; = {a,y, @21, b1y, b2} and
S, = {ay;, a2, by2, by, }. Clearly p is a congruence on S, and

B = {{all’b11>b21}, {azz,bu,bzz}}

is the regular kernel of p. By virtue of theorem 3.6, p is the transitive closure of the
relation pg. But it is easy to see that pg # p, since a;; and a,, are elements of S
which are equivalent under p but not under pg. (This follows since the only inverse
of a;, is a,, and the only inverse of a, is a,,, and a,, = a,,a;, lies in a different
element of & than a,, = a,,a,,). Hence for this choice of & and this choice of
S, pa # Pz, and so pg is not transitive.

4. Idempotent-separating congruences

A congruence p on a semigroup S is called an idempotent-separating congru-
ence if each congruence class contains at most one idempotent of S. Lallement [5]
has proved that any idempotent-separating congruence on a regular semigroup is
contained in Green’s equivalence 5#. We make use of this result to investigate idem-
potent-separating congruences on orthodox semigroups.

In theorem 4.2 we obtain a simplification of theorem 3.6 in the case where the
congruence considered is an idempotent-separating congruence, and in theorem
4.3 we obtain a necessary and sufficient condition for Green’s equivalence S#
to be a congruence on an orthodox semigroup. These results may also be deduced
from théoréme 3.11 (and the ensuing remarks) in [5].

Note first that it p is an idempotent-separating congruence on a regular semi-
group S, then the kernel of p is a set 4" = {N, : e € Eg} of normal subgroups of
the set {H, : e € Eg} of maximal subgroups of S. This is obvious since the restric-
tion to H, of the natural homomorphism determined by p is a group homo-
morphism of H, with kernel N,. In particular, the kernel of p is composed of
regular subsemigroups of S, and so the kernel of p and the regular kernel of p
coincide.

Now let 4" = {N, : e € Eg} be the kernel of an idempotent-separating con-
gruence p on the orthodox semigroup S, and consider the relation

pw = {(a, b)e Sx S: there are inverses @’ of a and b’ of b such that

13
(13) aa’ = bb’' = e,ab’e N,,a'a = b'b = f,a’be N,, for some e, f € Es}.
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(Evidently, p,, is just a special example of the relation pg defined by (3) correspon-
ding to the idempotent-separating (regular) kernel normal system .4"). We show
that p, is in fact a transitive relation, and hence that p, = p', = p. To prove
this, suppose that (a, b) € p4 and (b, ¢) € p,. Than there are inverses a’ of a, b’
and b* of b, and c* of ¢, and idempotents e, f, g, h of S such that

aad’ =bb' =e, ab’eN,;aa=bb=f a'beN,,
and
bb* = cc* = g, bc* e Ny; b*b = c*c = h, b*ce N,.

Now (a,b)epy < p'y = p, and (b, ¢) e p, so (a,b)e# and (b, c¢) € 3#, since
p € #. Hence a, b, and ¢ are ¥ -equivalent elements of S, and so there are in-
verses a* of @ and ¢’ of ¢ such that ag* = bb* = cc* = g, a*ta = b*b = c*c = h,
aa’ = bb’ = cc’ = e,and d'a = b'b = ¢’'c = f. (See for example [1], § 2.3) Now,

(ac'Y(ca') = a(c’'c)a’ = a(d'a)a’ = aa’ = e,
and similarly (ca’)(ac’) = e. Also
(ac’)e = (ac’)(cc’) = ac’ = (aa')(ac’) = e(ac’).
Hence ac’ € H,, and by the dual argument a'c e H,. But

ac’ = (ad'a)c’ = a(b'b)c’ = (ab')(bb*bc’)
= (ab')(bc*cc') = (ab’)(bc*)(cc'),
and
ab',bc*,cc’e N =) {N,:ecE}.

Hence ac’ € N, since N is clearly a subsemigroup of S, being the inverse image under
the natural homomorphism corresponding to the congruence p = p', of the set of
idempotents of S/p. Thus ac’e N n H, = N,. Also, d'c = d'cc*c = (a'b)(b*c)eN,
sodce NnH; = N;. Thus aa’ = cc’ = e,ac’eN, and d'a=c'c=f, aceN,.
Hence (a, ¢)€ p 4 and this completes the proof of the statement that p  is transitive,
and hence that p . = p', = p.

We now show that in the idempotent-separating case there is a simple charac-
terization of regular kernel normal systems. Following Preston [7], we define a set
AN = {N, : e € Eg} of normal subgroups of the maximal subgroups {H, : e € Es}
of the orthodox semigroup S to be a group kernel normal system of S if the N,
satisfy the conditions:

(i) @N.,a< N, forallae S,a' € V(a), and e € Eg;
(il) NN, & N,, for all e, f€ Eg.
LeMMA 4.1. A set N/ = {N, : e € Eg} of normal subgroups of the set {H, : e € Eg}

of maximal subgroups of the orthodox semigroup S is a (regular) kernel normal
system of S if and only if N is a group kernel normal system of S.
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PrOOF. If /"= {N, : e€ Eg} is a regular kernel normal system of S, then con-
dition (i) is clearly satisfied. Further, p is a congruence on S and A" is the kernel
of p,, so condition (ii) is satisfied. Conversely, suppose that 4" satisfies condition
(i) and (ii). Then conditions (K4), (K5), and (K7) for regular kernel normal sys-
tems are trivially satisfied, and conditons (K1), (K2), and (K3) are automatically
satisfied by the definition of 4. It remains to verify that (K6) is satisfied. Let a,
ab, bb', b'b € N, for some b’ € V(b). Then there exists an element a* € V(a) N N,,
and we have e = a*a = bb’. Hence b = (bb')b = (a*a)b = a*(ab), the product
of two elements of N,, and so b € N,. Thus K6 is verified and the lemma is proved.

We may summarize the results of this section in the following theorem.

THEOREM 4.2. If p is an idempotent-separating congruence on an orthodox semi-
group S then the kernel &/~ of p is a group kernel normal system of S, and p = p,,
the relation defined by (13). Conversely, if N is a group kernel normal system
of S, then there is precisely one congruence p on S such that N is the kernel of p.
This congruence p is an idempotent-separating congruence on S and p = p .

We now determine a necessary and sufficient condition for Green’s equiva-
lence ## to be a congruence on an orthodox semigroup. Note first that on a
regular semigroup S, 5 is given by

(14) H = {{a,b)e SxS:ad =bb',d'a=1"bb
for some @' € V(a), b’ € V(b)}.

(This is proved in [1], § 2.3). Note also that if aa’ = bb’ = e and d'a = b'b =,
thenab’ e H,and a’b e H,. For (ab’)e = (ab’)(bb") = ab’, and e(ab’) = (aa’)(ab’)
= ab’, while (ab')(ba') = a(b'b)a’ = a(d'a)a’ = aa’ = e, and (ba')(ab’) =
b(a'a)b’ = b(b'b)b’ = bb’ = e. Hence ab’ € H,, and by a similar argument
abe H,. Thus if /"= {H, : e € Eg}, we see that in fact # = p,, where p, is
defined by (13). By virtue of this remark, we see that S is a congruence on S if
and only if {H,:ee Eg} is a group kernel normal system of S. We are now
in a position to prove the following theorem.

THEOREM 4.3. A necessary and sufficient condition for S to be a congruence
on an orthodox semigroup S is that the set {H, : e € Es} of maximal subgroups of S
satisfies the condition H,H, = H,, for all e, f € Es.

ProoF. Clearly this condition is satisfied if 5 is a congruence on S, for then
{H,:e€ Es} is a group kernel normal system of S. Conversely, suppose that
{H, : e € Hy} satisfies the condition H,H, < H,;, for all e, f€ Eg. To prove that
A is a congruence on S it clearly suffices to prove that H, satisfy the condition
aH,a<s H,,,, forallae S, d € V(a), and e € Es.

Let a’ha be an arbitrary element of a’H,a, and let /&’ be the inverse of A which
is in H,. Then
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(a'ha)(a’ea) = (a’hea)(a'ea)
= a'h(eaa’)(eaa')a = a'h(eaa’ )a
= a'hea = d'ha,
and

I

(a'ea)(a’ha) = (d'ea)(a’eha)

= d'(ad’e)(aa’e)ha = a'(ad’e)ha = a'eha = a'ha.

Also, (¢’ha)(a’'h’'a) = a'(haa’h')a. But h, i, and e are all in the same class H,, so
by the hypothesis of the theorem, h(aa’)h’ is in the same J#-class as e(aa’)e.
Since both #(aa’)h’ and e(aa’)e are idempotents, we have that h(aa')h’ = e(aa’)e.
Hence

(a'ha)(@'h'a) = d'(ead’e)a = (d'ea)(d’ea) = a'ea.

A similar argument to the above shows that A'aa’h = eaa’e, and hence (a'h'a)
(a'ha) = d'(Kad'h)a = d'(ead’e)a = a’ea. Thus we have proved that (a'ha)(d’ea)
= (d'ea)(a’ha) = a'ha, and that (a’'ha)(a'h’a) = (a’h'a)(a’ha) = a’ea, from which
it follows that a’ha € H,,,,, for all he H,. Hence a'H,a < H,.,,, and the proof of
the theorem is complete.

Finally, we determine the maximal idempotent-separating congruence on an
orthodox semigroup, thus generalizing the result of J. M. Howie [4] from inverse
semigroups to orthodox semigroups.

THEOREM 4.4. The maximal idempotent-separating congruence on an orthodox
semigroup S is

u = {(a,b) e Sx S : there are inverses a’ of g and b’ of b such that
d'ea = b'eb and aea’ = beb’ for all e Eg}.

ProoF. That u is reflexive and symmetric is obvious. To prove that u is transi-
tive note first that if (a, b) € p, then a’(aa’bb’)a = b’(aa’bb’)b, since aa’'bb’ € E,
where a’ and b’ are the inverses of @ and b respectively which appear in the def-
inition of u. Hence a'(bb')a = b'(aa’)b. But bb' € Eg, so a'(bb')a = b'(bb’)b =
b'b, and similarly b'(aa’)b = a'a. Hence a’a = b’b. In a similar fashion, it is not
difficult to see that aa’ = bb’. From these two results we deduce that, in particular
u S . We now proceed to the proof of the transitivity of u.

Suppose that (@, b) € u and (b, ¢) € p. Then there are inverses @’ of @, b’ and
b* of b, and c* of ¢ such that

a'ea = b'eb, aea’ = beb’, b*eb = c*ec, beb* = cec*, for all e € Es.

In particular, we have seen that this implies that aa’ = bb’, a’a = b'b, cc* = bb*,
and c*c = b*b, and hence that a, b, and ¢ are s#-equivalent elements of S.
Hence there are inverses a* of a and ¢’ of ¢ such that
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ad’ = bb' = cc’, ad'a = b'b = c'c,
and
aa* = bb* = cc*, a*ta = b*b = c*c.
Now a*ad’ € V(a), and c*cc’ € V(c), and for all e € E,
(a*aa’)ea = (a*a)(a'ea) = (a*a)(b'eb)
(b*b)(b'eb) = b*(bb'e)b = c*(bb'e)c

= c*(cc'e)c = (c*cc')ec,

I

while
ae(a*aa’') = a(ea*a)a’ = b(ea*a)b’ = b(eb*b)b’
(beb*)(bb") = (cec*)(bb') = (cec*)(cc’)

= ce(c*cc').

Hence (a, ¢) e u, and u is transitive.

Now suppose that (a, b) € u, and let ¢ € S. Then there are inverses @’ of a and
b’ of b such that a’ea = b’eb and aea’ = beb’, for all e € Eg. Let ¢’ be an arbitrary
inverse of ¢. Then

(c’'a’)e(ac) = c'(d'ea)e = c'(b’eb)c = (c'b')e(be), for all e Eg,
and
(ac)e(c'a) = a(cec’)a’ = b(cec’)b’ = (bc)e(c'd’), for all e e Es.

Hence (ac, bc) € , since ¢’'a’ € V(ac) and ¢'b’ € V(bc). Thus u is right compatible.
Now

(ca)e(a'c’) = c(aea’)c’ = c(beb')c' = (cb)e(b’c), for all e € Eg,
and

(a'c')e(ca) = a'(c’ec)a = b'(c’ec)b = (b'c’)e(ch) for all e e Eg,

so u is left compatible. Hence u is a congruence.

That p separates idempotents is obvious since we have already proved that
TR =R

Finally, let p be any idempotent-separating congruence of S. Then if (a, b) € p,
we have that (a, b) € 5, and hence there are inverses @’ of a and »" of b such
that aa’ = bb’ and a’'a = b'b. Then, since (a, b) € p, we have (aa’, ba’) e p, ie.
(bb’, ba') € p, and hence (b'bb’, b'ba’) e p, ie. (b',a’) € p. Hence, for all e € E
we have (aea’, beb'} € p, and so aea’ = beb’ since both aea’ and beb’ are idem-
potents, and p separates idempotents. Also (b'eb, a’ea) € p, and so a’ea = b'eb.
Thus, finally, (a, b) € u, and consequently p = p. This completes the proof that u
is the maximal idempotent-separating congruence on S.

We remark that if (x, y) € u, and if x* is an arbitrary inverse of x, then there
exists an inverse y* of y such that xex* = yey* and x*ex = y*ey for all e € E;.
For let (x, y) € u, and let x* be an arbitrary inverse of x. Then there are inverses
x" of x and y’ of y such that xex’ = yey’ and x’ex = y’ey for all e € Eg. Also, since
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(x, y) € 3, there is an inverse y* of y sich that xx* = yy* and x*x = y*y. Then
for all e € Eg,
xex* = xe(x*xx'xx*) = x(ex*x)x'(xx*)
= y(ex*x)y'(xx*) = y(ey*y)y'(yy*) = yey*,
and
x*ex = (x*xx'xx¥)ex = (x*x)x'(xx*e)x
= (x*x)y'(xx*e)y = (y*y)y'(yy*e)y = y*ey.

5. Inverse semigroup congruences

A congruence p on a semigroup S is called an inverse semigroup congruence
if S/p is an inverse semigroup. In this section we examine inverse semigroup con-
gruences on orthodox semigroups from the point of view of the regular kernel nor-
mal systems of the congruences. We also provide an alternative proof of the result
of T. E. Hall [3] that Yamada’s equivalence

(15) ¥ = {(a,b)e SxS:V(a) = V(b)}

(M. Yamada [9]) is a congruence on an orthodox semigroup S, and is the finest
inverse semigroup congruence on S.

Let p be an inverse semigroup congruence on the orthodox semigroup S and
let {4;:iel} be the kernel of p. Choose a€ 4; and e€ 4; N E5. Then a¢, =
e¢, € Es,,, where ¢, is the natural homomorphism corresponding to the congruence
p. Let @’ be an arbitrary inverse of a. Then a'¢, € V(ed,), so a'¢, = ed,, and so
a' € A;. Thus if a e A4;, we have V(a) = A,. In particular, each element 4; of the
kernel of p is regular, and so the kernel and the regular kernel of an inverse semi-
group congruence on an orthodox semigroup coincide.

Now let s be an arbitrary element of S and let 5, s € V(s). Then s'¢,,
s"¢,e V(s¢,), and so s'¢p, = s"'$p,. Thus p identifies all inverses of any given
element of S.

Let o/ = {4, : i eI} be the kernel of the inverse semigroup congruence p on
the orthodox semigroup S. Then we know that p = p’,, the transitive closure of
the relation p,, defined by (3). We now show that in fact p, is transitive, i.e. that
Pa = Py = p. Let (a,b) e p,, and let (b, ¢) € p,. Then there are inverses a’ of
a, b’ and b* of b, and c* of ¢ such that aa’, bb’, ab’ € A;, d'a, b'b, a'b e A;, bb*,
cc*, be* € 4;, and b*b, c*c, b*c € A, for some i, j, k, I e I. Now (b, b*) e p'y = p,
so (bb', bb*) € p. But bb' € A; and bb* € A,. Hence A; = A,, and since (b'b, b*b)
€ p, we also have that 4; = 4,. Hence ad’, cc* € 4; and a'a, c*c € A;. Further,
ab’, be* € A;, and so (ab’)(bc*) = a(b'b)c* € A;. But (b'b, a'a) € p, so (a(b'b)c*,
a(d'a)c*)ep,i.e.ac* € A;. Also,a’b,b*c* e A;, so a'(bb*)c e A;. But (bb*, cc*) e p,
so (a'(bb*)c, a'(cc*)c) € p, ie. a'c € A;. Hence aa’, cc*, ac* € A;and d'a, c*c,d'c e
A;, and consequently (a, ¢) € p,,. Hence p, is transitive, and p, = pl, = p.
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We remark further that since p, = p, and since p identifies all inverses of an
arbitrary element of S, we clearly have that

(16) pa = {(a,b) e Sx S : there exist i and j in I such that
ad',bb’,ab’ € A;,d'a, b'b, a’be A; for all a' € V(a), and all b’ € V(b)}.

We shall make use of the characterization (16) of inverse semigroup congruences on
orthodox semigroups in the sequel.

Before proceeding to the determination of the finest inverse semigroup con-
gruence on an orthodox semigroup, we investigate some of the properties of the set
V (e) of inverses of an idempotent e of the orthodox semigroup S. We already know
that V(e) = Es. Suppose now that e, € V' (e). We prove that under these circum-
stances, V(e) = V(ey). To prove this, let e, be an arbitrary element of F(e).
Then e, e, and e, e, are both in V(e), and

(erez)e; = (erezee1e5)e; = ejes(ee;)(e;eze ) (ee; ).
But e, € V(e,) and e, e, € V(e), so e, e,e, € V{(ee;). Hence
e e,e, = eje,ee, = e e(eje))ee, = e ee, = e,.

The result e,e, e, = e, follows by interchanging e, and e, throughout. Hence
e, € V(ey) and so V(e) = V(e,). The converse result, ¥'(e;) = V(e), follows by
symmetry.

From this result we deduce that if e, and e, are idempotents of S for which
Vie))nV(e,) # [, then V(ey) = V(e,). We also deduce that V (e) is a subsemi-
group of mutually inverse idempotents of S. (Indeed, one can prove that V(e) is a
rectangular band). We make use of these results in the proof of the following
theorem, due to T. E. Hall [3].

THEOREM 5.1. The finest inverse semigroup congruence on an orthodox semi-
group S is Yamada's equivalence %, defined by (15).

Proor. We first prove that ¥~ = {V(e) : e € Eg} is a regular kernel normal
system of S. That V' (e) is a regular subsemigroup of S is obvious, sinceif a, b € V{e)
then abe V(ee) = V(e). We have already proved that ¥V(e) n V(f) = [ if
V(e) # V(f), and it is obvious that Egs = U {V(e) : e € Eg}. Hence ¥~ satisfies
conditions K1, K2, and K3 of regular kernel normal systems. That a'V(e)a <
V(d'ea) for all a€ S, a' € V(a), and e € E is also obvious. To verify K5 and K7,
note that if e, € ¥V (e) and f; € V(f), then e, f; € V(fe) = V(ef). Hence V(e)V (f)
< V(ef). Finally to verify that K6 is satisfied, suppose that a, ab, bb’, b'b € V (e).
Then ae V(bb'), bb' = bb'abb’, b = bb'b = bb'abb’b = (bb')(ab) € V(e), and
K6 is verified. Thus we have established that ¥~ forms the regular kernel of some
congruence p = p% on S. We note that each idempotent of S/p has a unique in-
verse in .S/p, and hence the idempotents of S/p commute. Thus S/p is an inverse
semigroup.
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It follows that p is an inverse semigroup congruence on S and that

p = py = {(a,b) e Sx S : there are elements e, fe E_ such that
aa’,bb’,ab’,ba' € V(e), a'a, b’'b,a’b,b'ac V(f), for all a' e V(a),b' e V(b)},

and that #” is the kernel of p,.. Clearly, any inverse semigroup congruence on S
must identify all inverses of an arbitrary idempotent, and hence it follows that p,
is the finest inverse semigroup congruence on S.

It remains to be proved that p,, = #. Let (a, b) € %, and let @’ be an arbi-
trary inverse of a (and hence of b). Then aa'ba’aa’ = a(a'ba’) = ad', since
beV(a'), and ba'aa’ba’ = b(a'ba’) = ba'. Hence aa’ € V(ba'), and so V(aa') =
V(ba'). Also, d'aa’ba’a = (a'ba’)a = d'a, and a'ba’aa’b = a'(ba'b) = a'b, so V(a'a)
= V(a'b). Hence there is an inverse a’ of a (and of b) such that aa’, ba’ € V(aa’)
and d'a, a’be V(a'a) and it follows immediately that (a, b)€ py, and hence
that & < p,.

Suppose now that (@, b) € p,-. Then there are idempotents ¢ and f of S such
that aa’, bb', ab’, ba' € V(e) and a'a, b'b,a’b,b'ac V(f) for all a’ e V(a), b’ € V' (b).
Let b’ be any inverse of b. Then ab'a = (ab’ba’ab’)a, since ab’ € V(ba'). Hence

ab'a = ab’ba’'(ad’ab'aa’)a = ab'ba'(aa')a
= ab'bd'a = a(d'ab’ba’'a) = ad'a = a,
while
b'ab’ = (b'aa'bb’a)b’, since a'be V(b'a),
and so
b'ab’ = b'aa’b(b’bb’'ab’'b)b’ = b'aa’b(b'b)b’
= b'aa’bb’ = b'(bb'aa’bb’) = b'bb’ = b', so b’ € V(a).

Hence V(b) = V(a), and by symmetry, V(a) < V(b). It follows that (a, b) e %,
and hence that p, = %. Hence py,, = %, as stated.
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