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Abstract
In many technical and geomechanics applications, for example tire and ski design or avalanche
prediction, the capability to model the mechanical behaviour of snow is of high importance. To
this end, we propose in the present study to extend the 3-D H-model, a multi-scale constitutive
law originally developed for granular materials, to densely packed snow. In the model, single ice
grains are described by spherical particles bonded by brittle elasto-viscoplastic bridges. Snow is
thus described explicitly through its ice skeleton microstructure. As a validation, confined com-
pression test results from the litterature are used to assess the suitability of the model to correctly
describe snow behaviour. Multiple parameter studies were conducted to demonstrate the capa-
bility of the model to capture the behaviour of different snow types over a significant range of
temperatures and loading rates at small deformations. Notably, the initial bond radius emerges as
an effective proxy for snow aging under isothermal conditions, with stress levels increasing directly
with the initial bond radius. Additionally, low strain rates and elevated temperatures are shown to
influence the viscous response of ice bonds, their failure rates and the overall stress within the
snow material.

1. Introduction

As a granular material constituted of an interconnected network of ice grains, snow has a
complex mechanical behaviour influenced both by the material properties of ice and by its
intrinsic microstructure. As a homogeneous material, ice can show both brittle and ductile
behaviour, depending on the external conditions as strain rate for instance (Schulson, 1990).
It also exhibits temperature-dependant creep behaviour (Barnes and others, 1971). From a
microscopic perspective, snow exhibits diverse microstructures initially dictated by the meteo-
rological conditions at snowfall but evolving over time under the influence of the environmental
constraints.This so-called snowmetamorphism ismostly driven by the temperature and its gra-
dient within the snow layer. Under specific climatic conditions, snow metamorphism leads to
the transformation of snowflakes into bonded spherical ice grains (Fierz, 2009; Calonne and
others, 2014) which normally goes along with a snow densification (Kojima, 1967).

Modelling the mechanical behaviour of snow is of great interest in various fields, from
avalanche prediction and mitigation (Nicot, 2004; Gaume and others, 2015), winter sports
equipment (Fauve and others, 2008), to snow tire design (Shoop and others, 2006; Lee, 2013;
Hjort and others, 2017). Two kinds of approaches are widely adopted for snow modelling,
namely continuum-based and particle-basedmethods. Particle-basedmethods have the advan-
tage of explicitly accounting for the characteristics of snow microstructure. They are based on
an individual representation of grains, mostly through the discrete element method (DEM)
(Cundall and Strack, 1979; Radjai and others, 1998; Luding, 2008; Smilauer, 2010). DEM has
already been used for snow by modelling the ice grains as discrete particles connected by ice
bonds (Johnson andHopkins, 2005;Mede and others, 2018;Mulak andGaume, 2019;Willibald
and others, 2019; Bobillier and others, 2021; Kabore and others, 2021; Peters and others, 2021)
or to represent snow elements (Gaume and others, 2015). In return for taking effective account
of the effect of the microstructure, DEM is computationally costly, which limits its ability to
model large scale systems. As an alternative to discrete numerical methods, continuum-based
approaches of snow include the finite element method (Meschke and others, 1996; Podolskiy
and others, 2013; Fourteau and others, 2024), the finite difference method (Dent and Lang,
1980), thematerial pointmethod (Gaume and others, 2018, 2019; Trottet, 2022) and the smooth
particles hydrodynamics (El-Sayegh andEl-Gindy, 2019) among others. In thesemethods, snow

https://doi.org/10.1017/jog.2024.112 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.112
mailto:miot_marie@yahoo.fr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-0185-7079
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jog.2024.112&domain=pdf
https://doi.org/10.1017/jog.2024.112


2 Marie Miot et al.

is modelled as a continuous medium and its material behaviour is
accounted for by a constitutive relation. For example, a Drucker-
Prager (Haehnel and Shoop, 2004; Lee, 2009; Gaume and others,
2011; Blatny and others, 2023) or a modified Cam-Clay (Gaume
and others, 2018; Guillet and others, 2023) constitutive material
laws are widely used in the field of snow avalanche modelling.
Such approaches are usually significantly less time-consuming
than DEM, meaning that they can address large scale systems.
However, the constitutive relations implemented are generally phe-
nomenological and therefore do not explicitly account for the snow
microstructure, which makes them harder to calibrate. However,
recent works have highlighted the importance of incorporating
snow microstructure into constitutive models to more accurately
capture its mechanical behaviour (Blatny and others, 2021, 2023).

In this paper, we propose a continuum approach based on a
constitutivematerialmodel that incorporates explicitly the discrete
microstructure of snow, thus combining the advantages of both
modelling strategies. To this end, the 3-D H-model (Nicot and
Darve, 2011; Xiong and others, 2017) is extended to snow, con-
sidered as an assembly of spherical ice particles connected by ice
bonds. This model was originally introduced for soil modelling
in dry (Wautier, 2021) and partially saturated conditions (Xiong,
2021).The ability of the H-model to be used at large scale has been
demonstrated by Xiong and others (2019), where the 3-DH-model
is used to model geotechnical problems. In this approach, a granu-
larmaterial is described as a distribution ofmesostructures formed
by a few grains. The collection of these mesostructures (denoted
H-cells in the following) in various configurations provides a sta-
tistical description of the microstructure. From the individual
mechanical response of each mesostructure, the material consti-
tutive relation can be formulated in a continuum framework by
statistical homogenization. In the hereafter presented extension
of the 3-D H-model, the particles forming the H-cells represent
ice grains with an interparticle contact law specifically suited to
ice. The latter was developed to capture the ice bond evolution
as well as the ice grain contact and is partly based on a previous
work (Kabore and others, 2021). Asmany engineering applications
(vehiclesmoving on snow, winter sports,…) imply short-term time
scales and fast loading, only the brittle behaviour of ice will be con-
sidered in the following. Since density is one of themost important
parameters in snow behaviour, special attention is brought to the
relationship between the geometry of the mesostructures in the H-
model and the macroscopic density. The influence of the aging of
snow before the mechanical loading and its impact on the calibra-
tion of the numerical parameter are also investigated. Finally, the
capacity of the model to account for varying conditions such as the
temperature and the loading rate is demonstrated.

2. Multi-scale model for snow

The H-model was initially developed for granular soils, first in
two dimensions (Nicot and Darve, 2011; Veylon and others, 2018)
before being extended to three dimensions (Xiong and others,
2017). It has been progressively extended to capture additional
physical phenomena, such as the existence of capillary forces in
unsaturated soils (Wautier, 2021; Xiong, 2021), or erosion by suf-
fusion (Ma and others, 2022). Here, further extension of the 3-D
H-model to snowmodelling relies on implementing a specific cus-
tomized contact law for ice bonds, restricting the scope of the study
to fast loading conditions (strain rate above 10−4s−1), so that the
ice behaviour can be assumed to be exclusively brittle (Schulson,
1990).

Figure 1. 3-D bi-hexagonal mesostructure in the global reference frame with the
definition of the Euler angles.

2.1. A multi-scale constitutive model for granular materials:
the 3-D H-model

Contrary to phenomenological approaches, multi-scale models
introduce a statistical homogenization process, which consists
in inferring the mechanical behaviour of a given material from
the constitutive properties taking place at a smaller microscopic
scale (Wautier, 2021). More precisely, the material constitutive
law is obtained from the weighted averaged behaviours of sev-
eral mesostructures, which are each constituted by a set of grains.
First conceptualized by Satake (1992) and later explored by Kruyt
and Rothenburg (1996), grain loops are an example of such
mesostructures in a 2-D granular assembly. In principle, these
loops enable a geometrical description through a particle graph
paving the space and have been shown to be a powerful tool to
explain the behaviour of granular materials based on local physics.
Namely, it has been observed that grain loops containing more
than six grains within a granular material can serve as a mean-
ingful descriptor for the material scale behaviour (Zhu and others,
2016, 2016a, 2016b; Liu and others, 2018). These results support
the physical suitability of the H-model in which the microstruc-
ture is described as a collection of either hexagonal grain assem-
blies in the 2-D H-model (Nicot and Darve, 2011) or bi-
hexagonal grain assemblies in the 3-DH-model (Xiong and others,
2017).

The tridimensional bi-hexagonal mesostructure is formed of
two perpendicular hexagons as represented in Fig. 1. Each H-
cell has an orientation in space, characterized by the three Euler
angles 𝜑, 𝜃 and 𝜓 with respect to the global reference frame.
The distribution of this orientation 𝜔 (𝜃, 𝜑, 𝜓) describes the ini-
tial anisotropy of the microstructure. The two hexagons of the
mesostructure are supposed to remain in orthogonal planes over
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Figure 2. Schematic representation of the two hexagonal grain configurations constituting the 3-D H-cell showing: (a, d) geometry of the hexagons, (b, e) external forces on
the hexagons and (c, f) equilibrium of forces on the grains. The dashed-dotted green lines represent the symmetry axis in the considered plane.

any loading. The planar geometry of the two hexagons is shown
in Fig. 2. By adopting symmetry assumptions in the cell geome-
try, each hexagon can be parameterized by only two intergranular
distances (d1 and d2 in hexagon A, and d3 and d4 in hexagon B)
and an opening angle (𝛼1 in hexagon A and 𝛼2 in hexagon B).
The symmetries in the cell allow to consider only four different
contact points, between grains 1–2, 2–3, 1–7 and 7–8. To main-
tain the overall symmetry assumption in the cell geometry, equality
is also imposed between the various forces within the cell: Fi and
Gi, representing the normal and tangential external forces in the
three directions of the space, and Ni and Ti, representing the nor-
mal and tangential contact forces at the four different contact
points between the grains, as described in Fig. 2. The external

vertical force on grain 1 can be decomposed into two terms Fa
1

and Fb
1 , which respectively insure the equilibrium of hexagons A

and B.
Depending on the loading of the cells, some contacts between

grains can appear or be lost. Appendices C and D describe these
potential cases in detail.

The overall homogenization scheme used for the H-model, as
summarized in Fig. 3, allows connecting continuum/macroscale
and particle/microscale descriptions of the material. An incre-
mental constitutive relation linking the global incremental strain
tensor 𝛿𝜺 to the global incremental stress 𝛿𝝈 is thus implicitly
derived. In the following, we briefly review the main steps of this
homogenization scheme.
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Figure 3. Schematic representation of overall sequence of the 3-D H-model methodology.

The model assumes strain homogeneity such that the same
macroscopic strain is applied in all H-cells. Consequently, the local
incremental strain tensor 𝛿�̃� in each H-cell is expressed in the local
frame as

𝛿 �̃� = P 𝛿 𝜺 P−1 (1)

with P being the rotation matrix between the global and local
frames:

P = ⎛⎜
⎝

1 0 0
0 cos𝜓 − sin𝜓
0 sin𝜓 cos𝜓

⎞⎟
⎠

⎛⎜
⎝

cos𝜑 0 − sin𝜑
0 1 0

sin𝜑 0 cos𝜑
⎞⎟
⎠

× ⎛⎜
⎝

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎞⎟
⎠

. (2)

The changes in the H-cell lengths 𝛿Li can be deduced from the
diagonal coefficients of the local incremental strain tensor and the
external length of the H-cell Li, as defined in Fig. 2:

𝛿Li = 𝛿 ̃𝜀iiLi. (3)

The evolution of the H-cell geometry depends directly on the
variations of the H-cell lengths and on the force balance applied to
the mesostructure.The geometrical compatibility equations read:

⎧{
⎨{⎩

L1 = l1 + 2rg = d2 + 2d1 cos𝛼1 + 2rg = d4 + 2d3 cos𝛼2 + 2rg
L2 = l2 + 2rg = 2d1 sin𝛼1 + 2rg
L3 = l3 + 2rg = 2d3 sin𝛼2 + 2rg

(4)

with Li the lengths of the smallest peripheral parallelepiped vol-
ume, li the lengths of the hexagons defined by the centres of the
grains and rg the grain radius.

Differential variation of Eqn (4) provides three equations relat-
ing the variations of the H-cell lengths 𝛿Li to the variations of both
the intergranular distances 𝛿di and the opening angles 𝛿𝛼i :

⎧{
⎨{⎩

𝛿L2 = 𝛿d2 + 2𝛿d1 cos𝛼1 + d1 sin𝛼1 𝛿𝛼1
= 𝛿d4 + 2𝛿d3 cos𝛼2 + d3 sin𝛼2 𝛿𝛼2

𝛿L2 = 2𝛿d1 sin𝛼1 + d1 cos𝛼1 𝛿𝛼1
𝛿L3 = 2𝛿d3 sin𝛼2 + d3 cos𝛼2 𝛿𝛼2

. (5)

Considering the balance of forces and momentum for the grains 2
and 7 provides:

⎧{
⎨{⎩

G2 = T1
G3 = T3
N2=N1 cos𝛼1 +T1 sin𝛼1 + G2=N1 cos𝛼1 +T1(1+ sin𝛼1)
N4=N3 cos𝛼2 +T3 sin𝛼2 + G4=N3 cos𝛼2 +T3(1+ sin𝛼2)

.

(6)

Differentiating these last two equilibrium equations yields:

⎧{
⎨{⎩

𝛿N1 cos𝛼1− N1 sin𝛼1𝛿𝛼1+ 𝛿T1 (1 + sin𝛼1)+ T1 cos𝛼1𝛿𝛼1
−𝛿N2 = 0

𝛿N3 cos𝛼2− N3 sin𝛼2𝛿𝛼2+ 𝛿T3 (1 + sin𝛼2)+ T3 cos𝛼2𝛿𝛼2
−𝛿N4 = 0

.

(7)

The contact forces are related to the H-cell geometrical parameters
through a contact law. In the general case of a visco-elastic contact,
a generic form of the contact law at a given contact i reads:

{ Ni = an,i (di − 2rg) + cn,i (t − tref)
Ti = at,i (di − 2rg) + bt,i (𝛼j − 𝛼j,ref) + ct,i (t − tref )

(8)
with an,i, cn,i, at,i, bt,i and ct,i being independent of the geome-
try. The an,i and the at,i coefficients are stiffness terms express-
ing the evolution of the intergranular distance in terms of the
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incremental contact forces (normal and tangential respectively).
The coefficients bt,i link the tangential contact force to the evolu-
tion of the opening angle. The coefficients cn,i and ct,i are viscos-
ity terms, which depend on the contact loading. Note that 𝛼i,ref
denotes the opening angle at the beginning of the loading at time
tref.The contact law specifically developed for snowwill be detailed
in the next section.

Differentiation of Eqn (8) provides a generic incremental form
of the contact law:

{ 𝛿Ni = an,i𝛿di + cn,i𝛿t
𝛿Ti = at,i𝛿di + bt,i𝛿𝛼j + ct,i𝛿t

. (9)

Combining Eqns (5), (7) and (9) results in two sets of equations
that provide the changes in the intergranular distances and in the
opening angles as a function of the changes in the H-cell lengths:

⎛⎜
⎝

2 cos𝛼1 1 −2d1 sin𝛼1
2 sin𝛼1 0 2d1 cos𝛼1
A1 B1 C1

⎞⎟
⎠

⎛⎜
⎝

𝛿d1
𝛿d2
𝛿𝛼1

⎞⎟
⎠

= ⎛⎜
⎝

𝛿L1
𝛿L2
𝜆1

⎞⎟
⎠

(10)

and

⎛⎜
⎝

2 cos𝛼2 1 −2d3 sin𝛼2
2 sin𝛼2 0 2d3 cos𝛼2
A2 B2 C2

⎞⎟
⎠

⎛⎜
⎝

𝛿d3
𝛿d4
𝛿𝛼2

⎞⎟
⎠

= ⎛⎜
⎝

𝛿L1
𝛿L3
𝜆2

⎞⎟
⎠

(11)

with
⎧{{
⎨{{⎩

A1 = an,1 cos𝛼1 + (1 + sin𝛼1) at,1
B1 = −an,2

C1 = −N1 sin𝛼1 + T1 cos𝛼1 + (1 + sin𝛼1) bt,1
𝜆1 = −cn,1𝛿t cos𝛼1 − ct,1𝛿t + cn,2𝛿t

(12)

and
⎧{{
⎨{{⎩

A2 = an,3 cos𝛼2 + (1 + sin𝛼2) at,3
B2 = −an,4

C2 = −N3 sin𝛼2 + T3 cos𝛼2 + (1 + sin𝛼2) bt,2
𝜆2 = −cn,3𝛿t cos𝛼2 − ct,3𝛿t + cn,4𝛿t

. (13)

The incremental contact forces can be obtained from the incre-
mental intergranular distances and opening angles according to the
incremental contact law (9).

Continuing with the continuum formulation, the Love–Weber
formula (Love, 1892) expresses the local stresses �̃� at the scale of
the H-cell from the updated contact forces Ni (t) = Ni (t − 𝛿t) +
𝛿Ni and Ti (t) = Ti (t − 𝛿t) + 𝛿Ti

⎧{{{{
⎨{{{{⎩

�̃�11 = 1

Vmeso
(4N1d1cos2𝛼1 + 4T1d1 cos𝛼1 sin𝛼1 + 2N2d2

+ 4N3d3cos2𝛼2 + 4T3d3 cos𝛼2 sin𝛼2 + 2N4d4)
�̃�22 = 1

Vmeso
(4N1d1sin2𝛼1 − 4T1d1 cos𝛼1 sin𝛼1)

�̃�33 = 1

Vmeso
(4N3d3sin2𝛼2 − 4T3d3 cos𝛼2 sin𝛼2)

�̃�ij = 0 if i ≠ j
(14)

where Vmeso is the external volume of the mesostructure (Wautier,
2021). Finally, a statistical homogenization of the stresses over the
completeH-cell collection provides the stress tensor𝝈 in the global
frame:

𝝈 = 1
Vmacro

∭ 𝜔 (𝜃, 𝜑, 𝜓)Vmeso (𝜃, 𝜑, 𝜓)P−1𝝈 (𝜃, 𝜑, 𝜓)

× P sin𝜑 d𝜑 d 𝜃 d𝜓 (15)

where 𝜔 (𝜃, 𝜑, 𝜓) is the probability density function of the H-cell
distribution, which satisfies:

∭ 𝜔 (𝜃, 𝜑, 𝜓) sin𝜑 d𝜑 d 𝜃 d𝜓 = 1 (16)

and Vmacro is the total volume of the distribution of H-cells given
by:

Vmacro = ∭ 𝜔 (𝜃, 𝜑, 𝜓)Vmeso (𝜃, 𝜑, 𝜓) sin𝜑 d𝜑 d 𝜃 d𝜓. (17)

Eventually, we obtain a multi-scale constitutive model that relates
the total stress to the global strain under an incremental for-
malism (Fig. 3). The hypothesis of non-correlated mesostructures
inferred by the statistical homogenization, and the hypothesis on
the geometry of the mesostructure could lead to an error, but pre-
vious works on the H-model (Nicot and Darve, 2011; Xiong and
others, 2017; Veylon and others, 2018; Wautier, 2021; Xiong, 2021;
Deng, 2022; Liu and others, 2024) have proven that this error is not
significant.

2.2. Contact law between ice grains

In the extended version of the 3-D H-model proposed hereafter,
the snow constitutive features are accounted for by introducing a
specific contact law between the ice grains of each hexagon of a H-
cell. In the context of the snow-H-model, the history of a contact
is supposed to be the following:

(i) The ice grains have undergone metamorphism processes
which progressively round their shape (Fierz, 2009). Ice grains
are thus assumed to be spherical.

(ii) Thermodynamic sintering has created viscous ice bonds at all
contacts between ice grains (Kabore and others, 2021) (Peters
and others, 2021). Each ice bond is assumed to be incompress-
ible (Lipovsky, 2022), meaning that its volume originates only
from the prior sintering conditions, such as temperature and
sintering time (Szabo and Schneebeli, 2007).

(iii) Bond creation processes are supposed to be slow compared to
the loading rates considered in the targeted applications ( .𝜀 ⩾
10−4s−1). Consequently, if an ice bond fails during the stress
loading, it has no time to reform, and the contact becomes
cohesionless until the end of the loading.

Based on these assumptions, the contact law to be developed in
the snow-H-model must account for both bonded and unbonded
contacts between spherical ice grains.

Grains in contact are assumed to be initially bonded by a cylin-
drical ice bridge resulting from prior snowmetamorphism (Fig. 4).
The bridge is characterized by its radius rb and its length Lb,
with rb,0 and Lb,0 their respective values at the initial time step.
Note that the initial bond geometry before loading created by
prior thermodynamic sintering can be changed through its ini-
tial radius, enabling the modelling of different snow types (Szabo
and Schneebeli, 2007). During mechanical loading, the strain is
assumed to be localized into the cylindrical ice bonds while the
spherical ice grains are assumed perfectly rigid so that the strain is
fully concentrated within the bond.

The deformable bond between two ice grains is modelled by
a Maxwell elasto-viscoplastic beam on the basis of the work of
Kabore and others (2021) and Peters and others (2021). The main
discrepancy with this model lies in the absence of grain rotation
in the H-model which leads to the lack of torsion and bending in
the ice beam. The creep behaviour of ice, which can be dominant
during loading, is accounted for by introducing viscoplasticity in
the bond.
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Figure 4. Schematic representation of a bonded contact: (a) initially after snow metamorphism and before loading; (b) during the loading. The yellow hatched zones represent
the deformable ice bond, and the blue dotted zones represent the non-deformable parts of the ice grains.

The total normal bond strain 𝜀totb,n can be split into an elastic part
𝜀eb,n and a viscoplastic part 𝜀vpb,n:

𝜀totb,n = 𝜀vpb,n + 𝜀eb,n (18)

Theviscoplastic deformation accounts for thewell-known creep
behaviour of ice since the creep rate .𝜀vpb,n in the bond direction is
related to the normal stress 𝜎b,n by Glen’s law (Barnes and others,
1971):

.𝜀vpb,n =
𝛿𝜀vpb,n

𝛿t = A (Temp) 𝜎m
b,n (19)

whereA (Temp) is a temperature dependent coefficient, andm is an
exponent generally close to 3 (Barnes and others, 1971).

Finally, the elastic normal deformation is simply proportional
to the normal stress. Due to the adhesion of the bond on the ice
grains (which prevents the bond from expanding laterally around
the contact points), using Young’s modulus E would underesti-
mate the stiffness of the bond/grains assembly.Thus, the oedometer
coefficient of ice Eoedo is used instead to better reflect the lateral
geometrical constraints:

𝜎b,n = E (1 − 𝜈)
(1 + 𝜈) (1 − 2𝜈)𝜀eb,n = Eoedo𝜀eb,n (20)

with 𝜈 the Poisson’s ratio of ice.
The normal strain in the bond can be expressed as a function of

the bond length, thanks to the strain localization assumption:

𝜀totb,n = −
Lb − Lb,0

Lb,0
(21)

with Lb and Lb,0 being the bond length, respectively, at the current
time and at the beginning of the loading. It should be noted that
compression and contraction are counted positive.

The normal stress can be related to the normal contact forceNb

as follows:

𝜎b,n = Nb

Sb
= Nb

𝜋r2b
(22)

where rb is the radius of the cylindrical bond and Sb its section.
As the bond is the only deformable element in the bonded ice

grain model, the incremental bond length 𝛿Lb is directly equal to
the incremental intergranular distance 𝛿d:

Figure 5. Different modes of bond failure (tensile, compression and shear). Note that
potential additional failure modes by bending and torsion are not accounted for as
rotation of the grains is not possible in the H-model.

𝛿Lb = 𝛿d (23)

Eventually, the incompressibility condition, together with the vol-
ume conservation of the ice bond, read:

𝜋rb2Lb = 𝜋rb,0
2Lb,0 (24)

By combining Eqns (18)–(24), the contact law relating the incre-
mental normal contact force 𝛿Nb to the incremental intergranular
distance 𝛿d can be obtained:

𝛿Nb = −𝜋r2b (
𝜎b,n

Lb
+ Eoedo

Lb,0
) 𝛿d − 𝜋r2bEoedoA (Temp) 𝜎m

b,n𝛿t

(25)

Likewise, the incremental tangential contact force can be expressed
as a function of the incremental intergranular distance and of the
variation of the bond direction, characterized by 𝛿𝛼:

𝛿Tb = −T𝛿d
Lb

+ 𝜋r2bG
Lb𝛿𝛼
Lb,0

− 𝜋r2bGA (Temp) 𝜎m
b,t𝛿t (26)

with G = E

2(1+𝜈)
the shear modulus of ice. The way to obtain this

expression using Glen’s law is detailed in Appendix A.
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During the loading, stresses increase in the bond, which can
lead to its failure. In our approach, only brittle failure is accounted
for as the strain rate in the targeted engineering applications is sup-
posed to be high enough ( .𝜀 ⩾ 10−4s−1). Brittle bond failure occurs
as soon as one of the following conditions is met:

⎧{
⎨{⎩

𝜎b,n > 𝜎bcs
𝜎b,n ← −𝜎ts
∣𝜎b,t∣ > 𝜎ss

(27)

where 𝜎b,n is the normal stress in the bond, which is positive in
compression, 𝜎b,t is the shear stress in the bond. 𝜎bcs, 𝜎ts and 𝜎ss are
respectively the compression, tensile and shear strength of ice (see
Figure 5). The expression of the brittle strengths of the ice bonds is
given by Michael (2014) and Kabore and others (2021):

⎧{
⎨{⎩

𝜎bcs = 10MPa − 3

8
Temp(∘C)

𝜎ts = 1.1MPa
𝜎ss = 1

3
𝜎bcs

. (28)

When bond failure occurs, the contact law between the ice grains
is reduced to a simple elasto-plastic law:

⎧{{{
⎨{{{⎩

𝛿Ni = { −kn𝛿di if di ≤ 2rg
0 else

𝛿Ti = {
ktdi𝛿𝛼j if ∣Ti + ktdi𝛿𝛼j∣ < |Ni + 𝛿Ni|

sign (Ti + ktdi𝛿𝛼j) (Ni + 𝛿Ni) tan𝜑g − Ti else

.

(29)

In the absence of ice bond, the normal stiffness kn,i between
ice grains at contact i evolves with grain interpenetration (see
justification in Appendix B):

kn,i = Eice
𝜋
2 (rg − d2i

4rg
) . (30)

2.3. Extension of the 3-D H-model to snow

The relationship between the incremental contact forces and the
changes in the local kinematics (including the intergranular dis-
tances between two ice grains and the contact direction) has
been previously established in Section 2.2, both for a bonded
contact (Eqns (25) and (26)) and after failure of the ice bond
(Eqn (29)).The incremental normal contact force in Eqns (25) and
(29) and the incremental tangential force in Eqns (26) and (29)
can be written generically as in Eqn (9), with the corresponding
coefficients:

⎧{{{{{{{{
⎨{{{{{{{{⎩

𝛼n,i = −𝜋r2b ( 𝜎b,n

Lb
+ E0ed0

Lb,0
) Ib,i − Eice

𝜋
2

(rg − d2i
4rg

) (1 − Ib,i)

cn,i = −𝜋r2bE0ed0A (Temp) 𝜎m
b,n𝛿t Ib,i

at,i = −T

Lb
Ib,i + sign (Ti + ktdi𝛿𝛼j)Eice

𝜋
2

(rg − d2i
4rg

) (1 − Ib,i)

× (1 − Ie,i)
bt,i = 𝜋r2bG( Lb

Lb,0
) Ib,i + Eice

𝜋
2

(rg − d2i
4rg

) di (1 − Ib,i) Ie,i

ct,i = −𝜋r2bGA (Temp) 𝜎m
b,t𝛿t Ib,i + (sign (Ti + ktdi𝛿𝛼j)Ni

× tan𝜑g − T1) (1 − Ib,i) (1 − Ie,i)
(31)

where i stands for the number of the considered contact, as defined
in Fig. 2. Ib,i is a bond indicator equal to one when the ice bond

Table 1. Experimental (left) and numerical parameters (right) for confined
compression tests on snow (Abele and Gow, 1976)

Experimental parameters Numerical parameters

Temperature (∘C) −34; − 4; − 1 Temperature (∘C) −34, − 1
Strain rate (s−1) 5.26; 7.84; 16.0 Strain rate (s−1) 5.26; 7.84; 16.0
Initial snow
density
(kgm−3)

[280; 760 ] Initial opening
angle (∘)

[45; 90]

Initial intergranular
distance

⩾ 2rg

Snow age (days) 0.1; 3; 7 Initial bond radius [0; rg]
Sample volume
(cm3)

[300; 6800] Number of H-cell
directions

500

at contact i exists, and zero otherwise. Ie,i is a similar indicator
which is equal to one in a nonbonded elastic contact, and zero
otherwise. The ice contact law defined by these coefficients can be
implemented readily within the standard computation scheme of
the H-model. Some additional improvements of the model in rela-
tion with the creation and the loss of contacts in the H-cell are
described in Appendix C and D.

3. Homogeneous compression test simulations

In this section, the snow-H-model is validated at the represen-
tative elementary volume (REV) scale against experimental tests
by (Abele and Gow, 1976) conducted for different snow types.
The numerical parameters are tuned to match the experimental
stress/strain curves as closely as possible. This calibration proce-
dure enables to identify the snow density range over which the
model can capture the mechanical response of snow.

3.1. Confined compression test

In Abele and Gow (1976), several confined compression tests were
performed on different snow samples. In practice, natural snow
was collected in cylindrical containers and compacted at temper-
atures ranging between −7∘C and −1∘C. The snow samples were
then stored for 0.1–7 days before being tested under oedometer
conditions at a constant temperature between −34∘C and −1∘C.
The storage duration prior to testing is referred to as the snow
age in the following. During the compression test, a vertical veloc-
ity of 40 cm/s was applied to the top of the sample, while lateral
deformations were kept constant.The experimental parameters are
summarized in the first two columns of Table 1. The initial snow
density of each sample was determined from the original volume
and after measurement of the final sample weight.

3.2. Calibration against experimental results

The extension of the 3-D H-model to snow is implemented in a
stand-alone Python code which is used to run REV scale tests
under strain-controlled conditions. The compression tests under
lateral confining from Abele and Gow (1976) are reproduced with
this code.

Some of the experimental parameters of the experiments such
as the snow temperature and the strain rate can be directly used in
the simulations.However, the initial snowdensity and the snow age
are not explicit input parameters for the 3-DH-model.The experi-
mental snow age is only indirectly related to the initial bond radius
rb,0 (Szabo and Schneebeli, 2007) and the initial density derives
from the initial geometry of the H-cells. The latter is determined
by the initial opening angle 𝛼1,0 = 𝛼2,0 = 𝛼0 which can be var-
ied to modify the initial density. Unlike the original H-model for
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Figure 6. Initial configurations of a hexagonal mesostructure: (a) 2-D representation
of a ten-grain H-cell with d2,0 = d1,0 = 2rg and initial ice bonds bond1 and bond2;
(b) 2-D representation of two separated five-grain mesostructure with d1,0 = 2rg,
d2,0 > 2rg and initial bonds bond1.

sand, some grains may not necessarily be in contact in the snow-
H-model (see Fig. 6), to account for large porosity values in snow.
A new parameter is then introduced: the initial inter-granular dis-
tance d2,0 (see Fig. 6 where d2,0 = d4,0 ≥ 2rg and Appendix D). In
the case where d2,0 = d4,0 ≥ 2rg, the connectivity of forces within
the cell ismaintained through contactwith neighbouring cells.This
is reflected by the external force Fa

1 being balanced by the tangen-
tial external force G2 (see Fig. 2), resulting in the equilibrium of
the two half cells (see Appendix D). As a result, the initial den-
sity in the experiments can be accounted for by calibrating the two
numerical parameters d2,0 and 𝛼0. The sintering time before load-
ing is included in the snow-H-model from the initial bond radius
rb,0, which is capped by the grain radius. The numerical param-
eters and their range of variation are summarized in the last two
columns of Table 1.

The first objective of the calibration step is to determine the ini-
tial value of the three numerical parameters describing both the
geometry and the sintering state of the H-cell, namely the open-
ing angle 𝛼0, the intergranular distance d2,0 and the bond radius
rb,0. To this end, stress–strain curves for different initial parameters
are systematically compared to the experimental curves by Abele
and Gow (1976). The best fitting triplet (denoted by the index bf)
in the parameter set Ω given in Table 1 corresponds to the triplet
(𝛼0, d2,0, rb,0)bf which verifies:

err(𝛼0, d2,0, rb,0)bf = min
Ω

(err (𝛼0, d2,0, rb,0)) (32)

with err being a relative error gap function defined by:

err =
∑nexp

i=1 ∣𝜎num (𝜀i) − 𝜎exp (𝜀i)∣ (𝜀i − 𝜀i−1)
∑nexp

i=1 ∣𝜎exp (𝜀i)∣ (𝜀i − 𝜀i−1)
(33)

In Eqn (33), the numerator corresponds to the cumulated area
between the numerical and experimental curves in the axial stress–
strain space (𝜎, 𝜀), whereas the denominator corresponds to the
area below the experimental curve. nexp is the number of points
taken from the experimental stress–strain curve, 𝜀i is the strain at
the ith point of the experimental curve, 𝜎num is the stress obtained
with the 3-D H-model and 𝜎exp is the experimental one.

The parameter set in Ω = {(𝛼0, d2,0, rb0) ∈ [45∘; 90∘]×
[2rg; 3.6rg] × [0.05rg; 0.9rg]} has been explored for experimen-
tal curves corresponding to a density between 470 kg/m3 and
640 kg/m3. The stress–strain curves of the experimental data and
the corresponding best fitting numerical curves in Ω are reported
in Fig. 7.

Table 2 reports the best fit parameters with the initial den-
sity of the experimental specimens increasing from 470 kg/m3 to

640 kg/m3. The relative error gap, as defined in Eqn (33), ranges
between 1.4% and 12.3% .

When plotted as a function of the initial snow density in Fig. 7,
the error is found smaller in the middle of the density range. In
any case, the value of the relative error between experimental and
numerical curves remains relatively small, which confirms the abil-
ity of the 3-DH-model to be used as a constitutive model for snow,
at least within the density range [470; 640] kg/m3. Higher densities
are impossible to reach with the 3-D H-model, as the condition
𝛼0 = 45∘ and d2,0/rg = 2 corresponds to the limit case where
a contact between the two hexagons within a cell is created. For
lower densities, the mismatch between experimental and numeri-
cal curves becomes too large to include these densities in the range
of validity of the snow-H-model.

This first calibration was carried out blindly, in the sense that
only the minimization of the gap between measured and predicted
data was targeted, without considering the agreement between
experimental density andmodel density, the latter being controlled
by the two geometric parameters of the H-cell. This is the purpose
of the next section, to achieve a much more versatile model.

4. Discussion on the model versatility

As the snow-H-model has demonstrated its ability to reproduce
experimental results through parameter adjustment, the next step
is to assess its predictive capability for snow behaviour under
varying conditions of density, temperature and strain rate.

4.1. Relation betweenmesoscopic geometry andmacroscopic
density

Calculating the density in multi-scale models is challenging as its
mesostructure only includes those elements which are actively par-
ticipating in the force transmission. For instance, in the present
model, the bi-hexagonal pattern is designed as the minimal struc-
ture to depict only snow grains which are part of force chains. The
surrounding space includes both void and snow grains not partic-
ipating to force transmission. This is the reason why we cannot
and should not calibrate the H-cell geometry to match directly
the macroscopic density. Therefore, we have chosen first to cali-
brate the initial geometrical parameters of the cells to match the
experimental stress–strain curves fromAbele andGow (1976).The
objective of this section is to provide an estimation of the propor-
tion of ice grains participating to force transmission by comparing
the macroscopic snow density 𝜌snow and the mesoscopic density
𝜌meso.

In the snow-H-model, we selected the smallest peripheral paral-
lelepiped volume as theH-cell volumeVmeso (see Fig. 9). Under this
assumption, the mesoscopic density can be expressed as follows:

𝜌meso (𝛼0, d2,0) = Vice

Vmeso (𝛼, d2,0)
𝜌ice =

40𝜋r3g
3L1L2L3

𝜌ice (34)

whereVice is the volume of solid ice, which corresponds to the vol-
ume of the ten spherical grains (we neglect the ice bond volumes),
and 𝜌ice is the density of ice, equal to 920 kg/m3.

The best fitting parameters obtained in Section 3.2 provide
an initial density 𝜌meso lower than 250 kgm−3, while the initial
densities measured in the experiments are larger than 470 kg/m3.

The density based on the bounding box shown in Fig. 8 system-
atically underestimates the real snow density for several reasons:
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Figure 7. Stress–strain curves for confined compression test: experimental results from Abele and Gow (1976) and best fitting numerical curves obtained with the 3-D H-model.

Table 2. Parameters giving the best fit for each experimental curve in 𝛀 = [45∘; 90∘] × [2 rg; 3.6 rg] × [0.05 rg; 0.9 rg] .

Data from Abele and Gow (1976) Best fit parameters for S ∈ 𝛀

Exp Nb*
Density

(kgm−3)*
Storage

temperature (∘C)*
Strain

rate (s−1)*
Snow age
(days)*

Initial opening
angle (∘)

Intergranular
distance (/rg)

Initial bond
radius [0; rg ]

Gap error
(%)

50 470 −1 7.84 3 51.0 2.75 0.50 3.3
48 480 −34 7.84 3 53.0 3.05 0.03 10.5
52 490 −1 7.84 3 63.5 3.15 0.40 2.4
51 520 −1 −7.84 3 50.0 2.90 0.45 1.4
35 530 −34 5.26 7 51.5 2.85 0.30 4.2
41 580 −1 16.0 7 55.0 2.10 0.65 2.1
36 640 −34 5.26 7 45.0 2.00 0.60 12.3
*Data from Abele and Gow (1976) experiments.

Figure 8. Gap error between experimental curves and best fitting numerical curves
with initial parameters not respecting the density condition (blue crosses) and
respecting the density condition presented in Section 4.1 (orange circles) as a func-
tion of the initial experimental density.

1- As already mentioned, the H-cell accounts only for grains
participating in stress transmission (the force chains)
whereas, in real granular materials, many grains do not
transmit significant stresses. Therefore, many ice grains are
not accounted for by the bi-hexagonal mesostructure, thus
underestimating the solid volume.

2- The arbitrary choice for the mesoscopic volume includes
much empty space and probably overestimates the void
volume.

3- To a lower extent, the ideal spherical shape of the ice grain in
the H-model approximates the shape of the real ice grains.
In real snow, ice grains are neither spherical and nor

Figure 9. Definition of the peripheral volume of the H-cell Vmeso.

monodisperse (see, for instance, Gay and others (2002),
Kaempfer and Schneebeli (2007) and Calonne and others
(2014)).

To account for the additional ice in the pore space, a coefficient
𝛾 can be introduced in the relationship between macroscopic and
mesoscopic densities, as:

𝜌macro = 𝛾𝜌meso. (35)
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Figure 10. Density as a function of the opening angle for different initial intergranular distance d2. Lines represent the analytical expression of the macroscopic density with
𝛾 = 2.58. Each symbol represents a simulation, where the y-coordinate is the snow density of the corresponding experimental tests.

Table 3. Best fitting parameters over Sbf ,c with the additional density constraint for the same experiment from Abele and Gow (1976) used in Section 3

Data from Abele and Gow (1976) Best fit parameters with density constraint

Exp Nb
Density

(kgm−3)
Temperature

(∘C)
Strain

rate (s−1)
Snow age

(days)
Initial opening

angle (∘)
Intergranular
distance (/rg)

Initial bond
radius (/rg)

Gap error
(%)

50 470 −1 7.84 3 73.5 3.1 0.01 13.9
48 480 −34 7.84 3 53.0 3.3 0.35 12.6
52 490 −1 7.84 3 48.0 3.5 0.65 2.7
51 520 −1 7.84 3 50.0 2.9 0.45 1.5
35 530 −34 5.26 7 51.5 2.6 0.20 10.8
41 580 −1 16.0 7 45.0 2.5 0.35 7.3
36 640 −34 5.26 7 45.0 2.0 0.6 12.3

This coefficient is set to 𝛾 = 2.58 from the harmonic average
of the ratios 𝜌exp

𝜌meso
based on the calibration tests shown in Section 3

(see Table 2):

𝛾 = ( 1
ntest

ntest
∑
i=1

𝜌meso,i

𝜌exp,i
)

−1

(36)

Figure 10 displays the analytical expression of the macroscopic
density with 𝛾 = 2.58, as a function of the opening angle for
different intergranular distances, with each test used in previous
Section 3.2 corresponding to amarker.The relative error is less than
2% for each test.

The high value of 𝛾 (with respect to 1) confirms that a consider-
able percentage of ice material is not accounted for in the density
calculation. Specifically, 𝛾 = 2.58 implies that the H-cells account
for 38% of themass of thematerial.This order ofmagnitude almost
aligns with the observations by Wautier and others (2017) that the
fraction of grains contributing to force chains ranges between 23%
and 31% in sand.

In contrast to Section 3.2, the fitting procedure can be optimized
by adding the additional constraint that themodel density matches
the experimental one. Thus, for each test i, the best fitting triplet
of initial geometrical parameters that satisfies 𝜌macro (𝛼0, d2,0) =
𝜌exp,i can be searched in Ωc (𝜌) defined by:

Ωc (𝜌) = {(𝛼0, d2,0, rb,0) ∈ Ω|𝜌macro (𝛼0, d2,0) = 𝜌} (37)
The best fitting parameters accounting for the density relation-

ship for each test are summarized in Table 3 and the corresponding

stress–strain curves are plotted in Fig. 11. The maximum rela-
tive error observed is of 13.9% , which is only slightly larger than
without the constraint (39) (see Fig. 7). In general, the largest
errors correspond to the extremal values of densities, while low
gap errors are found for 𝜌exp close to 500 kg/m3. The discrep-
ancy between experimental and numerical curves is maximal for
small and large deformations. At small deformation, an obvious
inflexion point is observed in numerical curves at the transition
between elastic and plastic regimes, due to the breakage of ice
bonds. Indeed, as all bridges share the same radius, ice bridges
all break at the same time for a given direction of mesostruc-
ture. In a real snow sample, the radius of ice bridges varies,
which means they do not break at the same deformation level.
Consequently, a smoother transition between elastic and plas-
tic regime is observed experimentally. For large deformation, the
H-model does not account for the reorganization of themesostruc-
ture, as the cells are deformed independently.This limitation of the
model has been discussed by Deng (2022), who introduced a way
to reinitialize mesostructure geometries to increase the domain of
application.

4.2. Relative influence of the three microstructure parameters
on the mechanical response

Among the three parameters of the snow-H-model, two of them
control the initial density (namely the initial intergranular distance
d2,0 and the initial opening angle 𝛼0). The remaining parameter is
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Figure 11. Stress–strain curves for confined compression tests: experimental results from Abele and Gow (1976) and best fitting numerical curves obtained with the 3-D
H-model for initial parameters verifying 𝜌macro (𝛼0, d2,0) = 𝜌exp.

the initial bond radius rb,0. It accounts for the impact of tempera-
ture and age of the snow sample. In this subsection, we characterize
the relative influence of the three initial parameters of the 3-D
H-model on the stress–strain curve in oedometer conditions.

1. Impact of the initial density
The initial density of a numerical snow sample is primarily deter-
mined by the geometry of the H-cells, characterized by the param-
eters 𝛼0 and d2,0. There is a direct relationship between d2 and
density, as the void within an H-cell increases proportionally with
d2. The stress–strain curves for a confined compression test with
different initial intergranular distances d2,0 are plotted in Fig. 12
(up) while the two other parameters are kept constant. Increasing
the intergranular distance reduces the mesoscopic density and
results in smaller axial stresses (as shown in Fig. 12 (up)), as it was
observed when reducing the density of a snow sample (Landauer,
1955; Radke and Hobbs, 1967; Abele and Gow, 1975; Scapozza and
Bartelt, 2003; Wautier and others, 2015).

On the other hand, the relationship between the opening angle
𝛼 and the density is not bijective. For small values of 𝛼, density
increaseswith decreasing𝛼; for larger values of𝛼, density increases
with 𝛼 (see Fig. 10). In Fig. 12 (down), a compression test with
d2/rg = 3.5 and rb,0/rg = 0.65 was run with different initial
opening angles 𝛼0.The evolution of axial stress with opening angle
follows the same pattern as for density. For opening angles lower
than 55∘, axial stress decreases when the opening angle is increased
while the opposite trend is observed for opening angles larger than
55∘. However, the mesoscopic density increases with the opening
angle for opening angles significantly larger than 55∘ (between 60∘

and 70∘, depending on the initial intergranular distance d2,0).Thus,
the non-monotonic influence of the opening angle on the stress–
strain curves probably reflects the complex influence of density and
other microstructural parameters (e.g. anisotropy of the contact
distribution).

2. Impact of the sintering time
Another key geometrical parameter to calibrate is the initial
bond radius rb,0. While the sintering process that occurs prior to
mechanical loading is not directlymodelled, the initial bond radius
serves as a proxy for this process since it has been shown that bond

radius grows over sintering time (Kuroiwa, 1961; Herwijnen and
Miller, 2013), leading to stronger bonds (Szabo and Schneebeli,
2007). In Fig. 13, the same compression test is now considered with
different initial bond radii. It can be observed that, at the begin-
ning of the loading, the initial bond radius has a positive effect on
the axial stress. Then, as ice bonds are broken under compression,
this influence of the initial bond radius is progressively reduced.
It should be emphasized that the observation of enhanced stresses
with the initial bond radius is somehow reminiscent to snow stiff-
ness evolution during isothermal metamorphism (Wautier and
others, 2015).

Note that the growth in bond radius with sintering time cannot
be readily observed from the data reported in Table 3, where the
values of rb,0 for 3 day and 7 day samples are not significantly dif-
ferent. This can be attributed to the fact that in the experimental
work of Abele and Gow (1976), the snow samples were not col-
lected immediately after a snowfall and sintering occurred prior to
the sample collection. Consequently, it is difficult to link the degree
of sintering solely to the storage duration.

4.3. Influence of loading conditions on the mechanical
response

In this subsection, we analyse the ability of the snow-H-model to
account for loading conditions that differ from those of Abele and
Gow (1976).We focus on the strain rate and temperature influence
on the mechanical response in oedometer conditions.

1. Impact of the strain rate
As the ice bonds are described by a visco-elastoplastic model, it is
relevant to investigate the effect of the loading rate on the material
response. As already specified, the analysis considers exclusively
loading rates above 10−4s−1 to remain within the brittle regime
(Schulson, 2001). We can define the characteristic time tviscous
at which the orders of magnitude of the viscoplastic and elastic
deformations coincide:

tviscous =
𝜀eb,n

A (Temp) 𝜎m
b,n

≈ 𝜎bcs

EoedoA (Temp) 𝜎m
bcs

(38)
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Figure 12. Stress–strain curves for confined compression test with different initial intergranular distances, 𝛼0 = 48∘ and rb,0/rg = 0.65 (up), and with different initial opening
angles, d2,0/rg = 3.5 and rb,0/rg = 0.65 (down).

Figure 13. Stress–strain curves for confined compression test with different initial
bond radius, 𝛼0 = 48∘ and d2,0/rg = 3.5.

where 𝜎bcs is the brittle compression strength of ice. At −10∘C,
Eqn (38) gives tviscous = 24 s with Eoedo = 1.6GPa the cali-
brated value of oedometer coefficient, and 𝜎bcs = 13.75MPa from
Eqn (27)

In the experiment by Abele and Gow (1976), the strain rates
ranged between 5s−1 and 16s−1, resulting in a total loading time
less than 0.08 s, thus much smaller than tviscous. Consequently, for
such high strain rates, the effects of viscosity can be considered
negligible.

The stress–strain curves of confined compression tests per-
formed with different strain rates on similar numerical snow sam-
ples (𝛼0 = 48∘, rb,0 = 0.6rg, d2,0 = 3.54rg) are given in Fig. 14.
To measure the direct influence of viscosity, these curves are com-
pared with a snow model with nonviscous bonds. The evolution
of the percentage of broken bonds during the loading for the dif-
ferent strain rates is reported in Fig. 14. The axial stress increases

with the strain rate up to .𝜀 = 0.025s−1. For higher values,
the strain rate has no significant influence on the stress–strain
response which is the same as the response of the nonviscous
model. This is consistent with the fact that the characteristic time
of the viscous deformation tviscous is larger than the time needed
to break the bonds at high strain rates: for example, with .𝜀 =
0.01s−1, more than 70% of the bonds are broken after only 3 s, as
shown in Fig. 14. The proportion of broken bonds increases with
the strain rate (Schulson, 2001), as the loading rate controls the
stress evolution within the bond through Glen’s law (Eqn (19)).
As the contact between unbonded grains is assumed to be rate-
independent in the proposedmodel, the strain rate effect decreases
as the number of bond breakage rises, bringing the curves to
converge at high strain rates. It is worth noting that at the low-
est strain rates considered, the test duration could allow for the
formation of additional bonds at the new contact points (see
Appendix C). While the current model does not account for
the formation of these new bonds, their inclusion would proba-
bly result in a more significant impact of viscosity at low strain
rates.

2. Impact of the temperature
The second loading parameter to studied is the temperature.
McClung (1996), Schweizer (1998) and Takei and Maeno (2004)
all observed that an increase in temperature leads to a decrease
in snow strength and stiffness. The temperature affects the snow
mechanical behaviour independently during the sintering phase
and the loading phase.

During the sintering phase, it was shown that a higher tem-
perature leads to a higher bond growth rate (Blackford, 2007;
Herwijnen and Miller, 2013) resulting in a greater sintering force
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Figure 14. Stress–strain curves (left) and evolution of the proportion of broken bonds (right) for confined compression tests at different strain rates, compared with a snow
material with nonviscous bonds.

Figure 15. Stress–strain curves (left) and evolution of the proportion of broken bonds (right) for confined compression tests at different temperatures and for .𝜀 = 7.84 s−1.

Figure 16. Stress–strain curves for confined compression tests at different temperatures and strain rates.

and to an increase in the bond radius (Szabo and Schneebeli, 2007;
Bahaloo, 2022). As the snow-H-model does not model the sinter-
ing phase, the effect of the temperature during sintering cannot be
assessed. However, the initial bond radius can be used as a proxy.
We deduce from Fig. 13 that we have an increase of the stress with
the temperature during the sintering time.

During the mechanical loading, the temperature influences
both the brittle compression strength of ice defined by Eqn (28)
(Schulson, 2001) and the viscous behaviour of the ice bonds
through Glen’s law (Eqn (19)).

To measure the influence of the temperature in the model,
isotropic compression tests were simulated from the same numer-
ical snow sample (𝛼0 = 48∘, rb,0 = 0.6rg, d2,0 = 3.54rg) with
a strain rate of .𝜀 = 7.84s−1 at different temperatures (Fig. 15). It
can be consistently observed that, for a given axial strain, the axial
stresses are larger for lower temperatures, as bond failure occurs
earlier in warmer conditions, as illustrated in Fig. 15 and described
in Schulson (1990).

Finally, Fig. 16 shows the stress–strain curves for different tem-
peratures with a strain rate of 7.84s−1, 0.001s−1 and 0.0001s−1.

https://doi.org/10.1017/jog.2024.112 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.112


14 Marie Miot et al.

The strain rate has no significant effect for temperatures strictly
below −10∘C. At higher temperatures, namely Temp = −1∘C and
Temp = − 10∘C, the effect of the strain rate becomes apparent.
This stems from the temperature dependent coefficient A (Temp)
in Glen’s law (Eqn (19)). As this coefficient increases with temper-
ature, the characteristic time of the viscous deformation evolves
inversely with temperature. As previously mentioned, the discrep-
ancy between the curves at Temp = −1∘C and Temp = −10∘C is
larger at the lowest strain rate, as the effect of loading rate on ice
behaviour is more marked.

From Figs. 15 and 16, we can conclude that, for a given
axial strain, the axial stress increases with decreasing tempera-
ture, whereas the snow stiffness is not affected by temperature.
However, the expected influence of temperature on snow stiff-
ness could be reproduced by considering in the model the known
temperature-dependency of ice stiffness (Parameswaran, 1987).

5. Conclusions and perspectives

The 3-D H-model has been extended to snow by adding an ice
bond component to the usual frictional contact law. A series of
confined compression tests have been performed from numerical
snow samples. The axial stress results have been compared against
the experimental curves of Abele and Gow (1976). The ability of
the snow-H-model to reproduce themechanical behaviour of snow
has been demonstrated for the intermediate range of snow den-
sity [470; 640] kg/m3, at different temperature and strain rates. For
snow of lower or larger density, the calibration of the model is no
longer adequate as, constitutively, the snow H-model is only able
to represent the snow microstructure of intermediate density. To
describe both loose and dense snow specimens, the H-cell geom-
etry would need further adaptations. For example, changing the
number of grains in the H-cell could allow to reach higher or lower
density. It is worth noting that within the considered density range,
the assumption of no rotation of the ice grains is reasonable, as
increasing the material density enhances the connectivity between
grains.

Within the domain of validity of the snow-H-model, the rela-
tionship between the geometrical parameters of the H-cell and the
macroscopic density has been studied closely. Indeed, the statis-
tical nature of the 3-D H-model prevents the pore space between
the different H-cells from being accounted for. Consequently, the
relationship between the mesoscopic and the macroscopic densi-
ties was derived using a proportionality coefficient.This coefficient
accounts for the ice fraction that does not contribute to the load-
bearing capacity of snow (i.e. the ice grains not participating to the
force chains) and the void in between the H-cells.

After calibration of the model against the experimental work
of Abele and Gow (1976), the effect of the initial bond radius has
been investigated, revealing that a change in the initial bond radius
produces a phenomenological response similar to what would
be observed with a change in the aging time of a sample under
isothermal conditions.

Finally, the impact of the loading conditions (strain rate and
temperature) on the response of the snow-H-model has been high-
lighted. It has been shown that the strain rate (when sufficiently
low) directs a substantial effect on both the viscous response of
the bonds and the bond failure rate. Increasing temperature also
leads to faster bond failure and smaller stresses in the material. It
should be noted that the influence of strain rate on the stress–strain
response is greater at higher temperatures.

As the capacity of the snow-H-model to reproduce experimen-
tal oedometer test has been proven, the next step will consist in
studying the predictive ability of the model. This would require
additional experiments using snow sample with a better control
of the initial microstructure, and a larger range of loading condi-
tion, with lower strain rates. An implementation of the extended
version of the 3-D H-model in a computational software suitable
for dealing with practical engineering concerns is also considered.
Using such a multi-scale approach ranging from the particle to the
continuum scale is thought to bridge the gap between engineering-
scale systems and the microscopic features of snow. Comparing
the H-model with DEM simulations at a smaller intermediate
scale would help assess computational efficiency and accuracy for
snow model, as has been already demonstrated for sand on large
geotechnical systems involving scales beyond the reach of DEM
simulations (Xiong and others, 2019).

The multi-scale approach of the model can allow to study the
effect of snow microstructure in more detail. Here, the effects
of the microparameters related to the snow density have been
widely study, but it would be also possible to study the effect of
anisotropy. All the simulations in this paper have been realized
with an isotropic distribution of direction, but it would be possi-
ble to include anisotropy bymodifying the probability distribution
function 𝜔 (𝜃, 𝜑, 𝜓).

New extensions of the snow-H-model can also be considered in
the future. Ice bond creation and ductile failure could be added in
themodel, to extend the range of applicability of themodel to lower
strain rate. Such an improvement would made it possible to con-
sider, for example, avalanche problems and to cover more domains
application of snow mechanics.
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Appendices

A Expression of the tangential force in a bonded contact
between ice grain
The total shear strain 𝜀tot

b,s in the bond can be split into an elastic part 𝜀e
b,s and a

viscoplastic part 𝜀vp
b,s:

𝜀tot
b,s = 𝜀vp

b,s + 𝜀e
b,s (39)

The viscoplastic deformation accounts for the creep behaviour of ice.Then,
we assume that the superposition principle is applicable in Glen’s law, as it has
been done in Kabore and others (2021). This assumption enables us to express
the normal and shear viscous strain independently. The normal creep rate is
given as a function of the normal stress with the standard expression of Eqn (19)
(Barnes and others, 1971). Then, for the viscous shear strain .𝜀

vp
b,s, we can

write:
.𝜀
vp
b,n = A (Temp) 𝜎m

b,s (40)

whereA (Temp) andm are the same constant as in Eqn (19) and𝜎b,s is the shear
stress in the bond.

In addition, the elastic shear deformation is linearly related to the shear
stress

𝜎b,s = G𝜀e
b,s (41)

with G the shear modulus of ice.
This gives the total viscous strain as a function of the shear stress:

𝜀tot
b,s = 1

G𝜎b,s + A (Temp) 𝜎m
b,s (42)

Going back to the beam representation of the ice bond in the H-cell, we can
express the shear strain in the bond as:

𝜀tot
b,s =

(𝛼 − 𝛼0) Lb
Lb,0

(43)

with (Lb, 𝛼) and (Lb,0, 𝛼0) being the bond length and the H-cell opening
angle, respectively, at the current time and at the beginning of the loading
(Kabore and others, 2021) (Peters and others, 2021).

And the shear stress can be related to the tangential contact force Tb as
follows:

𝜎b,s = Tb

Sb
= Tb

𝜋r2b
(44)

where rb is the cylindrical bond radius at time t.
Eventually, due to ice incompressibility in the bonds, the volume of an ice

bond is supposed to be constant, so we get:

𝜋rb2Lb = 𝜋rb,0
2Lb,0. (45)

By combining Eqns (39)–(45), the contact law relating the incremental nor-
mal contact force 𝛿Nb and the incremental intergranular distance 𝛿d reads:

𝛿Tb = −T𝛿d
Lb

+ 𝜋r2bG
Lb𝛿𝛼
Lb (t0)

− 𝜋r2bGA (Temp) 𝜎m
b,t𝛿t (46)

B Contact stiffness after bond failure
After bond failure, we consider that the contact force is controlled by the over-
lapping of the two grains at contact. As the ice grains remained deformable,
the contact stiffness is strongly dependent on the contact area between the two
grains. The normal contact force Fn,i is linked to the normal stiffness kn by the
relationship:

Fn,i = kn (2rg − di) (47)

with rg being the grain radius and di the intergranular distance.
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The contact force can also be written as a function of the normal contact
stress 𝜎n,i:

Fn,i = 𝜎n,i * (𝜋r2c ) (48)

with rc = √r2g − d2i /4 being the radius of the contact between the grain. The
normal stress can be expressed in terms of normal strain 𝜀n:

𝜎n,i = Eice𝜀n = Eice
2rg − di
2rg

(49)

So, we finally get the following expression for the normal stiffness:

kn = Eice
2rg

* 𝜋r2c = Eice𝜋
2 (rg −

d2i
4rg

) (50)

C Creation of new contacts in the 3-D H-model H-cell
In the general case, the coordination number in a H-cell of the 3-D H-model
is Z = 2.4. However, depending on the loading path, the geometry of the H-
cell can be deformed to a point where additional contacts are created. We can
distinguish two cases: the new contact is between extremal grains 1 and 4 (Z =
2.6) or between the two hexagons of the H-cell (contact between grains 2 and
7, Z = 4).

C-1 Creation of contact between grains 1 and 4

Thecontact created between grains 1 and 4 generates an additional normal con-
tact force N5 to be added in the system and that contributes to the stresses in
the H-cell.The value of the contact force depends on the intergranular distance
d5 between grains 1 and 4, as defined in Fig. 17 and reads:

N5 = −max (kn (2rg − d5) ; 0) (51)

with kn depending on the contact law used in themodel. Adding this force does
not impact the equilibrium on grain 2 and consequently does not change the
way to obtain the variations of the parameters of the H-cell geometry. Only the
expression of the local axial stress must be modified as follows:

�̃�11 = 𝜎other contacts
11 + N5d5

Vmeso
(52)

with �̃�other contacts
11 the contribution of the other contact forces on the first

component of the local stress tensor.
At some point, the opening angle may reach 90∘, which means that its value

will not be able to increase anymore. Additional external forces must be added
on grain 2 to prevent any further variation of the opening angle (see Fig. 18).
In this case, the evolution of the geometry of the H-cell is directly given by 𝛿L1,
𝛿L2 and 𝛿L3:

⎧{
⎨{⎩

𝛿d1 = 𝛿L2/2
𝛿d2 = 𝛿d5 = 𝛿L1

𝛿𝛼 = 0
. (53)

Figure 17. Description of the creation of contact between grains 1 and 4, with 𝛼 <

90∘: (a) scheme of one hexagon of the H-cell; (b) force equilibrium on grain 1.

Figure 18. Description of the creation of contact between grains 1 and 4, with
𝛼 = 90∘: (a) scheme of one hexagon of the H-cell; (b) force equilibrium on
grain 2.

C-2 Creation of contact between the two hexagons of the same
H-cell

When the lateral strains become high enough, new contacts between the two
hexagons of the 3-DH-cell can appear. Considering the possibility that d2 (t) ≠
d4 (t), the direction of the contact can be characterized by two Eulerian angles
𝜑3 and𝜃3 as defined in Fig. 19.𝜑3 is the angle between the x-axis and the branch
vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 between the centres of grains 2 and 7 while 𝜃3 is the angle between
the z-axis and the orthogonal projection of the branch vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 on the (Oyz)
plane. These angles can be written:

⎧{
⎨{⎩

𝜑3 = arctan
√l22+l23
d4−d2

𝜃3 = arctan y2
z7

(54)

with y2 the y-coordinate of grain 2 and z7 the z-coordinate of grain 7.
This new contact induces the addition of two new contact forces N6 and T6

between grains 2 and 7 (see Fig. 20). The value of these forces depends on the
length of the branch vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 given by the following expression:

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 = ⎛⎜⎜
⎝

d4/2 − d2/2
d1 sin𝛼1
d3 sin𝛼2

⎞⎟⎟
⎠

. (55)

From this it follows that:

d6 = ((d4/2 − d2/2)2 + (d1 sin𝛼1)
2 + (d3 sin𝛼2)

2)
1/2

. (56)

The contact force ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6and the vector ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 being collinear, we can write:

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 (t) = kn (2rg − d6 (t))
⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗d6 (t)
d6 (t) =

kn (2rg − d6 (t))
d6 (t)

⎛⎜⎜
⎝

d4/2 − d2/2
d1 sin𝛼1
d3 sin𝛼2

⎞⎟⎟
⎠
(57)

with kn depending on the contact law used in the model. In the case of a
frictional law, the magnitude of the tangential contact force ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 reads:

|T6 (t)| = min |T6 (t − 𝛿t) + ktd6𝛿𝛼3| , ∣N6 (t) tan𝜑g ∣ (58)

where 𝛿𝛼3 (t) is the angle between ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t − 𝛿t) and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t), defined by:

𝛿𝛼3 = arccos
⟨⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t) |⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t − 𝛿t)⟩

∣∣⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t)∣∣ ⋅ ∣∣⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t − 𝛿t)∣∣
(59)

The tangential contact force ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 (t) is orthogonal to the normal contact force
⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 (t) and coplanar with ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 (t) and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 (t − 𝛿t), which means that it verifies:

{ ⟨⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 (t) |⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 (t)⟩ = 0
det (⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6, ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t) , ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗d6 (t − 𝛿t)) = 0 . (60)

So ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 can be written:

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 = ⎛⎜⎜
⎝

T6x
T6y
T6z

⎞⎟⎟
⎠

(61)
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Figure 19. Description of the creation of contact between grains 2 and 7, with d2 ≠ d4: (a) scheme of the H-cell and definition of the 𝜑3 angle; (b) projection of the new
contact in the plan (Oyz) and definition of the angle 𝜃3.

Figure 20. Force equilibrium on grain 2: (a) in the plan (Oxy); (b) in the plan (Ozy).

with
⎧{{
⎨{{⎩

T6x = atxT6y

T6y =
∣⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6(t)∣

√1+a2tx+a2ty/a2tz
T6z = aty

atz
T6y

(62)

and

⎧{{{{{
⎨{{{{{⎩

atx = − d6y(t)
d6x(t)

− d6z(t)
d6x(t)

aty
atz

T6y (t)

aty =
(d6y(t)d6z(t−𝛿t)−d6z(t)d6y(t−𝛿t))

d6x(t)
+ (d6x (t) d6z (t − 𝛿t) − d6z (t)

× d (t − 𝛿t))
atz = (d6x (t) d6y (t − 𝛿t) − d6y (t) d6x (t − 𝛿t)) − d6z(t)

d6x(t)
× (d6y (t) d6z (t − 𝛿t) − d6z (t) d6y (t − 𝛿t))

.

(63)

For the sake of simplicity and to keep the scheme of the H-model explicit,
we do not account for the influence of ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗N6 and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗T6 on the force equilibrium on
grain 2, which means that the new forces only contribute to the expression of
the stresses in the H-cell as follows:

⎧{{
⎨{{⎩

�̃�11 = 𝜎other contacts
11 + 8N6xd6x−8T6xd6x

Vmeso

�̃�22 = 𝜎other contacts
22 + 8N6yd6y−8T6zd6z

Vmeso

�̃�33 = 𝜎other contacts
33 + 8N6zd6z−8T6zd6z

Vmeso

. (64)

D Contact loss in the 3-D H-cell
Depending on the load path of a mesostructure, some contacts between grains
in a H-cell can be lost. In the case of an unbonded contact, it means that

Figure 21. Description of the loss of contacts: (a) loss of the inclined contact between
grains 1 and 2; (b) and (c) loss of the axial contact between grains 2 and 3 with (b)
the description of the equilibrium on the two half cells and (c) the description of
equilibrium on grains 1 and 2.

di > 2rg. In the case of a bonded contact, it occurs when the bond fails. We can
distinguish two situations, depending on which contact is lost (Fig. 21). For the
sake of simplicity, we consider in the following only one hexagon independently
of the second one.

If the inclined contact (namely the one between grains 1 and 2) is lost (see
Fig. 21a), the contact forcesN1 andT1are null, so the force equilibrium of grains
1 and 2 imposes that the external forces F1 and F2 are null too. The momen-
tum equilibrium on grain 2 also imposes T1 = G2 = 0, which means that
no force can equilibrate the normal contact force N2 between grains 2 and
3. In that case, no force transmission is possible in the hexagon, so all the
stresses are null. In this work, we have chosen to let the deformation of the
cell continue until the contact is restored. We fix d2 = 2rg, and the geometri-
cal compatibility equations (4) and (5) enables to determine the variation of d1
and 𝛼.

If the axial contact between grains 2 and 3 is lost, the normal contact
force N2 is null. In this case, one hexagon is separated into two triangles (see
Fig. 21b, c).The equilibrium equation of forces andmomentum on grain 2 leads
to:

G2 = T1

N1 cos𝛼 − T1 (1 + sin𝛼) = 0 (65)

where N1and T1 are of opposite signs. This means that the system to solve in
this case becomes:
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Figure 22. Description of the connectivity the grain in a cell with a loss of contact
between grains 2 and 3 (grey cell), throughout the neighbouring cells.

⎛⎜⎜
⎝

2 cos𝛼1 1 −2d1 sin𝛼1
2 sin𝛼1 0 2d1 cos𝛼1

A1 0 C1

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝛿d1
𝛿d2
𝛿𝛼1

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝛿L1
𝛿L2
𝜆1

⎞⎟⎟
⎠

(66)

with A1, C1 and 𝜆1 as defined in Eqn (12), depending on the contact law.
We can calculate Fa1 from the equilibrium on the forces on grain 1 projected

on the axis of the cell:

Fa1 = 2N1 cos𝛼 − 2T1 sin𝛼 (67)

From Eqn (65), we deduce that:

Fa1 = 2G2 (68)

which proves that the two half-cells are in equilibrium.
This external tangential force G2 represents the action of the grains outside
the cell on the grain within the cell, indicating that connectivity is established
through contact with neighbouring cells. As illustrated in Fig. 22, the connec-
tivity of grains 1 and 4 in the grey cell is ensured by their contact with the blue
and orange cells.
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