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In biology, cells undergo deformations under the action of flow caused by the fluid
surrounding them. These flows lead to shape changes and instabilities that have been
explored in detail for single component vesicles. However, cell membranes are often
multicomponent in nature, made up of multiple phospholipids and cholesterol mixtures
that give rise to interesting thermodynamics and fluid mechanics. Our work analyses
shear flow around a multicomponent vesicle using a small-deformation theory based on
vector and scalar spherical harmonics. We set up the problem by laying out the governing
momentum equations and the traction balance arising from the phase separation
and bending. These equations are solved along with a Cahn–Hilliard equation that
governs the coarsening dynamics of the phospholipid–cholesterol mixture. We provide
a detailed analysis of the vesicle dynamics (e.g. tumbling, breathing, tank-treading and
swinging/phase-treading) in two regimes – when flow is faster than coarsening dynamics
(Péclet number Pe � 1) and when the two time scales are comparable (Pe ∼ O(1)) – and
provide a discussion on when these behaviours occur. The analysis aims to provide an
experimentalist with important insights pertaining to the phase separation dynamics and
their effect on the deformation dynamics of a vesicle.
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1. Introduction
Flow around biological membranes holds a great deal of importance in a multitude of
systems (Seifert 1999; Herzenberg et al. 2006; Shi et al. 2018; Salmond et al. 2021).
These biological membranes are modelled using surrogate structures known as vesicles.
Vesicles are complex droplets having a lipid bilayer on the surface instead of simple fluid
boundaries. The presence of this lipid bilayer imparts an elastic resistance to bending
(Helfrich 1973). These lipid bilayer membranes act like two-dimensional (2-D) fluid
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sheets that resist any stretching or compression (Campelo et al. 2014). Apart from being
a marvellous surrogate system for understanding the biophysics of cellular membranes,
lipid vesicles are often used as carriers for drug delivery processes (Needham 1999; Guo
& Szoka 2003).

Lipid bilayers are made up for long chain compounds known as phospholipids that
contain a hydrophilic head and a hydrophobic tail (Alberts 2017). When the bilayer consists
of a single type of phospholipid, we call them ‘single component’ vesicles. These vesicles
have been the centre of a plethora of studies over the past five decades. The physical
properties and thermodynamics of such vesicles can be characterized by a lipid bilayer
exhibiting a uniform bending resistance (Lipowsky & Sackmann 1995). Previous studies
have explored the dynamics of such single component vesicles in great detail by studying
multiple modes of vesicle motion in different systems: (i) shear flow – tank-treading
(Keller & Skalak 1982; Seifert 1999; Abkarian, Lartigue & Viallat 2002), swinging
(Noguchi & Gompper 2007), tumbling (Biben & Misbah 2003; Rioual, Biben & Misbah
2004; Noguchi & Gompper 2005; Kantsler & Steinberg 2006) and vacillated breathing
(Misbah 2006); (ii) extensional flow (Zhao & Shaqfeh 2013; Narsimhan et al. 2014, 2015;
Dahl et al. 2016; Kumar, Richter & Schroeder 2020); (iii) general linear flows (Vlahovska
& Gracia 2007; Lin & Narsimhan 2019); (iv) oscillatory flows (Lin et al. 2021).

The deep understanding of single component vesicles has provided a base for further
explorations into systems that are closer to reality. Often, these lipid bilayer membranes
contain multiple phospholipids along with cholesterol molecules interspersed between
them (John et al. 2002). The existence of multiple molecules in these bilayers makes for
an incredible amalgamation of phase equilibrium thermodynamics and fluid mechanics
(Safran 2018). Some of these phospholipids (e.g. dipalmitoylphosphatidylcholine (DPPC))
have a larger affinity towards cholesterol molecules than others (e.g. 1,2-Dioleoyl-
sn-glycero-3-phosphocholine (DOPC)) (Veatch & Keller 2005a; Davis, Clair & Juhasz
2009; Uppamoochikkal, Tristram-Nagle & Nagle 2010). This preferential separation into
phases leads to the formation of ordered and disordered liquid phases on the membrane
surface (Veatch & Keller 2005b), a term known as ‘lipid rafts’ (Simons & Ikonen 1997).
These rafts have a relevance in signal transduction (Simons & Toomre 2000) and protein
transfer across membranes, thereby having implications for health and diseases (Michel &
Bakovic 2007). These factors underscore the importance of studying such systems.

From a mechanical viewpoint, the existence of multiple phases imparts inhomogeneous
properties like the bending rigidity to the vesicle due to the differences in bending
stiffnesses of each constituent phospholipid (Baumgart, Hess & Webb 2003). Moreover,
the resultant lateral phases fall prey to a tussle between convective motion due to the
background fluid and surface diffusive motion due to the inherent molecular properties
of the phases (Yanagisawa et al. 2007; Taniguchi, Yanagisawa & Imai 2011; Arnold,
Gubbala & Takatori 2023).

While creating medical diagnostic devices, often, the measurement of mechanical
properties of such vesicles is important (Kollmannsberger & Fabry 2011; Lei et al.
2021). These measurements help in improving the control and precision of devices.
Previously, multiple numerical simulations have been performed to understand the
motion of multicomponent vesicles under shear flow (Sohn et al. 2010; Liu et al. 2017;
Gera & Salac 2018b). These studies have highlighted the influence of line tension and
bending rigidity, along with the membrane tension of the vesicle, on the modes of motion
that the vesicle undergoes – tank-treading, tumbling, swing/phase-treading, vertical
banding, among others. More recently, under the limit of dominant advective forces,
researchers came up with an analytical treatment of 2-D multicomponent vesicles and
their swinging-to-tumbling transition (Gera, Salac & Spagnolie 2022). The transition
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primarily depended on a ratio of the bending stiffness of the two phases and the capillary
number of the vesicle. While informative and thoughtful, the study lacked an analytical
treatment of the case when diffusive time scales are comparable to that of the convective
time scales. Secondly, the study treated a multicomponent vesicle as a 2-D inextensible
membrane, thus leaving room for out-of-plane deformations. To the authors’ knowledge,
such an analytical treatment has not been provided yet.

We aim to bridge this gap of knowledge through this study that focuses on the
semianalytical prediction for a three-dimensional (3-D), nearly spherical, multicomponent
vesicle placed under a background shear flow. We leverage the vector spherical harmonics-
based techniques previously used for single component vesicles and drops (Vlahovska,
Loewenberg & Blawzdziewicz 2005; Vlahovska & Gracia 2007) to solve the underlying
nonlinear dynamical equations up to leading order, while ensuring conservation of the
composition and vesicle surface area. This helps us arrive at reduced-order equations
governing the shape and composition of the vesicle and the phospholipid–cholesterol
phases, respectively. We delineate multiple motions exhibited by the vesicle and discuss
their dependence on material properties. The aim of this study is to equip an experimental
researcher with a theory that could a priori predict the vesicle dynamics based on the
material specifications and control variables.

We discuss problem set-up, solution strategy and numerical methods in §§ 2 and 3.
We discuss results for multicomponent vesicles in the high Péclet number limit in § 4,
where membrane coarsening effects are unimportant. We then discuss results in the
intermediate Péclet number limit in § 5, where coarsening effects come into play. We
discuss implications of asymmetric phase distributions in § 6. We then conclude the study
with a discussion in § 7.

2. Problem formulation
We consider a lipid membrane vesicle containing a ternary mixture of phospholipids and
cholesterol undergoing phase separation on the membrane surface (see figure 1). This
vesicle is placed in an unbounded domain containing a background shear flow u∞ = γ̇ y x̂.
This membrane encloses a Newtonian fluid of viscosity (λ− 1)η with a surrounding fluid
of viscosity η, where λ− 1 is the viscosity ratio between the inner and outer fluids. The
bilayer has a bending stiffness of κc that is dependent on the phospholipid distribution
characterized by an order parameter q. This dependence will be explained in § 2.1.
Furthermore, the lipid molecules impose a membrane tension to preserve the membrane
surface area A and there exists a line tension between the separated phases (indicated by
black and white coloured lipid heads). The vesicle has a characteristic size R which is the
radius of a sphere of the same volume.

2.1. Free energy of membrane
The lipid membrane energy landscape has been a problem of interest for the past few
decades. Historically, a lipid bilayer membrane is treated as an elastic surface. Multiple
models have been used to describe such materials – the Keller Skalak model (Keller &
Skalak 1982), area difference model (Seifert 1997) and Helfrich model (Helfrich 1973;
Campelo et al. 2014) to name a few. In our study, we use a Canham–Helfrich model.

The free energy of a multicomponent membrane is governed by three factors: bending,
mixing and surface tension energies. The bending energy is given by

Wbend =
∫

1
2
κc(2H − c0)

2dS, (2.1)
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r = rs(x, t)
κc = k0 + k1q

q ∈ (–1, 1)

η

σ

(λ – 1)η

γ

u∞ = γ· yx̂

Figure 1. Schematic of system. The inset shows a zoomed-in version of the lipid bilayer and its properties
(see § 2.1).

where κc = k0 + k1q is a bending modulus that depends on the lipid phase behaviour
characterized by an order parameter q. The order parameter q is a variable whose values
can range from −1 corresponding to pure Ld (cholesterol-lacking) and +1 corresponding
to pure Lo (cholesterol-rich). Thermodynamically speaking, this is the local coordinate
along a tie line in the two-phase coexistence region that is present in the ternary phase
diagram for a system like DOPC, DPPC and cholesterol. A tie line represents the line
that connects the compositions of the ordered and disordered phases at equilibrium, as
commonly seen in liquid–liquid extraction systems (Geankoplis 2003). The values of k0
and k1 are k0 = 1/2(κlo + κld) and k1 = 1/2(κlo − κld), where κl0 and κld are the bending
moduli of the L0 and Ld phases, respectively. Lastly, the parameters H and c0 are the mean
and spontaneous curvatures of the bilayer leaflet. We treat c0 = 0 for a symmetric leaflet.

The mixing energy is given by the Landau–Ginzberg equation (Gompper & Klein
1992):

Wmix =
∫ (

ã

2
q2 + b̃

4
q4 + γ 2

2
|∇sq|2

)
dS. (2.2)

The first two terms represent a double-well potential that gives rise to phase separation
(for ã < 0), and the last term is an energy penalty for creating phases that is related to
line tension. This free energy has been used in many studies of lipid systems undergoing
phase separation. These parameters are related to the experimentally measured phase split
concentrations (q±), line tension (ξ line) and the interface width (εwidth) as follows:

q± = ±
√

|ã|/b̃, ξ line = 2
√

2

3b̃
|ã|3/2γ, εwidth =

√
2γ 2

|ã| . (2.3)

The Landau–Ginzberg equation has been used to qualitatively model bilayer membranes
(Gera & Salac 2018b) – see the appendix of Camley & Brown (2014) for estimated values
of ã, b̃ and γ for a specific system (R ∼ O(nm)). In their study, they mention that an
approximate value for q+ ≈ 0.3 would be appropriate for phase-split concentrations.

Lastly, the surface tension energy is given by

Wσ =
∫

σdS = constant. (2.4)
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The above contribution is constant because the lipid area per molecule is conserved and
thus the membrane is incompressible. The surface tension σ thus acts as a Lagrange
multiplier to ensure area conservation.

2.2. Fluid motion and membrane interface dynamics
We solve the Stokes equations inside and outside the vesicle that govern the velocity, stress
and pressure distributions:

(λ− 1)η∇2uin = ∇ pin; ∇ · uin = 0; (2.5a)

η∇2uout = ∇ pout; ∇ · uout = 0. (2.5b)

These equations are subject to the following boundary conditions: (i) far-field, uout →
u∞ as |x| → ∞; (ii) continuity of velocity, uin = uout for x ∈ S; (iii) membrane
incompressibility, ∇s · uin = 0 for x ∈ S; (iv) traction balance, f hyd = f mem for x ∈ S.

In the traction balance, f hyd = n · (T out − T in) is the hydrodynamic traction from
viscous stresses, where n is the outward-pointing normal vector and T = μ(∇u + ∇uT ) −
p I is the stress tensor for a fluid with viscosity μ (μ = η outside the vesicle, μ = (λ− 1)η

inside the vesicle). The membrane traction f mem is equal to the first variation of the
membrane free energy with respect to position: f mem = δW/δx. This can be broken
into bending, mixing and surface tension contributions f mem = f bend + f mix + f σ , with
expressions for each shown as follows:

f bend = δWbend

δx
= −n∇2

s (κc(2H)) + κc(2H)
[
∇s(2H) + (2K − 4H2)

]
n

+ 2H

(
1
2
κc(2H)2

)
n − ∇s

(
1
2
κc(2H)2

)
, (2.6a)

f mix = δWmix

δx
= γ 2∇s · (∇sq⊗∇sq) + 2H

(
1
2
γ 2|∇sq|2 + g(q)

)
n

− ∇s

(
1
2
γ 2|∇sq|2 + g(q)

)
, (2.6b)

f σ = δWσ

δx
= 2σ H n − ∇sσ. (2.6c)

The reader is directed to the following publications for details on how these equations are
derived: Napoli & Vergori 2010 and Gera 2017. In the above expressions, ⊗ represents a
dyadic product, ∇s = (I − nn) · ∇ is the surface gradient and g = (ã/2)q2 + (b̃/4)q4 is
the double well potential in the mixing free energy (2.2). The quantities K = det(L) =
C1C2 and H = (1/2)tr(L) = (C1 + C2)/2 are the Gaussian and mean curvatures of the
interface, respectively, where L = ∇sn is the surface curvature tensor. The surface tension
σ is a Lagrange multiplier to enforce membrane incompressibility (∇s · u = 0 on the
interface), and hence must be solved in addition to the velocity and pressure fields.

In addition to the flow field, one must also solve for order parameter q on the membrane
surface. The flow and coarsening behaviour of the order parameter satisfy a Cahn–Hilliard
equation (Gera 2017),

∂q

∂t
+ ∇s · (uq) = ν

ζ0
∇2

s ζ, (2.7a)

ζ = δW

δq
=
(

ãq + b̃q3 − γ 2∇2
s q + k1

2
(2H)2

)
, (2.7b)
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where in the above expression, ν is the mobility of the phospholipids (units of metres
squared per second) and ζ = δW/δq is the surface chemical potential (units of energy
per area). The above expression states that lipids are either convected along the surface
or move via gradients in chemical potential. The value reference chemical potential ζ0 is
given in Gera 2017.

Lastly, we impose the kinematic boundary condition to avoid any slip on the membrane
surface. If we parameterize the vesicle radius as r = rs(x, t), the kinematic boundary
condition is below, where D/Dt = (∂/∂t) + u · ∇ is the material derivative:

D
Dt

(r − rs) = 0 x ∈ S. (2.8)

2.3. Time scales and dimensionless quantities
The vesicle dynamics occur over four time scales. The first one is a bending time
scale tbend = R3η/k0 that denotes the time taken by a vesicle to restore its equilibrium
configuration under the action of bending forces. The second time scale is that of the flow
tγ̇ = γ̇ −1 .The third represents the time scale for coarsening tq = R2/ν and the fourth
represents the rotational time scale tr = λγ̇ −1. We pick the same characteristic scales
for physical quantities as previously used in flow studies for single component vesicles
(Vlahovska & Gracia 2007). All lengths are non-dimensionalized by the equivalent radius
R, all times by the flow time scale tγ̇ = γ̇ −1, and all velocities by U f low = R/tγ̇ = Rγ̇ .
All pressures and viscous stresses are scaled by ηγ̇ , whereas the membrane tractions f mem

are scaled by k0/R2.
Table 1 lists the set of physical parameters for this problem and their typical

experimental values, while table 2 lists the dimensionless numbers for this problem. The
first three dimensionless numbers are ones that are also found in the single component
vesicle literature – the viscosity ratio parameter λ= (μin + μout)/μout between the inner
and outer fluids, the capillary number χ = ηR3γ̇ /k0 relating the viscous to bending
forces on the membrane and the dimensionless excess area Δ = A/R2 − 4π representing
the floppiness of the vesicle. The remaining dimensionless numbers occur only in
multicomponent vesicles. Of these, the most important ones are the dimensionless bending
stiffness difference between the two phases β = k1/k0 = (κlo − κld)/(κlo + κld), the Cahn
number Cn = γ /(R

√
ζ0) (i.e. ratio of line tension energy to the energy scale of phase

separation), the surface Péclet number Pe = R2γ̇ /ν (i.e. ratio of coarsening time from
diffusion to flow time) and the line tension parameter α = k0/γ

2 (ratio between bending
energy to line tension energy). Note that the Cahn number can be re-expressed as the
ratio between the interface thickness and vesicle size Cn = εwidth/(

√
2R). Furthermore,

the average concentration q0 affects the position along the local energy landscape. It also
affects stresses arising from the phase energy (2.6b).

3. Solution for a nearly spherical vesicle

3.1. Perturbation expansion
We solve for the vesicle shape and composition as a function of time in the limits of small
changes in deformation and concentration. We use ε1 = Δ1/2 and ε2 = q+ as perturbation
variables with ε1 ∼ ε2, where Δ is the excess area and q+ = √−a/b is the phase split
concentration (see table 2). This approximation (i.e. weak segregation approximation), has
been used in multiple studies related to copolymer systems (Leibler 1980; Fredrickson &
Helfand 1987; Seul & Andelman 1995), and has been applied to multicomponent vesicles
in the past (Taniguchi et al. 1994; Kumar, Gompper & Lipowsky 1999). We solve the
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Variable Name Order of magnitude Reference

R Equivalent radius of spherical vesicle O(1) µm Deschamps et al. (2009)
k0 Average bending stiffness between

two phases
O(10−19 − 10−18) J Amazon et al. (2013)

k1 Half of bending stiffness difference
between two phases

O(10−19) J Amazon et al. (2013)

ν Mobility of phospholipids O(10−11) m2 s−1 Negishi et al. (2008)
γ Line tension parameter O(10−9) J1/2 Luo & Maibaum (2020)
γ̇ Shear rate O(0.1 − 1) s−1 Deschamps et al. (2009)

Table 1. Physical parameter ranges and orders of magnitude.

Variable Name Value

λ= (μin + μout)/μout Viscosity ratio parameter O(1 − 10)

χ = ηR3γ̇ /k0 Capillary number O(0.01 − 1)

� = A/R2 − 4π Excess area O(0.01 − 0.1)

a = ã/ζ0 Dimensionless double well potential term O(0.01 − 0.1)

b = b̃/ζ0 Dimensionless double well potential term O(1)

q+ = √−a/b Phase split concentration O(0.01 − 0.1)

β = k1/k0 Ratio of bending stiffnesses O(0.1 − 1)

Cn = γ /(R
√

ζ0) Cahn number O(0.1 − 1)

α = k0/γ
2 Ratio of bending stiffness to line tension O(1)

Pe = R2γ̇ /ν Péclet number (coarsening time scale/flow time scale) O(1 − 1000)

q0 Average order parameter O(q+)

Table 2. Dimensionless parameter ranges and orders of magnitude.

dynamical equations in § 2.2 to leading order, keeping volume (V = 4π/3) and surface
area (A = 4π + Δ) conserved to O(ε2

1) and average order parameter (q0 = A−1 ∫ qdA)

conserved to O(ε2
2).

Briefly, we expand the vesicle shape, surface tension and composition in terms
of spherical harmonics. The non-dimensional vesicle quantities (radius rs , membrane
tension σ , and order parameter q) are written as

Z(θ, φ) = Z0 +
∞∑

l=1

+l∑
m=−l

ZlmYlm(θ, φ) (3.1)

where Z ≡ (rs, σ, q). In the above equation, Ylm(θ, φ) are spherical harmonics
(Appendix A), while Zlm = ( flm, σlm, qlm) are coefficients for shape, surface tension
and composition to be solved, with flm, σlm ∼ O(ε1) and qlm ∼ O(ε2), with ε1 ∼ ε2.
The isotropic quantities Z0 = (r0, σ0, Q0) are determined by applying the constraints
of constant volume, constant area, and average order parameter. We obtain r0 = 1 −
1/4π

∑
lm flm f ∗

lm and Q0 = q0 − 1/2π
∑

lm qlm f ∗
lm . The isotropic surface tension σ0 is

obtained implicitly from the expression
∑

lm(l + 2)(l − 1) flm f ∗
lm = Δ, which arises from

conserving area to O(ε2
1).
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3.2. Solving Stokes equations
We solve the Stokes equations around the vesicle to determine how the shape and
surface tension coefficients ( flm, σlm) evolve over time. This section provides a high level
overview of the steps, with algebraic details provided in Appendix B.

We Taylor expand the membrane tractions f mem in (2.6) to O(�1/2) on the surface of a
sphere. We then solve Stokes equations with this traction boundary condition (χ f hydro =
f mem at r = 1), along with boundary conditions of continuity of velocity across the
interface (uout = uin at r = 1), membrane incompressibility (∇s · uin = 0 at r = 1) and far-
field velocity (uout → y x̂ as r → ∞). We note that this idea is commonplace in studies
of single component vesicles (Misbah 2006; Vlahovska & Gracia 2007) – the difference
here is that we are examining a situation where f mem takes a more complicated form (see
§ 2.2). Stokes flow is solved using fundamental basis sets for Lamb’s solution – i.e. a series
solution using vector spherical harmonics. We use the notation in Vlahovska et al. (2005)
and Bławzdziewicz et al. (2000), details are found in Appendix B.

Once one performs this procedure, one applies the kinematic boundary condition (2.8).
Doing so yields the differential equation for the shape mode flm of the vesicle:

d flm

dt
= im

2
flm + c+

lm2. (3.2)

The first term on the right-hand side comes from the rigid body rotation from shear
flow, while the next term (c+

lm2) comes from the extensional deformation, which depends
on the shape modes flm , concentration modes qlm and isotropic surface tension σ0. The
final results are presented here,

c+
lm2 = λ−1Clm + λ−1χ−1 [(Al + Blσ0) flm + Dlqlm

]
(3.3)

where the coefficients (Al , Bl , Clm, Dl ) are listed in (B10)–(B11) in Appendix B. These
depend on the the mode number (l, m) as well as the dimensionless quantities discussed
in table 2.

We note that the above expression (3.3) depends on the isotropic surface tension σ0,
which one obtains by applying constraint of constant excess area given by dΔ/dt = 0,
where the excess area is given by Δ =∑

lm(l + 2)(l − 1) flm f ∗
lm . This constraint couples

all modes in the differential equation for the shape in (3.2).

3.3. Solving the Cahn–Hilliard equation
To determine how the concentration modes qlm evolve over time, we solve the Cahn–
Hilliard equation (2.7). In the perturbative limits Δ 
 1, q+ 
 1, we Taylor expand all
quantities to O(Δ1/2) and O(q+) on the unit sphere except the terms coming from the
double-well potential (i.e. 1/2 ∗ aq2 + 1/4 ∗ bq4), where we keep all higher-order terms in
the chemical potential. The reason why we perform this task is that such higher-order terms
are needed to have a quartic free energy expression, which is necessary to have two-phase
coexistence with a tie line. We note that similar approximations have been applied for
equilibrium studies of multicomponent vesicles (Luo & Maibaum 2020). In the cited study,
the free energies are Taylor expanded to quadratic order in the shape and concentration
modes except the double well term, where modes are kept to quartic order. This yields
tractions and chemical potentials to the same order of accuracy as the current study.

The Cahn–Hilliard equation becomes
dqlm

dt
= im

2
qlm − 1

Pe

[
Λlml(l + 1) + Cn2l2(l + 1)2qlm

+ 2αCn2β(l − 1)l(l + 1)(l + 2) flm
]
, (3.4)
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l
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64 8 10

α = 1

Cn = 0.5

β = 0.1

Δ = 0.01

χ = 0.5

Figure 2. Error convergence plots for Cn = 0.5. The parameters for the simulations are α = 1, β = 0.1, Δ =
0.01, χ = 0.5, a = −0.1, b = 1, q0 = 0, Pe = 5, λ= 2. The y-axis represents the ratio of the difference in the
order parameter over the vesicle surface divided by the average magnitude of the order parameter of the case
with most modes lmax = 11.

where Λlm = ∫
Ω

(aq + bq3)YlmdΩ is the chemical potential from the double-well
potential, projected onto spherical harmonics by integrating over a unit sphere. This term
is weakly nonlinear as discussed above.

3.4. Numerical procedure
The final equations we solve are (3.2) for the vesicle shape along with conservation of area,
as well as (3.4) for the concentration. These are coupled, nonlinear ordinary differential
equations (ODEs).

When solving these equations, we decompose the shape and concentration modes into
real and imaginary parts

flm = f ′
lm + i f ′′

lm, qlm = q ′
lm + iq ′′

lm, (3.5)

and perform an ODE solve for the components ( f ′
lm, f ′′

lm, q ′
lm, q ′′

lm). We only solve for
components with m ≥ 0 since for the radius to be real, f ′

l−m = (−1)m f ′
lm and f ′′

l−m =
(−1)m+1 f ′′

lm , with similar relations holding for the concentration. Since we need to ensure
that the constraint of area conservation is satisfied A = 4π + Δ, utilizing regular solvers
is not feasible. We have developed a predictor–corrector scheme to solve the ODEs as
mentioned in Appendix C. After solving for the spectral coefficients, we reconstruct
the vesicle shape and concentration fields using the spherical harmonic series in (3.1).
A benchmark is provided in Appendix D for examining coarsening on a rigid sphere in the
absence of flow. We have also benchmarked our results against those of previous studies
pertaining to single component vesicles (Vlahovska & Gracia 2007).

For most of the simulations we perform, we choose a cutoff mode number between
lmax = 6 and lmax = 10 when computing the order parameter. We find that beyond this
number, the dominant modes 0 ≤ l ≤ 4 for shape and order parameter change less than
2 %, and thus the trends discussed in the results section do not change appreciably. Figure 2
shows an example of a convergence test. Here, we computed the order parameter q(θ, φ, t)
using different cutoff modes, and compared the results with a simulation using a high
cutoff mode. The relative error we computed was e = ∫

S(q̄approx − q̄true)dA/
∫

S q̄truedA,
where q̄true is the time-averaged value at (θ, φ) using the highest cutoff mode and q̄approx
is the time-averaged value at (θ, φ) using the lower cutoff mode. For small values of Cn
(Cn 
 1), we expect that a spectral method may lead to inaccuracies as one will encounter
the sharp interface limit that is hard to resolve owing to the Gibbs phenomenon.

1020 A49-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10632


A. Venkatesh and V. Narsimhan

u∞ = γ· y u∞ = γ· y u∞ = γ· y

y (gradient)

z (vorticity)

x (flow)

y (gradient)
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z (vorticity)

x (flow)

x(flow)
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Flow-vorticity plane

Flow-gradient plane
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Figure 3. Initial conditions for Pe � 1 simulations. (a) In-plane l = 2 modes, f ′
22 = f ′′

22 = f20 =√
0.1Δ, q ′

22 = √
Δ/8; (b) out-of-plane l = 2 modes, f ′

22 = f ′′
22 = f20 = √

0.1Δ; q ′
22 = q ′

20 =, q ′
21 = √

Δ/8.
(c) One lobe initial condition with l �= 2 concentration modes, f ′

22(0) = f ′′
22(0) = f20(0) = √

Δ/10, and
q ′

lm(0) = √
Δ/8, q ′′

lm(0) = 0; l = 1, 2, 3, m = 0, . . . , l.

4. Multicomponent vesicles, Pe � 1
4.1. Overview and initial conditions

This section will examine multicomponent vesicles in the limit of large Péclet number
(Pe � 1), where the flow time scale is much faster than the coarsening time scale. In
this regime, coarsening effects are unimportant, and the dynamics is determined by the
inhomogeneous bending rigidity set by the initial condition. This regime has previously
been studied for 2-D vesicles (Gera et al. 2022) where motions such as tumbling and
swinging have been observed. However, we are unaware of similar studies for 3-D systems.

One question that naturally arises is whether the 3-D geometry will alter the dynamics
significantly compared with the 2-D case. To answer this question, we will structure this
section as follows. We will first examine initial conditions for concentration (qlm) and
shape ( flm) where the l = 2 modes are excited, giving rise to a prolate-like shape with
two lobes of a stiff (Lo) phase. These were argued to be the dominant modes in the 2-D
study. We will first excite the l = 2 modes that are symmetric about the flow-shear plane
(l = 2, m = 0, ±2), replicating conditions similar to a 2-D study, and then excite the l = 2
modes that do not obey this symmetry – coined out-of-plane modes (see figures 3a and 3b).
We will conclude by examining initial conditions in which many l �= 2 modes are excited
for concentration (figure 3c).

Overall, when the initial shape and concentration profiles obey in-plane symmetry, one
sees in-plane tumbling and swinging behaviour very similar to the 2-D studies. When out-
of-plane modes are excited, one will also see tumbling and swinging, but the swinging can
exhibit weak, out-of-plane oscillations, while the tumbling can occur out of plane. If the
initial concentration profile is not symmetric with respect to the flow-gradient plane, the
profile will remain non-symmetric and will retain the same number of lobes as the initial
condition (thus, the concentration solution is not limited to the l = 2 subspace). Details are
provided below.

4.2. Exciting l = 2 modes in-plane
This section explores the effects of exciting the l = 2 modes in-plane for shape and
concentration. This initial condition corresponds to the situation mentioned in figure 3(a).
In this case, an analytical theory for in-plane dynamics can be developed, similar to
previously developed 2-D theories (Gera et al. 2022).
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When Pe → ∞, the diffusive coarsening effects are negligible and the phospholipids
are convected by the background shear flow. Setting Pe−1 = 0 in (3.4) yields

dqlm

dt
= im

2
qlm, (4.1)

and hence the solution is oscillatory: qlm(t) = qlm(0) exp(imt/2). The shape of the
vesicle is then given by (3.2) along with conservation of area constraint, using the above
expression for qlm . We will solve for the shape and concentration modes for l = 2, m = ±2.
We find that the l = 2, m = 0 shape mode ( f20) quickly decays to zero.

Since the dynamics are in plane, we will examine the equatorial plane of the vesicle
(θ = π/2) and decompose the shape and concentration as follows (using the notation of
Gera et al. 2022):

rs(θ = π/2, φ, t) = 1 + ε1a2(t) cos(2φ) + ε1b2(t) sin(2φ), (4.2a)
q(θ = π/2, φ, t) = ε2 cos(2φ + t), (4.2b)

where a2 and b2 are time dependent coefficients to be determined, and ε1 = Δ1/2 and
ε2 = q+ are the small parameters in this problem. In terms of the coefficients ( flm, qlm)
discussed in the paper, f2 ± 2 = 2ε1

√
2π/15(a2 ∓ ib2) and q2 ± 2 = 2ε2

√
2π/15 exp(±i t).

If we define a modified capillary number as C = χ/ε1 and modified time τ = t/ε1, we
find the leading-order shape dynamics in (3.2) for C ∼ O(1), τ ∼ O(1) and ε2/ε1 ∼ O(1)

to be
da2

dτ
= −Θ

(
a2, b2, ε1τ,

ε2

ε1
, C, λ, β

)
b2,

db2

dτ
= Θ

(
a2, b2, ε1τ,

ε2

ε1
, C, λ, β

)
a2. (4.3)

These sets of ODEs take the same form as the 2-D case, except that the expression Θ is
different due to the geometry of the problem. Appendix E shows the algebra to obtain Θ –
here we state the final results. For the 3-D system, we obtain

Θ3D = 512π

5(9 + 23λ)

[
5
8

a2 + ε2

ε1
βC−1 (a2 sin(ε1τ) + b2 cos(ε1τ))

]
, (4.4)

while for the 2-D system, we obtain

Θ2D = 3π

2λ

[
a2 + ε2

ε1
βC−1 (a2 sin(ε1τ) + b2 cos(ε1τ))

]
, (4.5)

where in the 2-D case the small parameter ε1 is related to the excess length as ε1 = Δ
1/2
2D

(see Appendix E). The expressions for Θ depend on the viscosity ratio λ, reduced area
ε2

1 = Δ and a lumped bending stiffness parameter S = (ε2/ε1)βC−1 = βq+/χ . Results
are discussed below.

The system of equations (4.3) admit a periodic solution for the shape modes a2(t) and
b2(t). Two different behaviours are seen:

(i) swinging – after an initial transient, the vesicle undergoes weak oscillations in its
inclination angle φi about a fixed value, while the concentration field performs a full
rotation along the membrane (for visualization, see figure 4);

(ii) tumbling – the vesicle shape and concentration field undergo in-plane rigid body
rotation (for visualization, see figure 5).
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y (gradient)

x (flow)

t = 0 t = 2.402 t = 5.602 t = 8.402

Swinging

u∞ = γ· y

Figure 4. Swinging visualization in flow-gradient plane for Pe � 1. The initial condition is figure 3(a),
and the parameters are Pe = 104, a = −0.1, b = 1, Cn = 0.4, α = 1, β = 0.5, Δ = 0.1, χ = 0.6, q0 = 0,

λ= 2. The blue phase represents the softer phase and the yellow phase represents the stiffer phase. The black
double arrow represents oscillations about a fixed axis (dashed line) after an initial transient. The blue arrow
represents the motion of the phases around the vesicle. See Supplementary movie (Video1.mp4) for colourbar
details.

y (gradient)

x (flow)
t = 0 t = 2.402 t = 5.602

Tumbling

u∞ = γ· y

Figure 5. Tumbling visualization in the flow-gradient plane for Pe � 1. The initial condition is figure 3(a),
and the parameters are Pe = 104, a = −0.1, b = 1, Cn = 0.4, α = 1, β = 0.5, Δ = 0.1, χ = 0.01, q0=0, λ=2.
The blue phase represents the softer phase and the yellow phase represents the stiffer phase. The black and
blue arrows represent rigid body motion of the shape and concentration field, while the dashed line is the initial
orientation. See Supplementary movie (Video2.mp4) for colourbar details.

For a fixed viscosity ratio λ and excess area Δ, the transition between the two behaviours
is determined by the dimensionless quantity S = (ε2/ε1)βC−1 = βq+/χ . Below a critical
value of this parameter, swinging occurs, while tumbling occurs above the critical value.
Figure 6 illustrates a typical phase diagram. We see that the critical conditions exhibit
similar trends for 3-D and 2-D vesicles, although their quantitative values might be
different (Gera et al. 2022). The explanation for these trends is given by the authors as
follows. (i) At low background shear rates, the vesicle elongates in the direction of the
softer phase in a quasisteady manner. These regions have a higher curvature. In order to
match the phase to the curvature, the vesicle undergoes rigid body tumbling. (ii) On the
other hand, when the shear rates are high, the viscous stresses dominate over the elastic
stresses thereby pushing the stiffer phase past the high curvature region. In order to account
for this phase-shape mismatch, the vesicle undergoes a swinging motion.

Figure 7 shows a plot for a2(t) and b2(t) for swinging and tumbling vesicles, comparing
the 3-D and 2-D theories in the limit Pe → ∞. As mentioned, the agreement is not exact
due to multiple prefactors entering the 3-D analysis compared with the 2-D case. However,
the agreement for tumbling is nearly exact in both cases. The discrepancy primarily arises
due to the differences in expressions for Θ2D and Θ3D .
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Figure 6. Phase diagram for Pe → ∞ limit at Δ = 0.1 and λ= 2, q+ = 0.1.
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Figure 7. Here Pe → ∞ results comparison with Gera et al. (2022) at Δ = 0.0001 by solving (4.3) and
assuming ε2 = ε1 = Δ1/2.

Lastly, in Appendix F, we show a comparison between the Pe → ∞ theory (4.3) and full
numerical simulations (solving (3.2) and (3.4)). We see that the analytical theory matches
well with numerics for Pe ∼ O(100) or above for both tumbling and swinging. We have
also seen that shape deformations f20 in simulations rapidly decay to zero, indicating that
deformations in this mode do not appear to affect the theory quantitatively.

4.3. Effects of higher modes being excited
In this section, we look at effects of exciting qlm modes that are not constrained
to l = 2. The initial condition considered in the following simulations is f ′

22(0) =
f ′′
22(0) = f20(0) = √

Δ/10, and q ′
lm(0) = √

Δ/8, q ′′
lm(0) = 0; l = 1, 2, 3, m = 0, . . . , l.

On superimposing these modes, the resultant structure is one lobe containing the stiffer
phase and the remaining being primarily the softer phase (see figure 3c).

Similar to the previous case, swinging is seen where the concentration performs a full
rotation along the membrane while the inclination angles exhibit weak oscillations in the
shear-flow and the flow–vorticity planes (figure 8). The modes are plotted in figure 9
to understand the numerical details. We calculate the inclination angles (θi , φi ) with
respect to the shear-flow plane and shear-vorticity plane using the moment of inertia tensor
(Ramanujan & Pozrikidis 1998). The vesicle maintains its one lobe concentration profile
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y (gradient)

x (flow)

z (vorticity)

x (flow)

t = 0 t = 2.402 t = 7.202 t = 12.002

Flow-vorticity plane

Flow-gradient plane

u∞ = γ· y

Figure 8. Swinging visualization when higher-order qlm modes are excited for Pe � 1. The initial condition
is figure 3(c), and the parameters for simulations are β = 0.5, α = 1, a = −0.1, b = 1, Pe = 104, Δ = 0.1, χ =
0.6, Cn = 0.4, λ= 2, q0 = 0. The blue phase represents the softer phase and the yellow phase represents the
stiffer phase. The black double arrow represents oscillations about a fixed axis (dashed line) after an initial
transient. The blue arrow represents the motion of the phases around the vesicle. See Supplementary movie
(Video7.mp4,Video8.mp4) for colourbar details.
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Figure 9. Modes and inclination angles for figure 8 (swinging for Pe � 1).

during its motion, indicating that the spatial concentration pattern is set by the initial
condition.

In the second type of motion (tumbling), as seen in figure 10, the oscillations in the
shear-flow plane are significant (rigid-body rotations), whereas the oscillations in the
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y (gradient)

t = 0 t = 2.402 t = 7.202

x (flow)

x (flow)

z (vorticity)

Flow-vorticity plane

Flow-gradient plane

u∞ = γ· y

Figure 10. Tumbling visualization when higher-order qlm modes are excited for Pe � 1. The initial condition
is figure 3(c), and the parameters for simulations are β = 0.5, α = 1, a = −0.1, b = 1, Pe = 104, Δ = 0.1, χ =
0.01, Cn = 0.4, q0 = 0, λ= 2. The blue phase represents the softer phase and the yellow phase represents the
stiffer phase. The black and blue arrows represent rigid body motion of the shape and concentration field, and
the dashed line is the initial orientation. See Supplementary movies (Video9.mp4,Video10.mp4) for colourbar
details.
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Figure 11. Modes and inclination angles for figure 10 (tumbling for Pe � 1).

vorticity-flow plane are small. We plot the modes in figure 11. We can observe that the f3m
deformations are an order of magnitude smaller than f2m modes which is expected due to
the nature of the background flow. This vesicle behaves almost like an oblate-spheroid
rotating in flow.
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We also performed multiple simulations with initial conditions same as those in
figure 3(b). The primary observation is that the nature of motion remains similar to
figures 8 and 10, albeit with a different concentration topology. In these simulations,
the order parameter fields look like figure 3(b). The movies for such motions can be
seen in Video3.mp4 (swinging), Video4.mp4 (swinging), Video5.mp4 (tumbling) and
Video6.mp4 (tumbling).

5. Multicomponent vesicles, intermediate Pe
In this section, we focus on vesicles undergoing motion for a Pe ∼ O(1−10). Under
this regime, the flow and coarsening time scales are comparable, which give rise to a
wider range of vesicle shape behaviours compared with the previous section. Additional
parameters to consider (beyond the ones discussed previously) are (i) line tension
parameter α = k0/γ

2, which indicates the relative bending to line tension energy, and (ii)
Cahn number Cn = εwidth/(

√
2R), which is related to the interface width compared with

the vesicle size. This is also related to line tension. Just like in the previous section, we
will divide our analysis based on the initial conditions of the simulations – (i) in plane
dynamics (flow-shear), and (ii) out-of-plane dynamics.

5.1. In-plane dynamics
Below summarizes the behaviour observed in the long time limit when one excites the
l = 2 shape and concentration modes in-plane. The initial condition is given in figure 3(a).

(i) Tank-treading. Here, both the vesicle’s shape and concentration field are stationary.
The vesicle is ellipsodal and fixed at a steady inclination angle φi , and the
concentration field is frozen (figure 12). This behaviour can only be found when
coarsening effects are present, since the concentration field in the Pe � 1 limit only
admits periodic solutions (see (4.1)).

(ii) Tumbling. The vesicle’s shape and concentration field exhibit rigid body rotation
(figure 13). One can observe that the f20 mode decays rapidly, thereby leaving purely
in-plane rotations.

(iii) Vacillated – breathing/trembling. The vesicle performs rotations in the flow-gradient
plane while there are significant deformations in the flow–vorticity plane represented
by the f20 mode (figure 14). A detailed understanding of this motion is given in
Misbah (2006).

Figures 12–14 show snapshots of these behaviours, as well as typical plots for the shape
modes flm , concentration modes qlm and in-plane inclination angle φi . Movies are also
provided in the Supplementary material.

Occasionally, we have observed situations where the vesicle undergoes tumbling motion
before the motion dampens out at very long times to tank-treading behaviour. This has
been noted in figure 15. We believe this is not a numerical instability but arises from the
nonlinear mode-mixing term bq3 in the Cahn–Hilliard equation. It is important therefore
to understand what is the time scale at which these motions are observed experimentally.
In figure 15, we see that the tumbling motion persists up to t ∼ 10, which translates to a
physical time of 10γ̇ −1 that could range from O(1) − O(10) s. Shear flow experiments are
usually limited by issues like photobleaching or the escape of the vesicle from the field-of-
view. Hence, we believe in order to characterize the motion, the time scale of observation
should be reported for a phase diagram. For the other dynamical regimes listed above, we
do not observe a change of behaviour at very long times (t ∼ O(100)).
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Figure 12. Tank-treading for Pe ∼ O(1). The initial condition is figure 3(a), and the parameters are χ =
0.1, α = 1, Cn = 1, β = 0.1, λ= 2, Pe = 5, Δ = 0.1, a = −0.1, b = 1, q0 = 0. The blue phase represents the
softer phase, and the yellow phase represents the stiffer phase. The inset snapshot represents the frozen state
and inclination angle of the vesicle. See the Supplementary movie (Video11.mp4) for colourbar information.
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Figure 13. Tumbling for Pe ∼ O(1). The initial condition is figure 3(a), and the parameters are α = 1, β =
0.5, Cn = 0.4, χ = 0.01, Pe = 5, λ= 2, Δ = 0.1, a = −0.1, b = 1, q0 = 0. The colour bar represents the order
parameter q . The blue phase represents the softer phase and the yellow phase represents the stiffer phase.
The blue and black arrows represent rigid-body motion of lipids and shape, and the dashed line is the initial
orientation. See Supplementary movie (Video12.mp4) for visualization.
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Figure 14. Breathing for Pe ∼ O(1). The initial condition is figure 3(a), and the parameters are χ = 0.01,

α = 1, Cn = 0.8, β = 0.1, λ= 10, Pe = 5, Δ = 0.1, a = −0.1, q0 = 0, b = 1. The inset snapshot represents the
visualization of the vesicle undergoing breathing motion. The blue phase represents the softer phase and
the yellow phase represents the stiffer phase. See Supplementary movies (Video13.mp4,Video14.mp4) for
visualization and colourbar information.
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Figure 15. An example of tumbling motion dampening to give rise to tank-treading. The parameters are
λ= 2, β = 0.25, Cn = 0.5, Pe = 5, Δ = 0.1, χ = 0.01, a = −0.1, b = 1, q0 = 0, α = 1.

5.2. Out-of-plane dynamics
In this section, we inspect the effects of exciting out-of-plane, higher-order modes not
constrained to the l = 2 space. The initial condition is in figure 3(c). In the following
simulations, unless specified, we used a cutoff mode lmax = 8 when solving the shape and
order parameter. The following behaviours were observed.

5.2.1. Tank-treading (stationary)
In some simulations, we see the vesicle is frozen with a steady shape and concentration
profile. This typically occurs when the interface width between phases is diffuse (Cn ∼ 1),
where the vesicle behaves similarly to a single component vesicle with matched viscosity
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λ= 2 – stationary tank-treading motion. The steady inclination in-plane angle φi depends
on the excess area and has been discussed previously (Vlahovska & Gracia 2007). The
out-of-plane inclination angle θi is π/2, which indicates that the vesicle remains in the
flow-shear (gradient) plane. We also note that the initial condition that primarily consisted
of one yellow (stiff) lobe develops two lobes and stays stationary (indicated by q ′

22, q ′′
22).

Essentially, this motion is very similar to the in-plane counterpart discussed in § 5.1. See
Supplementary movie Video15.mp4 for more details.

5.2.2. Tumbling
When the capillary number χ is low, the vesicle is stiffer and tumbles under the influence
of the background shear flow. The vesicle preserves its one-yellow-lobe configuration.
The f2m modes exhibit oscillatory motion. This motion is similar to the high Pe limit
tumbling (see figure 10). See Supplementary movies Video16.mp4 and Video17.mp4 for a
visualization.

5.2.3. Swinging/phase-treading
When the capillary number χ is higher, the vesicle undergoes swinging motion where the
concentration rotates along the membrane and the shape exhibits weak oscillations about
a fixed orientation. Similar to the high Pe limit, the shape oscillations are weakly out of
plane. However, unlike the high Pe limit where the topology of the concentration profile is
set by the initial condition, here the topology of the profile can change due to coarsening
effects. For example, for the initial condition discussed in figure 3(c) where the vesicle
has one single stiff (Lo) domain, coarsening during swinging gives rise to two stiff phases
treading along the surface (figures 16 and 17). However, this effect is highly dependent
on flow strength, bending stiffness and line tension. If for example we keep the same
conditions as figure 16, except we increase the capillary number (increase χ ) and increase
line tension (decrease α), one can see a situation where the one lobe initial condition
persists and gives rise to l = 1 mode swinging in the subsequent results (figures 18 and
19). In this motion, the q11, q1−1 modes persist while all other higher modes qlm decay.
The vesicle behaves like a Janus particle with divided phases, similar to what has been
noted in previous studies (Gera & Salac 2018a).

5.2.4. Phase diagrams
This section provides phase diagrams to quantify general trends for vesicle dynamics.
Since there is a large region of phase space to explore, we will isolate the effect of a few
variables mentioned in § 2.3.

The first set of variables we will explore are the capillary number (χ ) and line tension
parameter (α). We will choose a moderately deflated vesicle (Δ = 0.1) with matched
interior and exterior fluid viscosity (λ= 2) and zero average order parameter (q0 = 0),
and choose O(1) values for the other parameters: Pe = 5, β = 0.5. Figure 20 shows the
types of motion observed by the vesicle for different values of capillary number χ and
line tension parameter α, when the initial condition is the same as that of figure 3(c).
Two different interface widths are examined: Cn = 0.2 (more sharp) and Cn = 0.55 (less
sharp). The regimes are reported over time window t ≈ 50.

We will now explain the reasons behind these phase diagrams. In the first case where
we see the relatively sharper interface Cn = 0.2 (figure 20a), we see that at small capillary
numbers (χ ), the vesicle exhibits tumbling motion. The rationale for this is that a low value
of χ increases flm/χ in the shape equations (3.2)–(3.3). This effect causes the vesicle
to elongate in the softer phase direction, after which it is rotated by the vorticity of the
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Figure 16. Phase-treading/swinging snapshots when higher-order qlm modes are excited at Pe ∼ O(1).
The initial condition is figure 3(c), and parameters are β = 0.5, α = 3, a = −0.1, b = 1, Pe = 5, Δ = 0.1,

χ = 0.3, Cn = 0.2, λ= 2, q0 = 0. The blue arrow represents the lipid motion whereas the double-headed black
arrow represents the vesicle shape oscillations about a fixed angle (black dashed line). The concentration profile
coarsens from one lobe to two lobes. See Supplementary movies (Video18.mp4, Video19.mp4) for visualization
and colourbar information.
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Figure 17. Modes and inclination angles for figure 16 (phase-treading at Pe ∼ O(1) with topology change).
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Figure 18. Phase-treading/swinging snapshots at Pe ∼ O(1) when higher-order qlm modes are excited with
l = 1 modes driving the lipid motion. The initial condition is figure 3(c), and the parameters are β = 0.5,

α = 1, a = −0.1, b = 1, Pe = 5, Δ = 0.1, χ = 0.6, Cn = 0.2, λ= 2 and q0 = 0. The blue arrow represents the
lipid motion whereas the double-headed black arrow represents oscillations about a fixed angle (black dashed
line). See Supplementary movies (Video20.mp4, Video21.mp4) for visualization and colourbar information.

0

×10–3

–20

–10
flm

0.1

–0.1

0qlm

0.1

–0.1

0qlm

0.2

–0.2

0flm

0 10

Phase-treading

20

t

0 10 20

t
0 10 20

t

0 50 0 5 10

t t
0 50

t

q′
10

q′
1
′
1

q′
1
′
1

θi

π

(3π)/4

π/4

π/2 0φi

π/4

π/8

–(π/8)

q′
21

q′
22

q′
2
′
1

q′
2
′
2

q20

f ′
21

f ′
2
′
1

f ′
22

f ′
2
′
2

f20

f ′
31

f ′
3
′
1

f ′
32

f ′
3
′
2

f ′
33

f ′
3
′
3

f30

Figure 19. Modes and inclination angles for figure 18 (phase-treading at Pe ∼ O(1) without topology change).
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Figure 20. Phase diagrams for α versus χ at Δ = 0.1, Pe = 5, β = 0.5, λ= 2, a = −0.1, b = 1, q0 = 0. In
these simulations, the initial condition is figure 3(c).

background flow, leading to tumbling motion, very similar to what is seen in the high Pe
limit (see § 4). When we increase the χ value, depending on how stiff the vesicle is (given
by α) we can get swinging/phase-treading motion. The (im/2)qlm term in the Cahn–
Hilliard equation (3.4) drives the oscillatory behaviour of qlm . This translates to the shape
equation (3.2)–(3.3) showing oscillatory motion due to the qlm term, but the χ−1 prefactor
in (3.3) dampens these oscillations leading to swinging/phase-treading motion. We have
further subdivided the phase-treading/swinging motion into l = 1 and l = 2 driven, akin to
figures 16 and 18.

When the vesicle interface becomes more diffuse (Cn increases), we see that the vesicle
shows behaviour more similar to single-component vesicles. This is seen in figure 20(b)
where the Cn = 0.55. At small χ values, the term χ/Δ1/2 is small thereby driving
tumbling motion as stated before. As χ increases, the flm oscillations are dampened out in
the shape equations (3.2)–(3.3) and the qlm oscillations in the Cahn–Hilliard equation (3.4)
are dampened due to the line tension penalty term Cn2l2(l + 1)2qlm coming into play. As
this Cn increases further, the vesicle will largely show tank-treading behaviour, which is
expected for single component vesicles with a matched viscosity (λ= 2).

6. Effect of asymmetric distributions
In the previous sections, we presented results based on q0 = 0 which indicates an effective
50 : 50 phase distribution of the two separated phases. However, it is possible that we might
encounter cases where q0 �= 0. In such cases, our theory can help predict the dynamics in
limits where the q0 value is not large enough to lie outside the phase-split region. On
inspecting the shape equations (B10), we see that the shape-concentration coupling term
Dl could make a drift caused by q0. One can observe from (B10) that for l = 1 modes, the
shape coefficients take the following form:

d f1m

dt
= im f1m

2
− χ−1

[
4μ0

9αCn2

]
q1m, (6.1)

where μ0 = aq0 + bq3
0 This indicates that any non-zero initial condition in q1m would

induce a drift in f1m , which would lead to translational motion – i.e. centre of mass
tracking.

This phenomenon can be observed in figure 21. When one performs simulations at
the same initial conditions but examines two different average concentrations q0 = 0.01
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Figure 21. Lateral drift caused by asymmetric phase split (q �= 0). In both cases, the initial condition is
f ′
22(0) = f ′′

22(0) = f20(0) = √
Δ/10, and q ′

10(0) = q ′
11(0) = q ′

22 = √
Δ/8. The parameters for the simulations

are Pe = 5, λ= 2, a = −0.1, b = 1, Δ = 0.1, β = 0.5, χ = 0.6, α = 1, Cn = 0.4.

and q0 = 0, one observes that a non-zero q0 generates a oscillatory drift in the f ′
11, f ′′

11
modes and a non-zero drift in f10. This indicates that the centre of mass of the vesicle
performs sinusoidal oscillations about a fixed point in space. This lateral drift has been
observed in previous studies as well (Gera & Salac 2018b). Lastly, we note that although
the mechanisms are different, a similar oscillatory translational motion has been observed
in single component vesicles in quadratic flows with confinement, and has been coined
‘snaking’ (Lyu et al. 2023).

7. Conclusion
In this study, we explored the effect of shear flow around a multicomponent vesicle
containing a ternary mixture of phospholipids and cholesterol molecules within the
bilayer. We analysed the small-deformation, weakly segregated limit and found that
multicomponent vesicles exhibit very different dynamics compared with their single
component counterparts. Results were examined in two distinct limits: one where the
coarsening dynamics on the surface are unimportant (Pe � 1), and another where the
coarsening time scale is comparable to the flow time scale (Pe ∼ O(1)).

When Pe � 1, the phases are advected by the shear flow over the surface. The strength
of the coupling with the shape deformations, given by S = βq+/χ , determines the nature
of this motion – swinging or tumbling. The initial conditions heavily dictate the dynamics
in this system. In cases where purely the l = 2 in-plane modes are excited, the results
show qualitative agreement with previous 2-D studies on such vesicles at the Pe → ∞
limit (Gera et al. 2022). However, when out-of-plane modes are excited, it is possible
to observe weakly out-of-plane tumbling and swinging motion. The concentration profile
will perform periodic dynamics and retain its initial topology over time. Thus, if it starts
asymmetric with respect to the flow-gradient plane, it will remain asymmetric over time.
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In the intermediate Pe limit (Pe ∼ O(1) − O(10)), we observe variety of motions
based on the initial conditions and physical parameters such as tumbling, breathing,
swinging/phase-treading and tank-treading. The biggest difference between Pe ∼ O(1) and
Pe � 1 dynamics is that coarsening can occur on the membrane, which can give rise to
stationary shapes and concentration profiles like tank-treading (which is not admissible in
the Pe → ∞ limit), and can alter the topology (i.e. number of lobes) in the concentration
profile during swinging or tank-treading. We provided a general overview of the dynamics
and illustrated phase diagrams for the different dynamical regimes. Generally, tumbling
is favoured at small capillary numbers. At higher capillary numbers, phase-treading or
tank-treading can occur, with the latter favoured at lower line tensions (e.g. more diffuse
interface between phases). Lastly, we discussed the role of asymmetric phase split on the
dynamics (q �= 0), which can give rise to effects like oscillatory translational motion.

While the weak-segregation, small-deformation limit eases up the mathematical rigour
largely due to the exclusion of nonlinear stresses, we believe it provides a great starting
point for further semianalytical treatments of these systems using higher-order theories.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10632.
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Appendix A. Spherical harmonics
We define spherical harmonics Ylm using the following convention (Jones 1985):

Ylm(θ, φ) =
√

(2l + 1)(l − m)!
4π(l + m)! (−1)m Pm

l (cos θ)eimφ, (A1)

where (θ, φ) are the polar and azimuthal angles, and Pm
l are associated Legendre

polynomials. The inner products of these spherical harmonics are orthonormal – i.e.∫
YlmY ∗

l ′m′dΩ = Δll ′Δmm′ , where the integral is over the unit sphere and ∗ represents
complex conjugate. Furthermore, the following relationship holds: Yl−m = (−1)mY ∗

lm .
We can also define vector spherical harmonics as follows:

ylm0 = [l(l + 1)]−1/2 r∇Ylm, ylm1 = i r̂ × ylm0, ylm2 = r̂Ylm . (A2)

These vector spherical harmonics follow the properties of orthogonality by dot product
and inner product.

Appendix B. Algebraic details for Stokes flow solution

B.1. Lamb’s solution
Using vector spherical harmonics in (A2), one can define the velocity basis sets u±

lmq
(q = 0, 1, 2) where ± represents growing or decaying harmonics, respectively,

u−
lm0 = 1

2
r−l(2 − l + lr−2) ylm0 + 1

2
r−l [l(l + 1)]1/2(1 − r−2) ylm2, (B1a)

u−
lm1 = r−l−1 ylm1, (B1b)

u−
lm2 = 1

2
r−l(2 − l)

(
l

l + 1

)1/2

(1 − r−2) ylm0 + 1
2

r−l(l + (2 − l)r−2) ylm2, (B1c)
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u+
lm0 = 1

2
rl−1(−(l + 1) + (l + 3)r2) ylm0 − 1

2
rl−1[l(l + 1)]1/2(1 − r2) ylm2, (B2a)

u+
lm1 = rl ylm1, (B2b)

u+
lm2 = 1

2
rl−1(3 + l)

(
l + 1

l

)1/2

(1 − r2) ylm0 + 1
2

rl−1((l + 3) − (l + 1)r2) ylm2.

(B2c)

In terms of these basis sets, the velocity fields inside and outside the vesicle are

uout =
∑
lmq

c∞
lmq u+

lmq(x) +
∑
lmq

(c−
lmq − c∞

lmq)u−
lmq(x), (B3a)

uin =
∑
lmq

c+
lmq u+

lmq(x). (B3b)

In the above equation, c∞
lmq are the coefficients associated with the far field u∞ =

y x̂, which correspond to c∞
2 ± 20 = ∓i

√
π/5, c∞

2 ± 22 = ∓i
√

2π/15 c∞
101 = i

√
2π/3. The

coefficients c−
lmq and c+

lmq are associated with the disturbance fields outside and inside
vesicle, which one must solve.

From the velocity fields in (B3), one can compute the hydrodynamic stresses on the unit
sphere r = 1. These are written as follows:

n · T in = (λ− 1)
∑
lmq

τ in
lmq ylmq , n · T out =

∑
lmq

τ out
lmq ylmq . (B4)

Using the notation and results from Bławzdziewicz et al. (2000), the coefficients τlmq

are related to the velocity coefficients (c∞
lmq , c+

lmq , c−
lmq) as follows (details for Θq ′q are

given in Vlahovska & Gracia 2007):

τ out
lmq =

2∑
q ′=0

c∞
lmq ′

(
Θ+

q ′q − Θ−
q ′q
)+

2∑
q ′=0

c−
lmq ′Θ

−
q ′q , τ in

lmq =
2∑

q ′=0

c+
lmq ′Θ

+
q ′q . (B5)

B.2. Solving equations
Solving the Stokes equations reduces to solving the unknown coefficients (c+

lmq , c−
lmq)

associated with the disturbance velocity fields, as well as the surface tension σlm on the
interface. For each mode (l, m), there are seven unknowns to solve:(

c+
lm0, c+

lm1, c+
lm2, c−

lm0, c−
lm1, c−

lm2, σlm
)
. (B6)

These are found by applying continuity of velocity across the surface uout = uin at
r = 1 (three equations), membrane incompressibility ∇s · uin = 0 at r = 1 (one equation),
and traction balance χ f hydro = f mem at r = 1 (three equations), where f mem is Taylor
expanded to O(Δ1/2) on the unit sphere.

Applying the boundary conditions is straightforward except the traction balance. Below,
we write the membrane traction,

f mem = tmem
lm0 ylm0 + tmem

lm2 ylm2 (B7)
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where

tmem
lm0 =

([
−2β − μ0

αCn2

]
qlm − σlm

)√
l(l + 1), (B8a)

tmem
lm2 = 2βl(l + 1)qlm

+
(

(l + 2)(l − 1)g0

αCn2 + (1 + βq0)(l − 1)(l)(l + 1)(l + 2) + σ0(l − 1)(l + 2)

)
flm

+ 2σlm . (B8b)
In the above equations, the quantities

g0 = 1
2

aq2
0 + 1

4
bq4

0 ; μ0 = aq0 + bq3
0 (B9)

represent the double well potential and chemical potential evaluated at the base state q0.
The dimensionless quantities α, Cn, β are defined in table 2, which correspond to the line
tension parameter, Cahn number and dimensionless bending stiffness difference.

In the dynamical equation for flm in the main text (3.2), one needs an expression for
c+

lm2. After considerable algebra, one obtains expression (3.3), with coefficients Clm , Al ,
Bl and Dl given as follows:

Clm =
[
c∞

lm0
√

l(l + 1)(2l + 1) + c∞
lm2(4l3 + 6l2 − 4l − 3)

]
d(λ, l)

, (B10a)

Al = −(l − 1)l(l + 1)(l + 2)

d(λ, l)

[
(1 + βq0)l(l + 1) + g0

αCn2

]
, (B10b)

Bl = −(l − 1)l(l + 1)(l + 2)

d(λ, l)
, (B10c)

Dl = −2(l − 1)l(l + 1)(l + 2)β

d(λ, l)
− 2l(l + 1)μ0

αCn2d(λ, l)
, (B10d)

where

d(λ, l) = 9
λ

+ (2l3 + 3l2 − 5). (B11)

Appendix C. Numerical scheme to solve ODEs
We start with the following ODEs for the deformation and order parameter dynamics (for
more details of the equations, see Venkatesh 2025):

d flm

dt
= im

2
flm + λ−1Clm + λ−1χ−1 [(Al + Blσ0) flm + Dlqlm

]
, (C1)

dqlm

dt
= im

2
qlm − 1

Pe

[
Λlml(l + 1) + Cn2l2(l + 1)2qlm

+ 2αCn2β(l − 1)l(l + 1)(l + 2) flm
]
. (C2)

In the above equations, flm, qlm and σ0 are unknown. We start by splitting flm, qlm
into their real and imaginary parts – e.g. flm = f ′

lm + i f ′′
lm – while keeping in mind that

fl−m = (−1)|m| f ∗
l|m|. For the deformation, this gives us equations of the form (m ≥ 0),

d f ′
lm

dt
= g

(
f ′
lm, f ′′

lm, q ′
lm, q ′′

lm, λ, l, χ
)+ σ0M

(
f ′
lm, λ, l, χ

)
, (C3a)

d f ′′
lm

dt
= h

(
f ′
lm, f ′′

lm, q ′
lm, q ′′

lm, λ, l, χ
)+ σ0P

(
f ′
lm, λ, l, χ

)
, (C3b)
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where g, h, M and P are functions of shape and deformation.
At time t = ti , we perform a first-order Euler predictor–corrector scheme to march the

vesicle shape (C3a)–(C3b). We first take a predictor step while neglecting the σ0 terms

f̃ ′
lm − f ′i

lm

�t
= g

(
f ′i
lm, f ′′i

lm, q ′i
lm, q ′′i

lm, λ, l, χ
)
, (C4a)

f̃ ′′
lm − f ′′i

lm

�t
= h

(
f ′i
lm, f ′′i

lm, q ′i
lm, q ′′i

lm, λ, l, χ
)
, (C4b)

where f̃ ′
lm, f̃ ′′

lm are predictor values. We now proceed to take a corrector step to time
t = ti+1, now considering only the σ0 portion of (C3a)–(C3b),

f ′
lm

i+1 − f̃ ′
lm

�t
= σ0M ( f̃ ′

lm, λ, l, χ), (C5a)

f ′′
lm

i+1 − f̃ ′′
lm

�t
= σ0P( f̃ ′′

lm, λ, l, χ). (C5b)

We choose σ0 such that the shape at t = ti + 1 satisfies the area constraint A = 4π + Δ,
in other words

∑
l,m≥0

(l − 1)(l + 2)

2

((
f ′
lm

i + 1)2 + (
f ′′
lm

i + 1)2)= Δ. (C6)

The latter step is done with root finding (using fzero in MATLAB with tolerance 10−8).
The reason for performing this step is to ensure that the nonlinear equations do not
drift the differential–algebraic equation system away from the constraint (Ascher, Chin &
Reich 1994). This method seems to perform better than simply imposing

∑
lm(l − 1)(l +

2)d flm/dt f ∗
lm = 0 to calculate σ0 analytically.

After solving for shape, we perform time stepping for the Cahn–Hilliard equation
in (C2). We perform the procedure from (Yoon et al. 2020). We treat the equation
implicitly except the nonlinear term aq + bq3, which we split into an explicit term
(a − 2)q + bq3 and an implicit term 2q. The procedure is shown below. After converting
qlm into real and imaginary components, we obtain

q ′
lm

i+1 − q ′
lm

i+1

�t
= −m

2
q ′′

lm
i+1

− 1
Pe

[
Re
(
Λ′

lm
i
)

l(l + 1) + 2q ′
lm

i+1l(l + 1) + Cn2l2(l + 1)2q ′
lm

i+1

+ 2αCn2β(l − 1)l(l + 1)(l + 2) f ′
lm

i+1
]
, (C7a)

q ′′
lm

i+1 − q ′
lm

i+1

�t
= m

2
q ′

lm
i+1

− 1
Pe

[
Im
(
Λ′

lm
i
)

l(l + 1) + 2q ′′
lm

i+1l(l + 1) + Cn2l2(l + 1)2q ′′
lm

i+1

+ 2αCn2β(l − 1)l(l + 1)(l + 2) f ′′
lm

i+1
]
, (C7b)
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s(
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Figure 22. Sum of squared errors compared with analytical solution of surface Cahn–Hilliard equation Rätz
(2016). The values of γ are γ = 0.15, 0.1, 0.08, 0.035. In the simulations, D = 1. The sum is calculated over
all points in time. The time is simulated until t = 0.1.

where Λ′
lm = ∫

Ω
((a − 2)q + bq3)YlmdΩ , and Re(.) and Im(.) represent real and

imaginary parts of an expression.

Appendix D. Convergence of the spectral method in the absence of flow
For the Cahn–Hilliard equation without flow, we benchmarked our simulation against a
sharp-interface limit theory developed by Rätz 2016, where the authors developed an
axisymmetric solution to Cahn–Hilliard dynamics on a sphere. The authors solve the
following equation:

∂q

∂t
= D∇2

s

(
aq + bq3 − γ 2∇2

s q
)

(D1)

where t = γ t∗, with t∗ being a modified time. They solve this equation for an initial
condition being a striped domain where q = 1 from θ = 0 to θ = θ1 = 0.43, q = −1 from
θ = θ1 = 0.43 to θ = θ2 = 0.92, and q = 1 from θ = θ2 = 0.92 to θ = π . In the sharp
interface limit as γ → 0, the three domains eventually merge into two domains, with the
steady-state solution being θ1 = 0 and θ2 = 0.812 for a = 1, b = −1 and D = 1.

For different values of γ , we plot θ1 versus t∗, where θ1 represents the first point at which
the order parameter changes from a positive to a negative value. We then calculate the sum
of squared errors between the numerical solution θγ and the semianalytical solution θs
(valid at γ = 0) for θ1. The semianalytical solution is given by the following differential
equation for θ1:

dθi

dt∗
= − c+

sin θi
(D2)

where i = 1, 2 and c+ = −(
√

2/3)((cot θ1 + cot θ2)/((log | tan (θ1/2)|) + (log | tan(θ2/
2)|))). Figure 22 shows the error for different values of γ and shows that the numerical
solution converges to the analytical solution in the sharp interface limit γ → 0. Note that
we mainly deal with the diffuse interface limit in our study and do not need the γ values
to be extremely small.

Appendix E. Algebra, Pe → ∞ theory (l = 2 modes excited in-plane)
We examine (3.2)–(3.3) and use the expressions f22 = 2ε1

√
2π/15(a2 − ib2) and q22 =

2ε2
√

2π/15 exp(i t). If we define a modified capillary number as C = χ/ε1 and modified
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time τ = t/ε1, the system of equations at leading order for C ∼ O(1), τ ∼ O(1), and
ε2/ε1 ∼ O(1) are

da2

dτ
= λ−1C−1

[
(A2 + B2σ0)a2 + ε2

ε1
D2 cos(ε1τ)

]
,

db2

dτ
= λ−1C−1

[
(A2 + B2σ0)b2 − ε2

ε1
D2 sin(ε1τ)

]
− λ−1 1

2i

√
15
2π

C22. (E1)

In the above equation, A2, B2, C22 and D2 are coefficients defined in (B10)–(B11) for
l = 2, m = 2. The surface tension σ0 is a Lagrange multiplier to enforce the surface area
constraint – i.e. a2

2 + b2
2 = 15/32π . We solve for σ0 using the expression a2(da2/dτ) +

b2(db2/dτ) = 0, and plug it back into the above ODE (E1) to yield

da2

dτ
= −Θb2,

db2

dτ
= Θa2, (E2)

where Θ is

Θ = − 1
a2

2 + b2
2

[
1
2i

√
15
2π
λ−1C22a2 + ε2

ε1
λ−1C−1 D2 (a2 sin(ε1τ) + b2 cos(ε1τ))

]
.

(E3)
Substituting the expressions for C22 and D2 (i.e. C22 = −60λi

√
2π/15(9 + 23λ)−1, D2 =

−48λβ(9 + 23λ)−1 for q0 = 0), as well as the constraint a2
2 + b2

2 = 15/32π yields (4.4).
In Gera et al. 2022, the authors obtained the same form of the differential equation

as (E2) for a2 and b2 for a 2-D vesicle, when the radius is written as r = 1 +
εa2(t) cos(2φ) + εb2 sin(2φ). However, the expression for Θ is different due the fact the
vesicle is 2-D rather than 3-D. Their expression is (using the notation in our paper)

Θ2D = 1
λ

1
Q2

[
a2 + ε2

ε1
βC−1 (a2 sin(ε1τ) + b2 cos(ε1τ))

]
(E4)

where Q is a constant equal to Q2 = 1/3
∑∞

n=1(n
2 − 1)(a2

n + b2
n). If one defines a 2-D

excess length parameter as Δ2D = L/R − 2π , where L is the membrane length and area
A = π R2, one obtains

Δ2D = 3π

2
ε2

1 Q2. (E5)

Keeping consistent with the notation used in our paper, if we define the small parameter
ε = Δ

1/2
2D , this yields Q2 = 2/3π , which gives the final expression written in the main

text (4.5).

Appendix F. Comparison between theory and simulation, Pe → ∞, in-plane
deformations and concentrations
This section performs full numerical simulations to check the validity of Pe → ∞
theory discussed in § 4.2. Figures 23 and 24 show cases where swinging and tumbling
occur at Pe = 1000. The circles indicate the theory (4.3) for the qlm and flm modes,
while the dashed lines are the full numerical simulations (solving (3.2) and (3.4)).
In both simulations, we start with an initial condition f ′

22(0) = √
Δ/10, f ′′

22(0) =
−√

Δ/10, q ′
22(0) = 2q+√

2π/15. We observe that simulations closely match the theory,
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Figure 23. High Pe swinging motion for α = 0.1, Cn = 0.1, β = 0.5, Pe = 1000, χ = 2, q0 = 0,

a = −0.1, b = 1, Δ = 0.0001, λ= 2. The dashed lines represent the full numerical solution of (3.2), (3.4)
whereas the circles represent f ′

22, f ′′
22, q ′

22, q ′′
22 for the Pe → ∞ theory equations (4.2), (4.3). The blue

circles/dashed curves represent the f ′′
22, q ′′

22 modes. The black circles/dashed curves represent the f ′
22, q ′

22
modes.

0 5 10

t
0 5 10

t

qlm

0.5

0flm 0

–5

5
×10–3

–0.5

Figure 24. High Pe tumbling motion for α = 0.1, Cn = 0.1, β = 0.5, Pe = 1000, χ = 0.05, q0 = 0,

a = −0.1, b = 1, Δ = 0.0001, λ= 2. We use lmax = 8 in these simulations. The dashed lines represent the
full numerical solution of (3.2), (3.4) whereas the circles represent f ′

22, f ′′
22, q ′

22, q ′′
22 for the Pe → ∞ theory

equations (4.2), (4.3). The blue circles/dashed curves represent the f ′′
22, q ′′

22 modes. The black circles/dashed
curves represent the f ′

22, q ′
22 modes.

and this behaviour generally holds for Pe ∼ O(100) and above. Another interesting
observation is the validity of the expressions for the Pe → ∞ (4.3). These expressions hold
only for Δ 
 1. As Δ increases, the rotational term in (3.2) becomes significant and starts
influencing the dynamics as well. Hence, the approximation given by expressions (4.3)
are not accurate as Δ increases. Lastly, we generally observe in our simulations that the
out-of-plane f20 deformations rapidly decay to zero, and thus this mode does not seem to
affect the theory.
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