
Frictional relaxation in avalanches

Perry BARTELT, Othmar BUSER
WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf, Switzerland
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ABSTRACT. We use velocity profile measurements captured at the Vallée de la Sionne test site,
Switzerland, to find experimental evidence for the value of extreme, Voellmy-type runout parameters
for snow avalanche flow. We apply a constitutive relation that adjusts the internal shear stress as a
function of the kinetic energy associated with random motion of the snow granules, R. We then show
how the Voellmy dry-Coulomb and velocity-squared friction parameters change (relax) as a function of
an increase in R. Since the avalanche head is characterized by high random energy levels, friction
decreases significantly, leading to rapidly moving and far-reaching avalanches. The relaxed friction
parameters are near to values recommended by the Swiss avalanche dynamics guidelines. As the random
kinetic energy decreases towards the tail, friction increases, causing avalanches to deposit mass and stop
even on steep slopes. Our results suggest that the Voellmy friction model can be effectively applied to
predict maximum avalanche velocities and maximum runout distances. However, it cannot be applied
to model the full range of avalanche behaviour, especially to find the distribution of mass in the runout
zone. We answer a series of questions concerning the role of R in avalanche dynamics.

1. INTRODUCTION
A key problem in snow science is to physically explain the
low friction values required to model extreme runout of
dense flowing avalanches. These low values have been
deduced from back-calculation of avalanche events (Buser
and Frutiger, 1980), but must be changed from event to
event, primarily depending on avalanche size (Salm and
others, 1990; Gruber and Bartelt, 2007). Although empir-
ical, they are the basic requirement for the predictive
application of avalanche dynamics models in practice.

In this paper, we model avalanche friction by introducing
a frictional process based on tracking the kinetic energy R of
the random motion of the snow granules (Buser and Bartelt,
2009). We show that this process is capable of modelling the
continual evolution of internal avalanche velocity and
therefore can predict the heightened mobility of avalanche
fronts as well as the stopping behaviour of avalanche tails. In
the discussion we answer a series of questions to help
explain the role of random kinetic energy in avalanche flow,
especially questions regarding the relationship between R
and mechanical work, frictional shearing, avalanche vel-
ocity and flow density.

2. RANDOM KINETIC ENERGY
We shall denote in two dimensions

RðP , tÞ ¼ Rðx, z, tÞ ¼ �

2
u2
r ðP , tÞ þw2

r ðP , tÞ
� � ð1Þ

the kinetic energy associated with the fluctuating velocites
urðP , tÞ and wrðP , tÞ of snow granules moving within a
flowing avalanche with continuum density � at time t at
point P (Fig. 1). The motion is defined within a rectangular
plane defined by the Cartesian coordinates x and z, Pðx, zÞ.
The fluctuation velocities are mathematically defined as the
difference between the instantaneous avalanche velocities,
uðP , tÞ in the horizontal direction and wðP , tÞ in the vertical
direction, and the steady average velocity, uðPÞ and
wðP Þ ¼ 0:

urðP , tÞ ¼ uðP , tÞ � uðP Þ ð2Þ

and

wrðP , tÞ ¼ wðP , tÞ �wðPÞ ¼ wðP , tÞ: ð3Þ
We therefore divide the total flow velocity into two

separate flows – the mean flow and the fluctuating flow –
although both flows are associated with the same mass. The
steady average velocity uðPÞ is also time-dependent, but on
a much longer timescale than the fluctuation velocities,
which primarily represent any velocity component not in the
mean flow direction, which is always defined either parallel
or perpendicular to the slope with angle �ðxÞ (Fig. 1). By
definition, the fluctuation velocities have zero mean, so they
can be considered random. As such, the random kinetic
energy RðP , tÞ cannot perform mechanical work (Bartelt and
others, 2006). Energy fluxes associated with the production
and dissipation of RðP , tÞ are therefore irreversible because
the density is constant (Buser and Bartelt, 2009).

3. FRICTIONAL RELAXATION
Experiments with real-scale avalanches (Salm and Gubler,
1985; Gubler and others, 1986; Gubler, 1987; Kern and
others, 2009) have led us to apply the constitutive equation
for shear stress Szx ,

Szx ¼ b � b0½ �NðP , tÞ þ m �m0½ � _�ðP , tÞ, ð4Þ
to predict the evolution of measured shear rates

_�ðP , tÞ ¼ @uðP , tÞ
@z

ð5Þ
of the mean velocity field in avalanches observed at the
Vallée de la Sionne (VdlS) test site, Switzerland (Fig. 2)
(Buser and Bartelt, 2009). Because the constitutive Equa-
tion (4) contains a dry-Coulomb part (coefficient b) and a
viscous part (coefficientm), it can model avalanche flow just
after release and near stopping (when the granular avalanche
behaves as a solid block) and when the avalanche is moving
rapidly in the acceleration zone (when the avalanche moves
as a viscous fluid). We now adjust the constant Coulomb
friction coefficient b and the effective viscosity m with
correcting terms (b0 and m0) to account for different friction
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values, depending on the velocity, etc. The height of
avalanche flow h(t) and density at P defines the normal
stress N(P,t) if vertical accelerations are negligible.

The parameters b0 and m0 depend on the random kinetic
energy R(P,t) and account for frictional relaxation leading to
extreme avalanche runout. These coefficients are deter-
mined by two thermodynamic constraints. Firstly, all
combinations of b0 and m0 must satisfy the second law of
thermodynamics. For each frictional process (Coulomb and
viscous), we cannot reduce the friction such that we violate
the second law. Secondly, if the avalanche is in steady state,
the increase in heat generation must be zero (Bartelt and
others, 2006). In this case, an increment in frictional heat
must be followed by an equal decrement in the dissipation
of R and vice versa. This indicates that the two heat-
producing processes must be symmetric. We impose these
two constraints on our constitutive formulation by complet-
ing the squares of the two heat-producing processes. Letting
_�b represent the dissipation by Coulomb friction

_�b ¼ ð1� �Þ b � b0½ �N _� þ �bR, ð6Þ
and _�m represent the dissipation by viscous shearing,

_�m ¼ ð1� �Þ m �m0½ � _�2þ�mR, ð7Þ
we find

b0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
�bb
1� �

r ffiffiffiffiffiffiffi
R
N _�

s
and m0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
�mm
1� �

r ffiffiffiffiffi
R
_�2

s
: ð8Þ

The parameters � and � ¼ �b þ �m parameterize the
production of random kinetic energy by the mean flow field
and its dissipation, namely,

_RðP , tÞ ¼ �Szx _� � �RðP , tÞ: ð9Þ
The parameter � 2 0, 1½ � describes the generation of random
energy from the mean flow, while the parameter
� ¼ �b þ �m (with �b � 0 and �m � 0) accounts for the
dissipation of random energy. We assume that the genera-
tion depends only on the local strain rate and that no energy
is transferred from the mean flow field to larger-scale flow
structures (vortices) and is associated only with the random
velocities of the granules.

To fit the measured velocity profiles, we assume three
values: � ¼ b � b0½ �, m and �m=ð1� �Þ. The values b, m, �b,
�m and � are constant for each avalanche. They do not
change as a function of location or time. For each measured
velocity profile, we then select R(z) and solve the momentum

balance equation in simple shear (Buser and Bartelt, 2009).
The calculated velocity profile is then compared to the
measurements (Fig. 2). In the previous work, only the viscous
friction term was relaxed, but strong variations in � were
noted (Buser and Bartelt, 2009). These variations can be
explained by reducing all frictional processes, not only the
effective viscosity, in accordance with the thermodynamic
constraints outlined above. We find good agreement
between the selected � values and the values predicted
by the constitutive model, that is b � b0½ � where b0 is defined
by Equation (8) (Fig. 3a). Our analysis of the experimental
results from five avalanches observed at the VdlS test site
(Buser and Bartelt, 2009; Kern and others, 2009) reveals
that 0:15 � �b � 0:25 and 0:55 � �m � 0:65 (Fig. 3b;
0:75 � � � 0:85). The production parameter � varies be-
tween 0:10 � � � 0:25, leading to fluctuation velocities that
are 20–30% of the mean translational velocity at the
avalanche head but are close to zero at the avalanche tail.

Fig. 1. Avalanche cross-section. Definition of coordinate system,
velocity u(P; t) and random kinetic energy distribution R(P; t).

Fig. 2. Examples of avalanche velocity profiles from VdlS (see Buser
and Bartelt, 2009; Kern and others, 2009): (a) velocity avalanche
head; (b) velocity avalanche tail. Velocity profiles are fitted
assuming shear stress Equation (4).
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4. VOELLMY PARAMETERS
The Voellmy friction equation (Buser and Frutiger, 1980;
Bartelt and others, 1999) has long been applied in avalanche
science to predict avalanche runout:

Szx ¼ �NðP , tÞ þ sU2
m ¼ �NðP , tÞ þ �g

�
U2

m: ð10Þ

The two Voellmy coefficients are the dry friction coefficient
� and the turbulent friction coefficient � (m s–2). For
agreement with other applications of the Voellmy model,
we define the coefficient s ¼ �g=� (Norem and others,
1987). The model relates mean avalanche velocity Umðx, tÞ,

Umðx, tÞ ¼ 1
h

Z h

0
uðP , tÞ dz, ð11Þ

to the total shear stress. Shear gradients are therefore
concentrated in a thin layer at the avalanche bottom (Salm,
1993). From the experimental data we can find both the
mean flow velocity (Equation (8)) and the mean random

kinetic energy Rmðx, tÞ,

Rmðx, tÞ ¼ 1
h

Z h

0
RðP , tÞ dz, ð12Þ

and therefore find the dependency of � and � on the mean
values Um and Rm. Moreover, we define

b � b0½ �NðP , tÞ � �ðRmÞNðP , tÞ ð13Þ
and

m �m0½ � _�ðP , tÞ � sðRmÞU2
m: ð14Þ

The results from five avalanches observed at the VdlS test site
are depicted in Figure 4. We find that �ðRmÞ decreases to
�ðRmÞ=0.15 for high mean random kinetic energy levels at
the head of the avalanche (Fig. 4a). Similarly, the turbulent
friction �ðRmÞ increases to � =2000 m s–2 (Fig. 4b). These m
and � values are similar to the recommended guideline
values (Buser and Frutiger, 1980; Salm and others, 1990) as
well as Coulomb friction values found in snow-chute
experiments (Platzer and others, 2007). Figure 4c depicts
the results for the variable sðRmÞ. Note that sðRmÞdecreases
to values sðRmÞ=0.5 kgm–3, in good agreement with Norem
and others (1987) or Bartelt and others (1999). At the tail,
friction values increase, indicating that an avalanche can
stop on steep slopes if the mean random kinetic energy
decreases to small values such that �ðRmÞ � tan� (Bartelt
and others, 2007).

The change in parameters �ðRmÞ and �ðRmÞ can be
expressed in differential form as

d�ðRmÞ
dRm

¼ � �

R0
and

d�ðRmÞ
dRm

¼ �

R0
ð15Þ

with �ðRm ¼ 0Þ ¼ �0 and �ðRm ¼ 0Þ ¼ �0. Typical values for
snow avalanches are 0:30 � �0 � 0:4, 50m s–2 � �0 � 300
m s–2; R0 �6 kJm–3. This relation indicates that the change
in shear stress is a function of the shear itself, reflecting the
fact that the shear rates _� are a function of RðP , tÞ
(Equation (4)), while conversely RðP , tÞ is a function of the
shear rate _� (Equation (9)).

5. DISCUSSION
The following questions are raised so often that we decided
they deserve a special section.

Why do the authors ignore the role of the dispersive
pressure, pd, which is due to the random kinetic
energy R?
Because our experimental measurements indicate that in the
mean the dispersive pressure is zero. When we measure the
normal pressure at the bottom of the avalanche, either in
snow-chute experiments (Platzer and others, 2007) or
granular experiments (Bartelt and others, 2007), we find
that the normal pressure acting on our force plate is equal to
the weight of the avalanche. This experimental result implies
that the acceleration of the centre of mass is zero in the
vertical direction (normal to the slope); otherwise we would
see a change in pressure as the centre of mass is accelerated
upwards or downwards by the dispersive pressure. This
experimental result is the first indication that R, in a flowing
avalanche, does no mechanical work. If R did mechanical
work, we would see some deviation from the self-weight
pressure at the bottom of the avalanche.

Fig. 3. Relaxation of Coulomb friction. (a) Comparison between �

values found from velocity profiles and Coulomb friction values
deduced from b � b0ðRÞ½ �; (b) dissipation coefficients �b and �m

from VdlS measurements.
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How can R do no mechanical work? When random
energy exists inside a closed container it exerts a
pressure on the side walls and can increase the volume
of the container, like a gas in a combustion engine.
For R to do mechanical work we would have to have a
corresponding change in either the position (potential
energy) or velocity (kinetic energy) of the centre-of-mass
of the flow volume we are considering. In the container
problem, R accelerates the piston and we see the transfer of
internal energy to kinetic energy as well as a rise in the
centre of mass. If we were to measure the weight of the
container, we would measure the self-weight plus the
acceleration force of the piston as it is pushed upwards. If
the piston did not move, we would simply measure the
weight of the container. What we measure in our
experiments is more similar to the piston which is not
moving than the system where the piston is being
accelerated upwards. We simply do not observe large
deviations from the self-weight of the flow material as it
moves across the force plate.

But if the internal pressure or R increases and the
piston did not move, or moves with contact velocity,
what happens?
If the piston is not pushed or accelerated upwards, we
cannot measure any change in weight or normal force,
although the dispersive pressure or R increases. Moreover,
nothing happens. This has two important consequences.
Firstly, the sum of the velocity fluctuations must be zero; that
is, the centre of mass does not move. Secondly, the sum of
the fluctuation velocity squared has certainly increased,
raising the internal pressure. But because the centre of mass
does not move upwards, this rise must be compensated by
an equal rise in internal friction in the flow plug. Again, R
cannot do any mechanical work. In our avalanche model,
we enforce this result by defining the velocity fluctuations
with respect to the steady-on-average velocities of the
volume. This averaging procedure, which is often invoked
in turbulence theory, ensures that R in fact does no
mechanical work when we have no vertical accelerations.

If R does no mechanical work, why consider it?
Because we are interested in frictional shearing. Consider a
block sliding down an incline that is lubricated with a thin
oil film. The properties of the film are a function of its
thermal temperature (or the temperature dependence of the
viscosity, or a function of the random movement of the oil
molecules, or the random kinetic energy, or the dispersive
pressure – whichever reason the reader prefers). The oil film
itself does no mechanical work. However, the film
influences the position and speed of the block or block’s
centre of mass. Now the speed of the block influences the
generation of heat in the oil film. There are also heat losses.
The final velocity will be reached when there is no
temperature change within the oil film, i.e. when we have
equilibrium between the generation and losses of heat. This
familiar picture of lubrication can be applied one-to-one to
the avalanche problem, replacing the generation of heat
with the production of R and the loss of heat with the
decay of R.

What is the relation between frictional shearing and R?
Our understanding of the interaction between R and
frictional shearing began with simple chute experiments.

Fig. 4. Voellmy friction parameters as a function of the mean
random kinetic energy: (a) Coulomb friction �(Rm); (b) turbulent
friction �(Rm); and (c) s(Rm). The values relate to values near Swiss
guideline recommendations (Salm and others, 1990; Bartelt and
others, 1999).
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We measured the shear S and normal forces N at the bottom
of granular avalanches and saw firstly that the normal force
corresponds to the height of the avalanche, i.e. no dispersive
pressure. Secondly, we observed that the shear force at the
front of the avalanche is different from the shear force at the
tail, although the flow height and the velocity could be the
same. When we plotted S/N vs N we found a straight line for
N 6¼ 0, but S/N=0 for N=0. This result suggests that the
tangent modulus dS/dN is more or less a constant, but S/N,
the secant modulus, is far from a constant (Bartelt and
others, 2007). On closer examination we discovered a
hysteresis, showing that dS/dN can change between the front
and tail of the avalanche. The interpretation of the
experimental results was more difficult than we imagined,
because at every slope angle the dS/dN was different,
although the running surface and material did not change.
Sometimes we found that dS/dN was near to the tangent of
the slope angle, implying some near-steady flow behaviour,
but never for the entire flow. The velocities differed, but only
slightly, and could not be explained by some simple
velocity-dependent rheology. The sum of this behaviour
led us to believe that we have some memory effect due to
the time-dependent and competing processes of the
production and decay of R.

One implication of the paper is that the U2
m drag term

of the Voellmy model can be derived directly from the
R model. Furthermore, it appears that m0 is
independent of the shear rate. What is the relationship
between flow velocity and friction?
We performed chute experiments with snow and granular
materials at different slope angles, hoping to find some
simple U2

m drag term. Of course, we found that the steeper
the slope angle, the faster the flow. However, we could not
find a drag law relating mean velocity Um or the mean
velocity squared U2

m to the measured shear stress S. For each
slope angle and for different locations in the avalanche we
found different drag coefficients. Sometimes we found no
velocity effect at all (Platzer and others, 2007). This result
reinforced our idea that we have some memory effect, and a
constitutive relation based on a nearly instantaneous
balance between creation and dissipation of random energy
could not describe our observations. In an avalanche the
velocity depends on the shear stress, and the shear stress
depends on the velocity. The velocity and shear stress are
continually readjusting, especially when the avalanche
encounters slope angle deviations. The velocity and shear
stress can reach equilibrium, but the equilibrium will vary
from one slope angle to the next. For the entire avalanche, it
is impossible to express this complex process with a simple
U2

m drag term. We rewrite our results in terms of Voellmy
parameters only because this is the most often applied
model in avalanche dynamics.

What does R ’compete’ against?
All the kinetic energy we place in the random motion of the
granules must eventually be dissipated, i.e. transformed to
internal heat energy. Therefore we must treat R as an
irreversible energy flux (that as such does no mechanical
work). R therefore has a distinct one-way character.
However, where does R come from? It comes from the
frictional shearing. If we produce some R from this frictional
work rate, we must reduce the amount of heat produced by

exactly the amount we need for producing R. Otherwise we
have a mismatch between heat generation and frictional
work. Therefore, R and the direct production of heat
compete against each other. In our model, this competition
is defined by the parameter �.

What is the importance of this competition?
The competition determines the reduction in friction. We
repeat, when we produce some R, then we must reduce the
heat produced by a corresponding amount, since both
processes share the irreversible work done by shearing. This
means reducing the friction, since the frictional work and
the heat generation are the same thing. This process ensures
that the source of all movement, the gravitational work rate,
is divided up correctly, i.e. that it conserves the potential
energy and that our direct heat-producing processes are
associated with the frictional work. In Buser and Bartelt
(2009) we presented a flow chart of the energy fluxes. In
reality, this flow chart is a construct since everything
happens at the same time: potential energy is transformed
simultaneously into kinetic energy, random energy and
heat. In a short time interval, we need some simple
bookkeeping to track the energy fluxes because at the
same time random energy is being produced, the heat
generated is decreasing.

Why all this thermodynamics? Why not apply force
mechanics to determine the appropriate constitutive
model?
The avalanche problem must be solved with force mech-
anics and momentum balances. A constitutive model
reflects the relationship between shearing and deformation
and therefore is a force balance. We will always need to
solve these equations to predict avalanche runout. However,
thermodynamics was essential for the development of
statistical mechanics since no microstructural and compli-
cated deterministic model of atomic interactions was
necessary. The avalanche problem is similar. Although we
cannot attribute the reduction of friction to some mechan-
ical process at the microstructural level (at least not for now),
we can predict what the overall consequences will be when
random kinetic energy is produced in an avalanche. This
opens the door to both useful and simple avalanche
dynamics models as well as bringing a step nearer the
solution of the microstructural problem.

What is the relation between flow density and R?
It would be natural to assume that the higher R, the lower the
density. However, we do not think the relationship is so
simple. For example, to create R one needs a certain density;
one needs mass to have granular interactions and therefore
produce R. We could imagine the upper regions of the
avalanche have low density, but all the particles move with
the same (mean) velocity, so we have low density but no R.
Furthermore, if we have little mass, R no longer remains
random because there are too few interactions to maintain
the randomness. For example, if particles reach the top of
the flow, R is no longer random. In this case the particles fly
away or increase the flow height. The piston and the centre
of mass move upward, so we are doing true mechanical
work. We simply do not let this happen, by keeping the
density constant, which agrees with the stipulation that R
can do no mechanical work.
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Why not consider a density change when considering
avalanche flow? Observations would certainly support
the idea that the density is not constant.
Small and local changes in density at the base of the
avalanche appear to have a large influence on the frictional
behavior. We account for these changes with R, not by
tracking the local variations in density directly, which would
be computationally difficult. However, it likewise appears
that large bulk changes in density are not as important as we
imagine. To understand why, we must ask the question, ‘how
does a bulk density change affect the movement of a dense
flowing avalanche?’ In order to decrease the density, we
must increase the height of the avalanche and keep the mass
constant. This increase in height can be accomplished in
one of two ways: steadily, with a constant upward velocity,
or suddenly, by accelerating the mass upwards. A steady
increase in height does not affect the normal pressure. Only
when the rate of change of the height increases, i.e. when
the mass is accelerated, will we see an effect on the normal
pressure measurements. If we let zm represent the z location
of the centre of mass, zm ¼ 1

2h, then the vertical acceleration

is 1
2
€h. The additional normal pressure at the base of the

avalanche is then p ¼ 1
2�h

€h. If the normal pressure remains
unchanged, we expect little change in the frictional
behaviour although the height is increasing. Since the
production of R is a function of the total mass (not the mass
density), the bulk density change will not affect R. In most
cases, the additional acceleration due to h is small in
comparison to gravity. This helps explain why depth-
averaged models, which make this assumption, can simulate
dense flowing avalanches. However, we believe that we can
see these second-order effects in some of our measurements.
This is the problem we are now working on.

Therefore, should we not consider density changes?
To predict avalanche impact pressures and flow heights,
engineers will need to assess the flow density. The influence
of density changes on the frictional behaviour of avalanches
will require a model that accounts for vertical accelerations.

Can an avalanche reach a steady flow state?
Avalanches are ‘finite-sized’ mass movements and will
hardly reach a steady flow state. Because the mass in the
upper flow regions travels faster than at the bottom, where
the basal friction is greatest, this finite mass elongates. A tail
develops which can eventually stop, depending on the slope
angle. If the tail stops, mass ceases to travel to the front and
the avalanche starves. The front can then stop if the slope
angle is not too large. This process, which can be observed
every winter when small avalanches release and stop on
slopes with more or less constant inclination, underscores
the fact that the mass is finite, so it is impossible for an
avalanche to reach a true steady state. Of course, if the
avalanche entrains material and can maintain the front, a
steady flow state can be achieved. In this case, there is a
region between the front and tail where the mass travelling to
the front is equal to the mass lagging behind. The mass lost to
the tail might be compensated. If there is no entrainment, this
region can exist, but only briefly, and will disappear as the
avalanche travels downslope and starves. This region can be
observed in experiments with force plates if one chooses the
right slope angle for the given granular material. If the slope is
too steep, the front accelerates as it passes the force plates; if

the slope is too shallow, the flow decelerates. If one selects
the right slope angle, it is possible to see all the conditions of
steady state fulfilled: constant flow height, constant velocity
and tan� ¼ S=N but only for this region in the middle.
However, what is measured depends strongly on where the
force plate is positioned. If the force plate is positioned, say,
1m downstream, it could be that the steady middle region
has disappeared since the flow form of the avalanche evolves
continuously. The tail of the avalanche is truly fascinating,
since as the mass slows down, one will often measure
tan� ¼ S=N, which must exist as the avalanche stops.
Turnbull and McElwaine (2007) have reported that powder-
snow avalanche fronts travel with constant velocity, which
we believe is correct, but how long that velocity is
maintained depends on how long the avalanche can supply
the front with mass to compensate the tail losses.

If this is the case, why do you consider steady states to
find your flow parameters and fit the velocity profiles?
One way to answer this question would be to cite Kolmo-
gorov’s famous turbulence paper (Kolmogorov, 1991): ‘With-
in small time intervals it is natural to consider this regime
steady, even in the case when the flow on the whole is not
steady.’ Therefore, any steady state is defined by the time
interval of observation. The velocity profiles are found by
optical sensors using a correlation procedure (Kern and
others, 2009). If the accelerations are large, it is simply not
possible to correlate any signals. Thus, the fact that we can
correlate our measurements implies that for this small time
interval (the time interval of the correlation), the flow is steady
for our time interval of observation. Another argument would
be the following: we first find the model parameters by fitting
them to the velocity profiles assuming steady flow. We then
use the parameters we have found to numerically model the
entire flow, dropping the assumption of steady state. We find
we can model the highly non-steady behaviour of the whole
avalanche, such as the stopping of the tail or the mobility of
the front. In this case, the assumption of steady flow can be
validated when the model parameters satisfactorily repro-
duce the entire avalanche behaviour. This result would justify
our assumption of steady state for the velocity profiles.

Why does the tail stop?
The tail is the tail because it is the tail – meaning that the tail
is the tail because it has a small flow height and low velocity.
No mass is available from behind the tail, because the mass
is finite. Small flow heights and velocity translate into small
gravitational work rates. Remember that the gravitational
work rate is the source of all energy in an avalanche: kinetic,
internal (heat) or random. Because the gravitational work
rates decrease at the tail, the production of R also decreases,
causing the friction to increase. As R decreases, other micro-
effects could come into play (e.g. sintering and micro-
roughness), but we first prefer an explanation based on
energy fluxes, before invoking micro-properties, which
might or might not play a role. One of the salient features
of all gravitational mass movements, especially snow
avalanches, is the size effect: large events travel farther than
small events. This size effect can be simply explained as the
competition of R with the other energies to get the most
gravitational work. Often one sees considerable basal slip at
the tail because the flow locks up (no R) and then slides as a
rigid block. Before modelling this process, we think it is
important to model the plug or the lock-up behaviour first.
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The frictional parameters in the R model are not
microstructural parameters, but rather continuum
parameters, viscosity and Coulomb friction. But surely
the interactions between the granules would be better
described by microstructural parameters?
Of course, a microstructural model would better describe
the processes we are interested in. However, at the moment
we can only measure bulk properties of the avalanche flow
(e.g. shear and normal forces or flow velocities). To
determine the parameters required to develop a micro-
structural model, valid for snow avalanches, we would
require the particle size and shape distributions, particle
agglomeration, disintegration or abrasive wear characteris-
tics, to name but a few. We try to lump all of these processes
in a production and decay coefficient. Our hope is that the
production and decay coefficients reflect the statistical mean
of all these microscopic properties.

The model now has five parameters (�, �, R0, �0, �0).
You state that the Voellmy model can be used, but then
why replace a two-parameter model with a five-
parameter model?
It is too early to speak about replacing the Voellmy model
which is the backbone of the Swiss guideline procedure for
runout calculations. But it is very comforting to know that a
more physics-based model can explain the Voellmy par-
ameters (e.g. why the Voellmy parameters change) or the
avalanche behaviour that the Voellmy model cannot explain
(e.g. the starving and deposition process, why small
avalanches stop on a steep slopes, and the mobility of large
avalanches). This is helpful, especially when dealing with
dam design, where the volume and distribution of mass
along the avalanche length is of importance. When we back-
calculate avalanches, we now take �0 to be the angle of
repose of avalanche deposits; we determine �0 from the
velocity of the tail; velocity profile measurements in VdlS
reveal that �=ð1� �Þ varies between 0.8 (dry avalanches)
and 1.2 (wet avalanches). We do not say the Voellmy model
is now useless, merely that our theory can explain a wider
range of avalanche behaviour. In the limit of large ava-
lanches, the R model reduces to the Voellmy model. In a
way, we have developed an even stronger respect for
Voellmy and Salm. They achieved a considerable success
with fewer resources, and never aimed at modelling the full
range of avalanche behaviour, as we do not aim at modelling
all the microstructural interactions.

6. CONCLUSIONS
Voellmy-type models containing a combination of Coulomb
and turbulent friction have long been applied to the
avalanche problem, with little or no experimental verifica-
tion. Although the Swiss guidelines for extreme runout
calculation recommend values of �=0.155 and �� 2000m
s–2, these values were based on back-calculations of
observed extreme avalanche events (Buser and Frutiger,
1980), not on direct and independent measurements. Using
actual measurements from the VdlS test site, we find that
these � and � values correspond to high R levels
encountered in the observed VdlS avalanches. Since it is
the head of the avalanche which governs the maximum flow

velocity and runout distance, there appears to be some
experimental validity to the guideline values. However, the
Voellmy model will not predict the distribution of mass in
the runout zone, which appears to be governed by high �
and low � friction values (low R levels), causing the
avalanche to stop, even on steep slopes. Since the
production of R depends on the gravitational work rate
(which finally produces the shear deformations in the
avalanche body) and therefore on the mass, larger ava-
lanches will experience a corresponding larger decrease in
friction. Thus, size effects are an intrinsic part of frictional
relaxation in avalanches.
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