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1. Preliminaries. Let 2F be a smooth foliation of codimension p on a smooth manifold
Mm. We can define &* by an atlas of coordinate charts (£/, (JC, y)), called leaf charts, where
(x, y): U-+Rm~p x Rp are coordinate functions for which the leaves of SF are given by
j 1 constant, ..., yp constant, in U. Clearly, on the overlap of two such leaf charts (£/, (JC, y))
and ([/ ' , (JC', y')) we have a coordinate transformation of the form

x' = x'(x, y), y' = y'{y).

If y' is always affine in y, i.e.

" JJ (1)

where A\ and B' are constants, we shall say that OF is a transversally affine foliation. This
notion is, in a sense, dual to that of affine foliation, see [2], in which x' is affine in x and each
leaf has an induced flat affine structure.

In this paper we establish some of the basic properties of transversally affine foliations of
codimension one.

2. An equivalent definition. From now on we shall be concerned exclusively with
foliations of codimension one.

LEMMA 1. 2F is transversally affine and orientable if and only if some nowhere vanishing
\-form co on M determining 3F has the following properties.

(i) dco ~ co A 0 for some \-form 0.
(ii) d9 = 0.

Proof. Since ^ is determined by co we have, by definition, co 13F — 0 and coAdco = 0.
This implies that there exists a 1-form 9 such that dco = coA9. Thus if $F is transversally affine
we must show that we can select 9 to satisfy d9 = 0.

Let si bean atlas of leaf charts satisfying (1). Suppose that co = cOjCfcc'+aafyinthechart
(£/, (JC, y)). The condition co 18F = 0 implies that cof = 0. Thus on the overlap of the charts
(U, (JC, y)) and (£/', (JC', y')) we have eo = a' dy' = a dy. But dy' = Ady for some constant A
from (1), hence a'/4 = a. Also, since co is nowhere vanishing, it follows that 9 = -da /a is a
globally defined 1-form. Now dco = dtxAdy = dajciAccdy = COA9 and t/0 = 0.

Conversely, suppose 2F is defined by a 1-form co satisfying (i), (ii). Given an atlas si of
leaf charts we want to modify it so as to satisfy (1). Since we can assume the domain U of each
chart is topologically Rm, the condition d9 = 0 implies that there exists a real valued function/
on U such that 9 = df. If we fix one such/for each chart, then on the overlap of two charts
9 = df=df and so f =f+B, for some constant B. Now put a = e~f and change to
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coordinates {X, Y) on U defined by

d
OX

Xl = xl, Y=\ (Pla)dy, where co =
Jo

notethat—.03/a) = i

Clearly (U, (X, Y)) defines a leaf chart. However adY = fidy = co and so

adY = a'dY' = e~(r+B)dY' = uAdY',

where A = e~B. Hence AdY' = dY and we have constructed a leaf atlas for which 2F is
transversally affine.

REMARK. If we put ft = (co, 9) then ft can be regarded as a 1-form on M with values in
the Lie algebra of the group of affine transformations of R. (i) and (ii) imply </ft+^[ft, ft] = 0
which are the conditions for (SF, ft) to be a homogeneous foliation, see [1]. As a consequence
of Lemma 1 we have the following result.

THEOREM 1. Let 3Fbe a transversally affine and orientable foliation of codimension one on a
closed manifold Mm. Then

(a) The Godbillon-Vey invariant of & is trivial,
(b) H\M ; R ) # 0 .

Proof. The Godbillon-Vey invariant of & is [-9Ad9]eH3(M;R), see [5]. It is
obviously trivial.

By Lemma 1 we have a closed form 9 defined on M. Suppose [9] = 0, i.e. 9 = ^ for some
real valued function /, where [SJeT/^MjR). Consider the nowhere vanishing 1-form
</> = e^co. Then

dcf) = es9 A co + e^dco = 0 by (i).

Now, c\> cannot be exact because a smooth real valued function on a closed manifold has at
least two critical points. Hence [<£] ^ 0. Thus HX(M; R) ^ 0. On the other hand if [0] ^ 0
then //J(M;R)#0.

COROLLARY. There do not exist transversally affine foliations of codimension one on spheres.

REMARK. Part (b) of the theorem is a consequence of a more general result concerning
transversally analytic foliations, see [6], of which transversally affine foliations are clearly
examples.

An important class of transversally affine foliations are those for which 0 = 0, i.e. dco = 0.
These are the foliations without holonomy and have been studied in detail by Tischler [11]
and Moussu [9]. The following construction yields another class of examples.

Consider Mm = Vm~x x S1. The trivial foliation is determined by a closed form a, the
pull back of the standard volume form on S1. Let/ : Vm~l ->R be a smooth function for
which zero is not a critical value. We can extend / to M in the obvious way. Define
co = df+fct. This is a nowhere vanishing 1-form and dco = dfA a = co A a. Thus co determines
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a transversally affine foliation on Mm. If we take Vm~Y = S2, with / as the standard height
function, we obtain a transversally affine foliation of S2 x S1, with one torus leaf T2 and all
other leaves diffeomorphic to R2. All the leaves are proper.

The next result gives a class of examples from pseudo-riemannian geometry.

THEOREM 2. Let (Mm, g) be a smooth, pseudo-riemannian manifold which admits a flat
parallel field of tangent lines. Then Mm admits a transversally affine foliation of codimension one.

Proof. A parallel field of tangent lines is a tangent line bundle which is invariant with
respect to parallel transport. Such a field is said to be flat if locally it is spanned by a parallel
vector field. The parallel field of tangent (w— l)-planes PL, which is the orthogonal conjugate
of P, is integrable and hence tangent to a foliation SF of codimension one, see [4]. Note that
PL is complementary to P if and only if P is non-null. For the non-null case it is known,
see [4], that & is determined by a closed 1-form and so is clearly transversally affine. In the
null case, by considering a canonical form for the metric, see [12, 4], one can obtain an atlas si
of leaf charts for & with the following properties. Each chart has coordinates

(x,y,t)eR x Rm"2 xR

such that the metric has the canonical form

ds2 = idxdt+gijdydyi+lHidfdt+Kdt2, (2)

where gIJt Ht, K are independent of x. The leaves of 2F are given locally by / constant, and P
is spanned in each chart by the parallel vector field d/dx. Moreover, on the overlap of two
charts (U, {x, y, t)) and (£/', (*', y', t')), we have, by virtue of (2), a coordinate transformation
of the form

x' = (dt/dc) .x+h(y, t), y' = y'(y, t), f = c(t).

Now, since djdx and d/dx' are both parallel we must have dcjdt constant. Hence c(t) = At+B
where A and B are constants and so 3F is transversally affine.

For an example to illustrate this theorem, in which every leaf of !F is dense and OF has
non-trivial holonomy, see [2, §4].

3. Properties of the leaves. In this section we shall prove that a transversally affine
foliation of codimension one cannot have exceptional leaves. This is not true for analytic
foliations in general, see [7].

THEOREM 3. If & is a transversally affine foliation of codimension one on a smooth
manifold Mm, then each leaf of IF is either proper or locally dense. In particular there are no
exceptional leaves.

COROLLARY. If Mm is closed then:

(i) if every leafof2F is non-compact then every leaf is dense;
(ii) if the compact leaves are not isolated then every leaf is compact and if in addition $F is

transversally orientable then !F is afibring.

https://doi.org/10.1017/S0017089500002810 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002810


TRANSVERSALLY AFFINE FOLIATIONS 109

Proof, (i) follows from the known fact, see [10], that if & has no exceptional leaves then
every non-dense leaf has a compact leaf in its closure.

(ii) is a consequence of the fact that !F is transversally analytic, see [6].

Proof of Theorem 3. Recall that a leaf L is proper (resp. locally dense) if it intersects a
transverse arc in a non-empty discrete set (resp. dense set). Note that a leaf can be locally
dense without being dense in Mm.

If every leaf is compact then every leaf is proper and we are finished. Let L be a non-
proper leaf. Then it is not difficult to show that there is a smoothly embedded circle S
intersecting L which is transversal to SF. The union of all leaves through S is an open
submanifold U <=. Mm. Thus if we can show that each leaf of !F \ U is either proper or locally
dense then the proof is complete.

There is a flat affine structure on S, induced by !F, which we shall denote by (S, F),
where P i s a connection on S having zero curvature and torsion. This is a consequence of ^
being transversally affine. Also, & induces a pseudogroup ^ of local affine diffeomorphisms
of (5, F). The orbit of xeS under the action of ^ is precisely LxnS where Lx denotes the
leaf through x. By Theorem 3 of [3] there is a covering map

where {X, F*) is one of the following spaces.
(I) X = R and F* is the standard flat euclidean connection. The group of deck

transformations o f / i s generated by the affine diffeomorphism </> where $(JC) = x+1, xeR.
(II) Ar = R+ = {xeR: ; c>0} . F* is the (incomplete) flat connection induced by the

euclidean connection. Here <f>(x) = ax, ;ceR+ and a > 1 is constant.
Each £e<g can be lifted (not uniquely) to an element <!;'eAff(R, F*) (the Lie group of

affine diffeomorphisms of (R, F*)). To do this one uses analytic continuation, see [8,
Chapter VI]. In case (II) it is clear that £'(0) = 0.

If <j>e Aff(A", F*) is a generator of the group of deck transformations of/then the group G
generated by {£':£e&}u{<f)} is independent of the particular choice of lifts.

LEMMA 2. Let xeX. Thenf(G(x)) = SnLf(x).

NOTE. This shows that LJ(X) is proper or locally dense if and only if G{x) <= X{= R or R+)
is proper or locally dense.

Proof. Let h:M*-*Mm be a simply connected covering and let IF* — h~l3F. Let
U* c M* be a connected open set such that (h \ £/*): {/*->[/ is a covering. Now, S c Mm

represents an element of infinite order in 7ri(Mm). This follows because & is transversally
analytic, see [6]. Thus each lift K of S in U* is an embedded R. Moreover, it is not difficult
to prove that K intersects each leaf of !F* | U* precisely once. We can identify K with the
space X, where K has the flat affine structure induced by ̂ "*.

Let P be the group of deck transformations of the covering h: M* -> Mm. Clearly, each
element of ^ is induced by an element of P (in particular one keeping U* setwise fixed).

Define k:U*-»K by k(y) = z when yeLz. Let peP. Then kop:K-+ K is an affine
diffeomorphism (with respect to the structure induced by &*) because p is J^* preserving.
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The following lemma completes the proof of the theorem.

LEMMA 3. In both cases (I) and (II) above, ifxeXthen G(x) is either proper or dense.

Proof. Case (I). X = R and <j> is the translation <j)(x) = x+1.

(i) Suppose G consists only of translations. If G contains the translations XH+X+OC and
xh+x+fi such that (jS-a) is irrational then G(x) will be dense for all xeR. If this is not the
case then G consists of elements of the form

\j/:xh-+x+plq, where p,qeZ.

Clearly (/)~po\j/q = 1R. To obtain a set of generators we can assume 0 <p/q :§ 1. If the set of
generators is finite then all orbits are proper. If the set of generators is infinite then the set
{pjq} must have a limit point in [0, 1]. In this case there must be "arbitrarily small"
translations in G and so all orbits must be dense.

(ii) Suppose G contains at least one non-translation. By suitably changing coordinates
we can assume this element, say tj/, has the form ip(x) = Xx, X > 1. Now,

Thus by choosing p negative, we may again get arbitrarily small translations in G and so every
orbit is dense.

Case (II). X = R+ and <f> has the form </>(x) = ax, a. > 1. G must preserve R+, hence
G(0) = 0. Thus every \J/ e G has the form ^(x) = fix, fl > 0. If there is a ip e G such that
(log /J/log a) is irrational then every orbit is dense. Otherwise every orbit is proper.

The following elementary examples of foliations on the torus T2 show that both the
cases (I) and (II) can occur.

(I) Take R2 with the standard flat euclidean connection. If G is the group of affine
transformations generated by (x, y) h-> (x +1, y) and {x, y) H-> {X, y +1) then R2/G is the standard
euclidean torus. The foliation of R2 defined by dx+xdy = 0 for a e R induces a transversally
affine foliation on T2. If L = {(x, 0): x e R } then we can take S = L\G. Every leaf is compact
if a is rational and every leaf is dense if a. is irrational.

(II) Put X = R 2 - {(0,0)}. Let Gx be the group generated by (x, y)\-*(Xx, Xy) X > 1.
Then X/Gx is a flat affine torus. The foliation of X defined by dx = 0 induces a foliation of T2

with every leaf proper and precisely two compact leaves. If L = {(x, 0):x > 0} then we can
take S = L\G.

REFERENCES

1. E. Fedida, Feuilletages duplan—feuilletages de Lie, Thesis, University of Strasbourg (1973).
2. P. M. D. Furness, Affine foliations of codimension one, Quart. J. Math. Oxford {2) 25 (1974),

151-161.
3. P. M. D. Furness and D. K. Arrowsmith, Locally symmetric spaces, / . London Math. Soc.

(2) 10 (1975), 487-499.
4. P. M. D. Furness and S. A. Robertson, Parallel framings and foliations on pseudo-riemannian

manifolds, / . Differential Geometry 9 (1974), 409-422.
5. C. Godbillon and J. Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci.

Paris Ser. A 112, (1971), 92-95.

https://doi.org/10.1017/S0017089500002810 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002810


TRANSVERSALLY AFFINE FOLIATIONS 111

6. A. Haefliger, Varietes feuilletees, Ann. Scuola Norm. Sup. Pisa. 16 (1962), 367-397.
7. G. Hector, Groupes de diffeomorphisms et feuilletages analytiques; to appear.
8. S. Kobayashi and K. Nomizu, Foundations of differential geometry (Interscience, 1963).
9. R. Moussu, Feuilletages sans holonomie d'une variete fermee, C. R. Acad. Set. Paris Sir. A

270(1970), 1308-1311.
10. G. Reeb, Sur certaines propriites topologiques des varietes feuilletees, Actualites Sci. Indust.

(Hermann, 1952).
11. D. Tischler, On fibering certain foliated manifolds over S', Topology 9 (1970), 153-154.
12. A. G. Walker, Canonical form for a riemannian space with a parallel field of null planes,

Quart. J. Math. Oxford (2) 1 (1950), 69-79.

DEPARTMENT OF MATHEMATICS INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE

UNIVERSITY OF SOUTHAMPTON UNIVERSITE LOUIS PASTEUR

SOUTHAMPTON 7, RUE RENE DESCARTES

SO9 5NH 67084 STRASBOURG CEDEX

https://doi.org/10.1017/S0017089500002810 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002810

