
Appendix

A.1 QDN Notation

Symbol Meaning

× Cartesian product, direct product

⊗ tensor product

Σn stage n

An apparatus at stage Σn

rn number of real or virtual detectors in

An = the rank of An

in the ith real or virtual detector in An

Qi
n the qubit representing in, i = 1, 2, . . . , rn

Qn ≡ Q1
nQ

2
n . . . Q

rn
n the quantum register at stage Σn : a rank-rn

tensor product

In the observer’s information about Qn

Hn ≡ (Qn, In) Heisenberg net at stage Σn

2rn dimension of Qn ≡ dimQn

Bi
n the preferred basis for Qi

n, i = 1, 2, . . . , r

Rrn
n ≡ B1

nB
2
n . . . B

rn
n the preferred basis for Qn : a Cartesian product

kn kth element of computational basis Bn,

k = 0, 1, 2, . . . , 2rn − 1

kn dual of kn

Ψn pure labstate at stage Σn: an element of Qn

Ai
n ith signal destruction operator at stage Σn

Âi
n ith signal creation operator at stage Σn

Pi
n ≡ Ai

nÂ
i
n, ith no-signal projection operator

P̂i
n ≡ Âi

nA
i
n ith signal projection operator

Si
n ≡ {Pi

n, P̂
i
n,A

i
n, Â

i
n} ith signal set

Tij
mn ≡ imjn transition operator
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A.2 Lab Time and Frame Fields

In general relativity (GR), spacetime is modeled as a four-dimensional manifold

with a Lorentz signature metric. In general, GR spacetimes cannot be covered

by a single coordinate patch, particularly if there are closed time-like curves

(CTCs) as in the case of the Gödel metric (Gödel, 1949). In spacetimes with

CTCs, a global temporal foliation cannot be constructed, which means that a

global laboratory perspective cannot be contemplated in such cases.

The principles of quantized detector networks (QDN) are well suited to deal

with such issues. First, QDN is an endophysical approach to empirical physics,

meaning that it does not attempt a global (exophysical) description of the

Universe. In addition, finiteness is the order of the day, which means that

actual physics laboratories are regarded as of finite extent and duration, and

that no infinities are measurable. QDN does not normally attempt to discuss

systems under observation (SUOs) in terms of an infinite number of real or

virtual detectors. The QDN discussion of the bosonic and fermionic oscillators

in Chapter 24 are given to illustrate the remarkable theoretical properties of

infinite-rank quantum registers. In applications to real SUOs, QDN invariably

involves finite-rank quantum registers.

In GR, a relatively localized laboratory description typically involves a complex

of four frame fields , {eμ : μ = 0, 1, 2, 3} constituting the laboratory frame, or

coordinate patch adapted to cover a real physical laboratory. These basis vectors

are usually chosen to satisfy the orthonormality relations

g(eμ, eν) = ημν , (A.1)

where g is the metric tensor and the ημν are the components of a 4 × 4 matrix

displaying the Lorentz signature of a Minkowski metric:

[ημν ] ≡

⎡⎢⎢⎣
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎦ . (A.2)

The significant frame field is e0, which is time-like and indicates the temporal

foliation that dictates clock time over the laboratory. The three other frame fields

are space-like and lie in the space-like hypersurfaces of relative simultaneity that

the observer has set up in their laboratory using some chosen synchronization

protocol.

QDN requires such a framework in order for quantum principles to be appli-

cable: space and time have different roles in QM as it is encountered in the

laboratory. The concept of stage is intimately linked to the existence of such a

framework.

A.3 Lab Time and Stages

Consider an experiment of the Stern–Gerlach type, wherein a beam of particles

is passed through a beam splitter feeding onto two detectors denoted A and B.
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A.3 Lab Time and Stages 347

Suppose each run consists of a beam prepared at labtime reset to t = 0 with

the observer looking at each detector separately, at labtime TA in the case of

detector A, and labtime TB in the case of detector B. We are interested here in

the possibility that TB is very much greater than TA. For instance, suppose TA

is of the order of a millionth of a second and TB is a million years. Then it is an

empirical fact that the two times are not simultaneous relative to the laboratory

concerned, and then the question arises as to whether the observation at A could

causally impact on the observation at B.

In the framework of special relativity, the answer is determined by the lightcone

structure of Minkowski spacetime. If B is outside the forward lightcone centered

on A, then Einstein causality tells us that A could not influence B. In that

situation, an inertial frame could always be found in which these two events were

simultaneous, relative to that frame. Since probabilities are related to outcome

frequencies, which is a counting process of signals, we would expect the same

outcomes in such a frame as in the original frame where TA and TB were vastly

different.

We expect the same results would hold if B was inside the forward lightcone

of A but adequate shielding was in place. In modern electronics, the problem of

undesirable signal interference due to one detector affecting another is known as

crosstalk . Shielding is our term for the elimination of crosstalk. It is a problem

but one that in principle can be overcome. Indeed, it could be argued that the

very existence of physically distinct persistent SUOs co-existing at the same

time is evidence for shielding. The fact that atoms are generally stable and can

be regarded as distinct is direct evidence for that.

This line of reasoning leads to the interesting idea that space itself is a man-

ifestation of shielding. Consider two hydrogen atoms. According to standard

nonrelativistic QM, the combined SUO consists of two identical protons and

two identical electrons. If the atoms were separated by, say, 2 angstroms, we

might be tempted to describe their combined wave function in terms of a two-

proton, two-electron wave function, properly antisymmetrized on account of the

indistinguishability and fermionic nature of the constituents. On the other hand,

if the two atoms were, say, a light year apart, no one would ever think of these

atoms as anything other than two separate SUOs, each described by a one-proton,

one-electron wave function (in standard nonrelativistic QM).

This raises the interesting question: which comes first, space or shielding?

According to Schwinger, quoted in Chapter 24, the space-time is an idealization

of empirical context, so the implication is that the emergent concept of shielding

comes before we can define the reductionist concept of space.

The above arguments tells us that labtime simultaneity or strict lightcone

causality is not essential in signal detection; the important criterion is that

different signal detectors should not interfere causally with, or have the pos-

sibility of interfering causally with, other signal detectors in the experiment.

It is this condition, referred to as shielding, that defines our concept of stage.

Signal detectors that are looked at in such a way constitute a single stage in an

https://doi.org/10.1017/9781009401432.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.028


348 Appendix

experiment. A stage is an collection of detectors that are looked at by an observer

in such a way that no subset of those detectors can causally influence any other

subset.

A stage is therefore a contextual classification of detectors that collectively

plays the same role in QDN as events on a space-like hyperplane of “simultaneity”

in some time-like foliation in general relativity.

The concept of stage undermines the contextually incomplete Block Universe

concept: stages require the existence of observers, and the experimental protocol

(context) to be given explicitly, something that the Block Universe has no place

for. The “Consistent Histories” approach to QM is an interesting development of

QM in that it deals with empirical propositions at multiple different observation

times (Griffiths, 1984), and these could be regarded as stages.

A.4 Ensembles

The ensemble concept arises in physics for two reasons. First, no experiment

normally validates a generalized proposition in a single run, even in classical

physics, which deals with generalized propositions with a generalized proposition

classification (GPC) of 2. Such propositions are based on the classical assertion

that SUOs have precise qualities that can be quantified by exact measurement.

Regardless of their view of that assertion, experimentalists will know that, in

reality, experimental errors and inaccuracies are always present. To overcome

this, multiple runs of the basic experimental protocol are generally performed and

then averages and other statistical quantities established from the accumulated

data. These multiple runs constitute ensembles of one kind or another.

The second reason for the use of ensembles is that quantum physics asserts

that the outcome of any given run in an experiment is a random variable, so that

statistical analysis based on the Born rule is required as a matter of principle

and policy.

Ensembles come in several varieties, each with its particular spatiotemporal

architecture, and each characterized by generally unstated, implicit context.

Whichever kind of ensemble is chosen depends on several factors usually outside

the experimentalist’s control, such as limited resources and time. The following

are two important kinds of ensemble.

Spatial Ensembles

A spatial ensemble is a physical collection in a given laboratory of multiple,

mutually isolated (from each other) copies of a given SUO, such as atoms in

a crystal, such that a basic run is performed on each copy once. The statistics

for the experiment is then established by collecting the outcome data from each

copy and assuming that outcome frequencies can be attributed to probabilities

associated with the original SUO.
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In experiments based on relatively localized laboratories, wherein physical

conditions are relatively homogeneous, this ensemble concept is usually reason-

able. However, three problems may arise. First, different copies may actually

interact with each other. This is the case in magnetic resonance experiments, for

instance, where an interaction between nuclear spins and their neighboring spin

environment is all the point. The second problem is that inhomogeneities in the

laboratory environment may invalidate the above logic. For instance, a spatial

ensemble carrying out an Unruh-type experiment in an accelerating laboratory

(in contrast to a freely falling one) will almost certainly display laboratory

inhomogeneities in what looks like a local gravitational field. The third problem

is one of economics. Some experiments cannot be based on the idealized spatial

ensemble concept simply because each individual run may be too costly or too

big in spatial terms to duplicate in any laboratory. An example is the Large

Hadron Collider: there is only one particle accelerator and it is very big and very

expensive.

In the case of the Large Hadron Collider, there is a modification of the spa-

tial ensemble concept that works excellently: multiple copies of the same SUO

(protons) are contained in a single circulating beam. Assumptions are then made

that during the very brief time of interaction involved, each proton behaves as if

it was isolated from the other protons in that beam and would interact with only

one other proton in the opposing beam. The beam statistics of the Large Hadron

Collider, are impressive: in a given run, each beam consists of 2,808 bunches of

protons, and each bunch contains about 1011 protons.

Temporal Ensembles

Some experiments are too costly to perform via spatial ensembles, so the standard

alternative is to use a temporal ensemble. In such an architecture, multiple

runs of the same basic protocol are implemented in temporal succession using

the same apparatus each time. In principle, an ideal temporal ensemble should

be equivalent to an ideal spatial ensemble, but that is an assertion that can

be challenged on the basis of cosmological evidence. It is now believed that the

universe is expanding in an irreversible way, relative to all endophysical observers.

Therefore, the environment around any laboratory is not quite the same during

any given run of an experiment as any other run. Of course, such discrepancies

are minute and could be laughed at as generating a pointless debate, were it not

for one glaring fact: the expansion does have observable effects, namely, the red

shift of light from distant galaxies.

The issue here is the relative scale of times: a comparison of the typical time

τ to complete a given run, the interval T to the next run, and the age A of

the Universe estimated from the observed Hubble constant. When τ and T are

both negligible compared with A, as is almost always the case, then temporal

ensembles should be as good as spatial ensembles.
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The impact of cosmological expansion should not be too lightly dismissed. It

has been speculated by scientists such as Dirac that the gravitational constant G

and perhaps even the speed of light c may change over cosmological time scales

(Dirac, 1938a). Therefore, any discussion of observed physical properties such as

electron mass and other properties should take such issues into account if the

context merits it.

We note that Peres did not consider temporal ensembles to be proper ensembles

in QM (Peres, 1995), but the fact is that many experiments are indeed carried

out via such ensembles.

A.5 Vector Spaces

A vector space (V,F) over a field F such as the real numbers R or complex

numbers C is a set V of elements V ≡ {a, b, . . .}, known as vectors, with the

following properties:

(i) There is a binary map � : V ×V → V such that, for any elements a, b ∈ V ,

the object a � b ∈ V . This is called addition of vectors, or just vector

addition. The elements of V are called vectors.

Vector addition is commutative, i.e.,

a � b = b � a, ∀a, b ∈ V. (A.3)

Vector addition is associative, i.e.,

a � (b � c) = (a � b) � c, ∀a, b, c ∈ V. (A.4)

(ii) There is a unique element in V , known as the zero vector, denoted by 0V ,

such that

a � 0V = a, ∀a ∈ V. (A.5)

(iii) For every vector a, there exists an additive inverse, denoted by −a, such

that

a � (−a) = 0. (A.6)

These properties mean that V is an abelian group under vector addition.

(iv) For any a ∈ V , λ ∈ F, then the object λa ∈ V . This is known as multiplica-

tion by a scalar, or just scalar multiplication. In this context, the elements

of F are called scalars.

Scalar multiplication satisfies the property

λ (μa) = (λμ)a, λ, μ ∈ F,a ∈ V. (A.7)

(v) Scalar multiplication is distributive, i.e.,

λ (a � b) = (λa) � (λb) ,

(λ+ μ)a = (λa) � (μa)
(A.8)
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It is standard practice to use V to mean (V,F). The ground field F is generally

understood, but it is important to know whether it is R or C. In the former case

we say V is a real vector space, while in the latter case we say V is a complex

vector space. The space of three-vectors used to represent position in physical

space is a real vector space, while the Hilbert space of quantum state vectors is

a complex vector space.

It is easy to show that, ∀λ ∈ F, λ0V = 0V . Likewise, if 0F is the zero element

in F, then 0Fa = 0V , ∀a ∈ V . It is important not to confuse the scalar zero 0F
and the vector zero 0V .

In practice, we do not bother to use a different symbol for vector addition, �,

in order to distinguish addition in the field, +. Henceforth, the same symbol, +,

will be used for both.

We often modify the notation involving the additive inverse −b, writing

a+ (−b) = a− b, (A.9)

thereby suggesting a new binary process known as subtraction. This is not nec-

essary, but it is useful and should always be interpreted in terms of the addition

of vectors.

What is immensely astounding is that the above theory, which may appear no

more than a mathematician’s game, seems necessary to describe empirically val-

idated quantum physics, with the additional surprise that the field F is required

to be C and not R.

Subspaces of a Vector Space

Suppose U is a subset of a vector space V over some field F. If U is a vector

space over F, using the same rules for vector addition and scalar multiplication

as for V , then we say U is a subspace of V . Every subspace of V necessarily

contains the zero vector 0V of V .

Given two subspaces U1, U2 of V , then the intersection U1 ∩ U2 is the set of

elements common to U1 and U2, and is also a subspace of V .

Spanning Sets

Suppose S ≡ {v1,v2, . . . ,vk} is a set of vectors in some vector space V with

ground field F. LetM be the set of all vectors of the form x1v1+x2v2+· · ·+xkvk,

where x1, x2, . . . , xk ∈ F. Then M is a subspace of V , spanned by S. We write

M ≡ [v1,v2, . . . ,vk] . (A.10)

S is called a spanning set for M .

Linear Independence

An expression of the form x1v1+x2v2+ · · ·+xkvk, where v1,v2, . . . ,vk ∈ V and

x1, x2, . . . , xk ∈ F is called a linear combination of the vectors v1,v2, . . . ,vk.
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If the xi are not all zero, then it is called a nontrivial linear combination.

Otherwise it is called trivial.

A set of vectors {v1,v2, . . . ,vk} is linearly dependent if there exists a nontrivial

linear combination equal to the zero vector 0V . In other words, {v1,v2, . . . ,vk}
is linearly dependent if the equation

x1v1 + x2v2 + · · ·+ xkvk = 0V (A.11)

has a solution for which at least one of the xi is nonzero.

A set of vectors {v1,v2, . . . ,vk} is linearly independent if the only solution to

Eq. (A.11) is x1 = x2 = · · · = xk = 0F.

Theorem A.1 The nonzero vectors v1,v2, . . . ,vn ∈ V are linearly dependent

if and only if one of the vectors vk is a linear combination of the preceding ones

v1,v2, . . . ,vk−1.

A single nonzero vector v is necessarily independent, since the xv = 0V if and

only if x = 0F.

A linearly independent spanning set is called a basis. (A.12)

Theorem A.2 Any vector space that has a finite spanning set contains a basis.

A vector space is finite dimensional if it has a finite basis (i.e., one consisting

of a finite number of vectors). Hence, every vector space spanned by a finite

spanning set is finite dimensional.

Theorem A.3 If V is a finite-dimensional vector space with basis e1, e2, . . . , en
then every vector v in V can be expressed in one and only one way as a linear

combination

v = x1e1 + x2e2 + · · ·+ xnen = xiei (A.13)

using the summation convention.

All bases of a finite-dimensional vector space have the same number of ele-

ments. The dimension dimV of a finite-dimensional vector space V is the number

of elements of a basis.

Linear Transformations

Let U and V be two vector spaces, not necessarily of the same dimension, over

the same field F. A linear transformation (or linear mapping) T of U into V is

a mapping that assigns to every u ∈ U a unique vector T (u) ∈ V , such that

T (u1 + u2) = T (u1) + T (u2) , ∀u1,u2 ∈ U,

T (λu) = λT (u) , ∀u ∈ U, ∀λ ∈ F.
(A.14)

T (u) is the image of u under T .

The set of all linear mappings of U into V is denoted L (U, V ) .
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Given a linear transformation T (U, V ), the set of all vectors u ∈ U such that

Tu = 0V (A.15)

is called the kernel of T and written kerT .

The set of all vectors T (u), u ∈ U is called the image of U under T , and is

denoted by T (U) .

The following is a critical theorem in QDN.

Theorem A.4 (Tropper, 1969) If T ∈ L (U, V ), then kerT is a subspace of

U and T (U) is a subspace of V , such that

dimkerT + dimT (U) = dimU. (A.16)

If dimkerT is called the nullity of T and dimT (U) is called the rank of T ,

then the above theorem can be stated as

nullity of T + rank of T = dimU. (A.17)

Linear Functionals

A linear functional f̃ is a linear mapping of a vector space V into its ground field

F, such that

f̃ (αu+ βv) = αf̃(u) + βf̃ (v) ∈ F, ∀α, β ∈ F, ∀u,v ∈ V. (A.18)

Note that summation on the left-hand side is in V , while summation on the

right-hand side is in F. Denote the set of all linear functionals over V by L (V,F).

When F = R, then f̃ is a real-valued linear functional, whereas if F = C then

f̃ is a complex-valued linear functional.

One-Forms

Given any two linear functionals f̃ , g̃ ∈ L (V,F), define the linear combination

αf̃ + βg̃, where α,β ∈ F by the rule(
αf̃ + βg̃

)
(v) ≡ αf̃(v) + βg̃ (v) , α, β ∈ F, v ∈ V. (A.19)

With this rule, L (V,F) is itself a vector space, known as the dual vector space

and denoted by V ∗. Elements of this vector space will be called one-forms.

The convention we shall follow as much as possible is that vectors will be

represented by symbols in bold, such as v, while one-forms will be denoted by

symbols with a tilde, or a bar, such as ω̃ or ω.

The one-form/vector relation is employed in QDN in our representation of

questions and answers, as discussed in Chapter 2.

An important fact is that when V is finite dimensional, then V ∗ has the same

dimension, namely, dimV ∗ = dimV .
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Dual Basis

Suppose V is an n-dimensional vector space with basis B (V ) ≡ {ea: a = 1,

2, . . . , n}. Then an arbitrary vector v ∈ V can be written in the form

v =

n∑
a=1

vaea, (A.20)

where the {vi} are known as the components of v relative to the basis B (V ).

Given B (V ), we can always find a basis B (V ∗) ≡ {ẽa: a = 1, 2, . . . , n} for the

dual space V ∗ such that ẽa(eb) = δab. We call B∗ (V ) the conjugate basis. This

greatly simplifies calculations.

Bracket Notation

Given a vector v ∈ V and one-form ω̃ ∈ V ∗, the bracket notation 〈ω̃,v〉 ≡ ω̃ (v)

is often used. In quantum mechanics, vectors are often written as kets , such as

|ψ〉, and dual vectors as bra-vectors, such as 〈φ|, a notation used extensively by

Dirac (Dirac, 1958). Then the “inner product” 〈φ|ψ〉 is called the bracket of |ψ〉
and 〈φ|.
Quantum mechanics vector spaces use a complex-valued field and the following

rule is imposed: 〈φ|ψ〉∗ = 〈ψ|φ〉.

Tensor Product Spaces

Suppose U and V are vector spaces over the same field F. It is possible for U and

V to be copies of the same vector space, but not necessarily so. If they were, we

would simple label them U1 and U2, respectively. Significantly, U and V need

not have the same dimension.

If u ∈ U and v ∈ V , then the direct product u⊗ v is identified with (u,v), an

element of the Cartesian product space U × V .

Example A.5 Consider the vector space of all real 2×2 matrices M (2,R) and

the vector space of all real 3×3 matricesM (3,R) . Then elements of the Cartesian

product M (2,R) × M (3,R) are given by Kronecker products of matrices. For

example, if A ≡ [Aab] ∈ M (2,R) and B ≡ [Bij ] ∈ M(3,R), then the Kronecker

product A⊗B ≡ [Cai,bj ] is an array with double matrix indices, such that

Cai,bj ≡ AabBij , a, b = 1, 2, i, j = 1, 2, 3. (A.21)

Unfortunately, direct product vector spaces are not vector spaces themselves,

which can be readily seen by considering linear combinations of arbitrary

elements.

Because we need vector addition to represent superposition in QM, and we find

ourselves dealing with tensor products, we overcome this problem by extending

U × V to a larger space, the tensor product of U and V , denoted by U ⊗ V. This

tensor product space is defined to contain all linear combinations of elements of

the Cartesian product space U × V and satisfies all the axioms of a vector space
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over the common ground field F. Elements of U ⊗V are either of the form u⊗v

(which is in U × V ) or linear combinations of such direct products, which may

or may not be in U × V .

Elements of U ⊗ V that are of the form u ⊗ v for u ∈ U , v ∈ V are called

separable. Elements of U ⊗ V that are not separable are called entangled.

Entanglement is of great significance in quantum mechanics. The physically

observable properties of entangled quantum states lie at the heart of the problems

with the interpretation of quantum mechanics.

As with ordinary arithmetic, the tensor product operation ⊗ takes precedence

over the vector summation operation + in U⊗V , so we may leave out the brackets

and just write

(u1 ⊗ v1) + (u2 ⊗ v1) ≡ u1 ⊗ v1 + u2 ⊗ v2 ∈ U ⊗ V. (A.22)

Note that U ⊗ V is a vector space over the field F common to U and V .

Multiplication by a scalar can be considered in several ways:

λ {u⊗ v} = (λu)⊗ v = u⊗ (λv) = λu⊗ v. (A.23)

Similarly,

λ {u1 ⊗ v1 + u2 ⊗ v2} = λu1 ⊗ v1 + λu2 ⊗ v2. (A.24)

Denote the zero vectors in U , V , and U⊗V by 0U , 0V , and 0U⊗V , respectively.

Then for any u ∈ U , v ∈ V , we have

0U ⊗ v = u⊗ 0V = 0U⊗V . (A.25)

Likewise, if 0F is the zero element of the field F, then

0F(u⊗ v) = 0U⊗V . (A.26)

Rank

The rank of a tensor product space is the number of vector spaces in the product.

For example, U ⊗ V is a rank-two tensor product space; U1 ⊗ U2 ⊗ · · · ⊗ Un is

of rank n.

Elements of a given tensor product have the rank of that tensor product space.

Hence scalars have rank zero, while vectors and one-forms have rank one.

Given a number of vectors spaces V 1, V 2, . . . , V r, then the rank-r tensor

product space V 1 ⊗ V 2 ⊗ · · · ⊗ V r has dimension equal to the product of all

the individual dimensions, that is,

dim
{
V 1 ⊗ V 2 ⊗ · · · ⊗ V r

}
=
{
dimV 1

}{
dimV 2

}
. . . {dimV r} . (A.27)

Likewise, if V 1∗, V 2∗, . . . , V s∗ are dual vector spaces, we define the rank-s

tensor product space V 1∗ ⊗ V 2∗ ⊗ · · · ⊗ V s∗ in an analogous way, and similarly

for mixed tensor product spaces such as V 1 ⊗ V 2∗ ⊗ · · · .
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Separable Bases

If {ua : a = 1, 2, . . . ,dimU} is a basis for U and {vb : b = 1, 2, . . . ,dimV } is a

basis for V , then a frequently useful basis for U ⊗V is given by {ua⊗vb : a = 1,

2, . . . ,dimU , b = 1, 2, . . . ,dimV }. Every element of this basis is a separable

element of the tensor product space U ⊗ V , so we call this a separable basis .

From this we immediately conclude that

dim {U ⊗ V } = {dimU} · {dimV } . (A.28)

This result generalizes to higher rank tensor product spaces.

Hilbert spaces

Hilbert spaces are finite or infinite dimensional vector spaces with a complete

inner product (Streater and Wightman, 1964).
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