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Abstract

Heating, Ventilation, and Air Conditioning (HVAC) systems are major energy consumers in buildings, challenging
the balance between efficiency and occupant comfort. While prior research explored generative AI for HVAC control
in simulations, real-world validation remained scarce. This study addresses this gap by designing, deploying, and
evaluating “Office-in-the-Loop,” a novel cyber-physical system leveraging generative AI within an operational office
setting. Capitalizing on multimodal foundation models and Agentic AI, our system integrates real-time environmental
sensor data (temperature, occupancy, etc.), occupants’ subjective thermal comfort feedback, and historical context as
input prompts for the generative AI to dynamically predict optimal HVAC temperature setpoints. Extensive real-world
experiments demonstrate significant energy savings (up to 47.92%) while simultaneously improving comfort (up to
26.36%) compared to baseline operation. Regression analysis confirmed the robustness of our approach against
confounding variables like outdoor conditions and occupancy levels. Furthermore, we introduce Data-Driven Reason-
ing using Agentic AI, finding that prompting the AI for data-grounded rationales significantly enhances prediction
stability and enables the inference of system dynamics and cost functions, bypassing the need for traditional
reinforcement learning paradigms. This work bridges simulation and reality, showcasing generative AI’s potential for
efficient, comfortable building environments and indicating future scalability to large systems like data centers.

Impact Statement

Heating, Ventilation, and Air Conditioning (HVAC) systems significantly contribute to building energy
consumption, creating a challenge in balancing energy savings with occupant comfort. We demonstrated an
“Office-in-the-Loop” control system using generative AI in a real office environment to address this issue. This
system integrates diverse real-time sensor data and occupant comfort feedback, allowing the AI to autonomously
determine optimal HVAC settings based on this multimodal information and historical data. Our field experi-
ments successfully resolved the traditional energy-comfort trade-off, demonstrating substantial energy reduc-
tions (up to 47.92%) while simultaneously enhancing occupant comfort (up to 26.36%). Furthermore, our Data-
Driven Reasoning prompt enhances control reliability and enables inference of system dynamics, bypassing
complex reinforcement learning. This work represents a significant step toward smarter, efficient, comfortable
buildings, applicable beyond offices to data centers and industrial facilities.
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1. Introduction

According to the International EnergyAgency’s (IEA, 2024) analysis of global energy trends, heat pumps
are identified by major economies as one of the six key technologies for establishing their position in the
growing clean energy economy, with market size and trade volume projected to surge over the next
decade. Furthermore, it is highlighted that space heating, space cooling, and water heating constitute a
substantial share of energy demand in buildings.

In this study, we focus on the broader category of Heating, Ventilation, and Air Conditioning (HVAC)
systems, which includes heat pumps. Our research objective is to reduce energy consumption through
effective building of HVAC control and operation, while simultaneously ensuring comfortable indoor
environments for occupants.

Research by Li and Wen (2014) on energy modeling for buildings with large-scale HVAC systems
indicates that HVAC accounts for approximately 30%of total building energy consumption. Their survey,
focusing on control and operation strategies, underscores the significance of HVAC as a primary target for
energy savings. Moreover, research by Park and Nagy (2018) reveals that buildings are responsible for
about 30–40% of global energy demand. They observed that many studies on building control systems
primarily focus on energy conservation, often placing less emphasis on thermal comfort control,
particularly concerning occupant satisfaction. Concerning comfort, Kong et al. (2022) quantitatively
evaluated the performance of occupancy-based control strategies in commercial buildings. Their findings
showed that such strategies canmaintain good thermal comfort and perceived indoor air quality, achieving
occupant satisfaction rates exceeding 80%. Additionally, a sensitivity analysis conducted by Rahif et al.
(2022) revealed that the choice of HVAC strategy, along with heating and cooling setpoints, are the most
influential factors determining the primary energy consumption of HVAC systems. Kim et al. (2018)
proposed a Personal Comfort Model leveraging Internet of Things (IoT) sensors and machine learning.
This model learns individual comfort requirements directly from data gathered in everyday environments
to predict personal thermal comfort responses.

Themost recent year haswitnessed a surge in the development of generativeAI, particularly in the field
of large language models (LLMs). As LLMs boast an ever-increasing number of parameters, their
generalization capabilities have significantly improved not only texts but also images, audios, videos,
and so on, which is the so-called Multimodal Foundation Models (MFMs) (Xu et al., 2023). The
application of generative AI has expanded beyond language processing to encompass multimodal
information, leading to its adoption in various fields, including robotics, health care, education, and
business (Singh et al., 2022; Wang et al., 2022; Driess et al., 2023; Moor et al., 2023; Wu et al., 2023).
Furthermore, Agentic AI is emerging. Given a goal set by humans, these AI systems break it down into
smaller subtasks, plan the execution steps, and execute them sequentially to achieve the goal, thereby
behaving as if they are thinking and acting autonomously (Acharya et al., 2025).

Notably, the research by Driess et al. (2023) has made a significant impact by enabling the direct
incorporation of raw data from robotic actuators as language into generative AI models. This advance-
ment has resulted in models capable of achieving high inference accuracy in specific use cases, even
without being explicitly trained on task-specific data. For instance, research has demonstrated the use of
LLMs for educational purposes in data science, encompassing tasks from data preprocessing to explora-
tory data analysis and report generation, even without task-specific training data in certain use cases
(Tu et al., 2024). Furthermore, a study comparing the performance of GPT-4 byOpenAI (2023) to humans
in data analysis tasks has shown that GPT-4 alone can achieve a level of proficiency comparable to a mid-
level data scientist (Cheng et al., 2023). This inherent generalization ability of unsupervised models
totally reduces extensive labeled datasets and annotation costs that are traditionally required for super-
vised deep learning, thereby expanding the benefits of generative AI across various industries.

The field of HVAC systems exemplifies this potential. Previous research in HVAC optimization has
focused on improving comfort based on human feedback (Rajith et al., 2018) or using surveillance
cameras to analyze clothing and predict thermal comfort for control learning techniques (Choi et al.,
2022). However, relying solely on feedback poses challenges in managing large spaces due to the
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subjective nature of individual comfort preferences. In addition, employing surveillance cameras raises
privacy concerns, and inferring individual comfort solely from clothing insulation proves inadequate. To
address these challenges, recent studies have investigated the feasibility of employing the generalization
capabilities of LLMs for controlling industrial equipment (Ahn et al., 2023; Song et al., 2023b). A notable
example involves using GPT-4 for simulation-based HVAC control, where the model predicts the desired
cooling or heating level, achieving performance comparable to reinforcement learning approaches on
simulations, which limits its real-world applicability (Song et al., 2023b). Similarly, another study
demonstrated that ChatGPT, when integrated into a virtual office building simulation model for HVAC
control, could achieve a 16.8% reduction in energy consumption through zero-shot inference (Ahn et al.,
2023). However, these studies relied on simulations and did not incorporate real-world complexities.

Our goal is to optimize the office environment using generative AI. We tackled a classic trade-off:
increasing occupant comfort typically leads to higher HVAC energy consumption, while reducing energy
consumption often compromises comfort. The key question we investigated was whether we could
resolve this trade-off using multimodal generative AI and Agentic AI without Retrieval Augmented
Generation (RAG) or fine-tuning.

We sensed various environmental parameters (e.g., indoor/outdoor temperature, illuminance, over-
head layout, occupant location) from an office and collected feedback from office workers regarding their
thermal comfort by conducting a real-world experiment in the actual office setting. This real-time data,
along with historical environmental data, were compiled as prompts for the generative AI model. The
model was tasked with predicting optimal HVAC setpoint temperatures for different times of the day,
considering the current and historical environmental conditions and human comfort feedback. We
evaluated the performance of our system by comparing the electricity consumption of the HVAC system
under the control of the generative AI model to that of the baseline system over an extended period. We
aim to explore the applicability of our system to larger-scale building energy management scenarios, such
as data centers and industrial facilities, where energy consumption is a critical concern. This study bridges
the gap between simulation-based LLM applications and real-world HVAC control by implementing and
evaluating a contribution significant to overall energy usage, as following our contributions:

• we conducted a field experiment in the actual office setting, gathering diverse environmental data
(e.g., indoor/outdoor temperature, illuminance, overhead layout, occupant location) through sensors
and incorporating historical data as prompts for the generative AI model.

• we collected subjective feedback from office workers regarding their comfort levels. This valuable
information on human perception was fed into the generative AI model, allowing it to consider
human factors in its predictions.

• our findings demonstrate a remarkable reduction of up to 47.92% in actual power consumption
compared to the baseline. The comfort of office workers improved by up to 26.36%.

• we propose Data-Driven Reasoning for Agentic AI, which enables stable prediction of optimal
HVAC temperatures and operating statuses even with a limited number of inference steps.

This article is organized as follows: Section 2 provides a detailed survey of related technical elements and
clarifies their relationship to this research. Section 3 describes a case study applying the baseline research,
upon which our study is built, to a real-world office setting, and provides an overview of our proposed
method. Section 4 details the prompt engineering techniques employed in our experiments and describes
the experimental design. Section 5 presents a multi-faceted analysis based on the experimental data to
validate the effectiveness of the proposed approach. Section 6 presents an ablation study investigating the
predictive and explanatory capabilities of the generative AI, based on the experimental data. Section 7
delves into the critical factors, real-world applicability, and prospects for scaling the proposed technique
within existing building infrastructures. Finally, Section 8 concludes the article by summarizing the
research and discussing future directions for generative AI in equipment control.
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2. Related works

2.1. HVAC control for building system

Controlling building systems is a complex challenge due to the influence of fluctuating factors like
weather and occupant behavior, making accurate predictions difficult. This is particularly true for HVAC
systems, where Model Predictive Control (MPC) has long been explored for its optimization potential.
Recent years have seen a surge in interest toward intelligent buildings that leverage weather and
temperature forecasts to further optimize HVAC control, as demonstrated in several studies (Afram
and Janabi-Sharifi, 2014; Carli et al., 2020; Yao and Shekhar, 2021; Blum et al., 2022; Hou et al., 2022;
Taheri et al., 2022). For instance, Taheri et al. (2022) provide a comprehensive review of recent
advancements in MPC techniques, outlining guidelines for optimal design. Carli et al. (2020) bridge
the gap between theory and practice by proposing an IoT-based architecture for implementing MPC in
real-world HVAC systems. Furthermore, Blum et al. (2022) demonstrated the practical implementation of
MPC in a real office building using an open-sourceModelica-based toolchain, achieving a 40% reduction
in HVAC energy consumption over a 2-month trial while analyzing practical challenges and implemen-
tation effort. Addressing the inherent uncertainties in weather forecasting, Hou et al. (2022) introduce an
errormodel based on easilymeasurable data to enhanceMPCperformance. They proposed an errormodel
incorporating readily available data to improve MPC performance under weather forecast uncertainty,
achieving a 3.4% energy cost reduction and a 73% decrease in room temperature deviations compared to
rule-based control. Previous studies have highlighted the potential of MPC for energy-saving in building
systems, particularly in HVAC. Yao and Shekhar (2021) reviewed MPC applications in buildings,
emphasizing their ability to handle uncertain parameters like weather forecasting, ambient temperature,
and solar radiation. Afram and Janabi-Sharifi (2014) compared MPC with other control methods,
highlighting its advantages in improving energy efficiency and maintaining indoor comfort. They
demonstrated the potential for pre-heating or pre-cooling buildings during off-peak periods to reduce
electricity costs.

While MPC has shown promise, predicting building system behavior remains challenging due to
inherent uncertainties. Researchers have explored occupant comfort prediction as a proxy for building
performance (Rajith et al., 2018; Choi et al., 2022; Skaloumpakas et al., 2023). Choi et al. (2022)
developed a deep learning model for real-time clothing insulation (R-CLO) estimation, demonstrating its
potential for comfort-aware HVAC control by predicting energy consumption based on clothing and
impacting thermal comfort assessed using the Predicted Mean Vote (PMV) index. Rajith et al. (2018)
achieved a 20–40%energy consumption reduction during summer by automatingHVACcontrol based on
user feedback, sensor data, and a neural network/multi-layered perceptron (MLP) for time series
prediction, prioritizing user comfort by minimizing unnecessary feedback requests. Skaloumpakas
et al. (2023) proposed a neural network model to overcome PMV limitations in accurately reflecting
perceived comfort by integrating user feedback and temperature sensor data, predicting next-hour internal
and external temperatures to improve comfort prediction.

However, implementing room-specific MPC models across entire buildings presents significant
challenges, including high cost and data acquisition complexities. The rise of generative AI, particularly
unsupervised learning models, offers a potential solution by eliminating the need for extensive training
data. This breakthrough could significantly reduce data collection and annotation costs, paving the way
for wider adoption in industry.

2.2. Generative AI potentials as a simulator

Building system prediction necessitates expertise in computer science and mathematics, including data
science and statistics. For effective HVAC control, generative AI’s ability to predict and regress based on
various sensor inputs becomes crucial. Recent studies have explored the potential of LLMs for automating
data science and statistical analysis. Tu et al. (2024) demonstrated the effectiveness of LLMs in data
analysis tasks, including data cleaning, analysis, and report generation, while also highlighting their
potential as expert tutors for enhancing data science and programming learning outcomes. Specifically,
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their evaluation showed LLMs could perform these tasks with high quality. Cheng et al. (2023)
investigated GPT-4’s capabilities as a data analyst, employing various databases to perform end-to-end
automated data analysis and comparing its performance with human data scientists. Their findings
revealed that GPT-4 possesses moderate to advanced data science skills but lags behind humans in tasks
involving graphical analysis. Imani et al. (2023) explored the limitations of LLMs in solving arithmetic
reasoning tasks, where a single correct answer exists. They demonstrated that using zero-shot Chain-of-
Thought (CoT) prompting enhances LLM performance in finding mathematical predictions and solu-
tions. Zhu et al. (2024) investigated LLMs’ understanding of the fundamental mathematical concept of
numbers. They concluded that LLMs maintain a compressed internal representation of numbers, making
accurate reconstruction difficult but suggesting partial understanding. Raj et al. (2022) highlighted the
sensitivity of pre-trained LLMs to prompt variations, even when the prompts are semantically similar,
leading to significant differences in output. Their research proposed ametric for assessing the consistency
of LLM outputs, showing a strong correlation with human evaluation.

LLMs are actively being researched as simulators for decision-making across various fields, including
autonomous driving, robotics, agent-based control, and social simulation. In autonomous driving, LLMs
simulate vehicle trajectories and predict actions like lane changes based on sensor data (Mao et al., 2023;
Sha et al., 2023; Fu et al., 2024). Robotics research utilizes LLMs for environment-aware decision-
making, translating ambiguous natural language instructions into precise reward functions, and voice
control (Cui et al., 2023; Gramopadhye and Szafir, 2023; Salzmann et al., 2023). Other studies are also
investigating the automatic optimization of simulator parameters using LLMs to automatically derive
reward functions (Yu et al., 2023; Ma et al., 2024). For predicting real-world behavior, LLMs are being
employed to simulate social interactions observed in media and to model human actions and decision-
making processes (Park et al., 2022; Song et al., 2023a; Gui and Toubia, 2024).

2.3. LLM-driven agents and world-modeling

Agentic AI, a current focus of research, is characterized by its ability to autonomously manage all
processes required to achieve a human-specified goal. This encompasses breaking down complex tasks,
planning execution sequences, executing individual tasks, evaluating outcomes against the goal, and,
crucially, interacting with the external environment. This interaction may involve generating and
executing code, collecting and analyzing information from Supplementary Materials, and utilizing
external APIs. The significant versatility of Agentic AI is driving discussion about its associated benefits
and risks. Acharya et al. (2025) provide a comprehensive overview of Agentic AI, covering its
characteristics, methodologies, applications (e.g., health care, finance, and manufacturing), and chal-
lenges (e.g., scalability, ethics, and regulation). It highlights the transformative potential of Agentic AI’s
autonomous decision-making while emphasizing the need for ongoing research in areas like goal
alignment, multi-agent coordination, and ethical considerations. Li et al. (2023) developed ModelScope-
Agent, a customizable, general-purpose agent system leveraging open-source LLMs. This system
demonstrates improved API call accuracy through a novel training strategy and provides a flexible
framework for building real-world applications using over 1000 public AI models. Shavit et al. (2023)
discuss the potential benefits and risks of Agentic AI, including increased efficiency and tailored
recommendations, alongside potential harms. It proposes actionable practices for users, developers,
and implementers, such as task appropriateness evaluation, action space constraints, and activity
monitoring, to mitigate risks and address societal impacts. Sivakumar (2024) explores the application
of Agentic AI to enhance Artificial Intelligence for IT Operations (AIOps) platforms, focusing on
predictive analytics, machine learning, and autonomous decision-making to improve operational effi-
ciency and resource allocation. It highlights the potential for real-time resource optimization and
discusses challenges related to ethics, data security, and the transition to self-governing systems.

Research has increasingly shown that agents can be successfully trained to learn world models,
resulting in significant generalization capabilities across diverse tasks. The potential for transfer to real-
world applications makes this approach particularly attractive for industry. A world model is a learned
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representation that approximates the structure of the world based on limited observational data from a
specific environment. This learned representation supports the inference of causal factors from observa-
tions and allows for the prediction of future or unseen events based on those factors. West et al. (2024)
investigate the “Generative AI Paradox,” where generative models exhibit strong output generation but
weaker understanding. Through analysis of language and vision modalities, they demonstrate that
generative capability does not necessarily depend on understanding, suggesting a structural difference
between generative AI and human intelligence. Dinu et al. (2024) introduce SymbolicAI, a logic-based
framework for concept learning and flowmanagement in LLMs, addressing the issue of hallucination. By
treating LLMs as semantic parsers, SymbolicAI integrates generative models with symbolic reasoning,
providing a foundation for research in areas like program synthesis and autonomous agent design. Wang
et al. (2024) propose Generative Simulation, a new paradigm for robot skill learning, and introduces
RoboGen, a generative robot agent. RoboGen uses a self-guided cycle of proposing skills, generating
simulation environments, and autonomously acquiring those skills, demonstrating a broader range of task
and skill generation compared to traditional human-created datasets. Ha and Schmidhuber (2018)
construct a generative neural network, termed a World Model, for reinforcement learning, enabling
agents to learn and plan actions within a learned representation of the environment. This model comprises
a VisionModel (V), aMemory RNN (M), and a Controller (C), allowing for efficient learning and transfer
of policies to real-world environments, surpassing traditional deep Reinforcement Learning (RL)
methods. Hafner et al. (2020) propose Dreamer, a reinforcement learning agent that learns long-term
behaviors by backpropagating value gradients through imagined trajectories in the latent space of a
learned Recurrent State Space Model (RSSM). Dreamer achieves superior data efficiency and perform-
ance compared to both model-free and model-based approaches on visual control tasks. Hafner et al.
(2021) introduce DreamerV2, the first world-model-based reinforcement learning agent to achieve
human-level performance on the Atari benchmark. Key improvements over the original Dreamer include
the use of categorical latent states and Kullback–Leibler (KL) balancing in the world model, enabling
more effective representation learning. Hafner et al. (2023) present DreamerV3, a scaled-up and
generalized reinforcement learning agent that achieves significant advancements in autonomous learning,
including solving the Minecraft diamond collection task without human demonstrations. DreamerV3’s
improvements in decision-making, stability, and scalability open new possibilities for real-world
reinforcement learning applications, including learning from diverse data sources.

Drawing inspiration from recent examples of Agentic AI, we propose that the inherent simulation
capabilities of these agents, specifically their internal representations of the environment, can function as a
world model. This article details an experimental investigation to test this hypothesis. We collected
observations of an office environment using IoT sensors and feedback from occupants. An Agentic AI
was then employed to infer the optimal HVAC setpoints that would maintain a comfortable environment
while minimizing energy usage. We rigorously evaluated the accuracy of the Agentic AI’s predictions in
approximating the real office environment, employing both mathematical expressions and supporting
rationales.

2.4. Multimodal foundation models

Beyond language, research is rapidly advancing in multimodal generative AI, which processes inputs and
outputs across multiple modalities, including images, audio, video, 3D models, and robotic sensor data
(Fei et al., 2022; Yang et al., 2023b; GeminiTeam, 2024b; Liang et al., 2024; Yang et al., 2024b; Qin et al.,
2025). Fei et al. (2022) developed a foundational model pre-trained on large-scale multimodal data,
demonstrating promising results in adapting to various tasks with a single model. MFMs are believed to
improve model explainability and enhance imagination capabilities. Liang et al. (2024) presented a
comprehensive survey of MFMs, classifying various approaches for handling multimodal inputs and
outputs across diverse tasks and providing an overview of current trends in the field. Such MFMs have
become commercially available and are being adopted at a remarkable pace (GeminiTeam, 2024b).
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Yang et al. (2023b) proposed enhancing LLMs’ capabilities through visual marker input, demonstrating
that GPT-4V can understand visual markers on images, enabling visual reference-based prompting and
inspiring this study’s approach to incorporating image information for captioning tasks. Furthermore,
Yang et al. (2023a) introduced Set-of-Marks (SoM), a novel visual prompting method for large
multimodal models (LMMs) like GPT-4V, which divides input images into regions with varying
granularity and uses alphabet, numbers, masks, or boxes as marks to enhance GPT-4V’s recognition
abilities. OpenAI’s Sora is a general-purpose visual model trained on video data, capable of generating
high-resolution videos of varying durations, aspect ratios, and resolutions, up to 1 min in length (Qin
et al., 2025). While Sora demonstrates capabilities in video generation from text and image prompts,
video extension, and style transfer, it exhibits limitations in accurately simulating complex physical
interactions. Yang et al. (2024b) introduce Holodeck, a system that automatically generates 3D
simulation environments from user prompts, addressing the challenge of manual 3D environment
creation in Embodied AI. Holodeck uses GPT-4 to acquire commonsense knowledge, reconstruct
scenes with 3D assets, and optimize layouts, demonstrating superior performance compared to
procedural baselines and supporting zero-shot object navigation for trained agents.

This study investigates the effectiveness of generative AI’s environmental understanding when
provided with an overhead view of an office environment, including spatial continuous distributions of
room temperatures as heatmaps and occupant locations, as input to MFMs.

2.5. Agentic AI for logic control

Generative AI is expanding its input and output modalities, leading to increased multimodal utilization,
including the ability to output program code for controlling devices. Recent research has demonstrated
success in using Agentic AI for the automatic generation of control code and utilizes the code for
Programmable Logic Controllers (PLCs), commonly used in industry, holding promise for accelerating
industrial automation. In the case of building HVAC systems, particularly large-scale HVAC systems in
buildings, centralized control systems are commonly used. This allows for the direct integration of control
code generated by generative AI, enabling dynamic adjustments to the control system. Yang et al. (2024a)
propose AutoPLC, an LLM-based approach for automatically generating vendor-specific Structured Text
(ST) code for PLCs. AutoPLC utilizes a knowledge base, a retrieval module, and a flexible code checker
with self-correction capabilities, outperforming baseline models on several ST code generation bench-
marks. Koziolek et al. (2023) investigate the potential of LLMs to generate PLC and Distributed Control
System (DCS) control logic from natural language prompts. Using ChatGPT and a set of 100 prompts,
they demonstrate the generation of syntactically correct IEC 61131-3 Structured Text code, highlighting
the potential for LLMs to enhance control engineer productivity. Hu et al. (2025) introduce Automated
Design of Agentic Systems (ADAS) as a new research domain and propose Meta Agent Search, an
algorithm where a meta-agent programs and evaluates new agents iteratively. Agents discovered by this
method significantly outperformmanually designed agents on various benchmarks, demonstrating strong
cross-domain transferability. Dou et al. (2024) present StepCoder, a code generation framework with
Curriculum of Code Completion Subtasks (CCCS) and Fine-Grained Optimization (FGO), along with a
new dataset, APPS+. StepCoder demonstrates superior performance compared to baseline models on
multiple code generation benchmarks, emphasizing improvements in exploration for reinforcement
learning. Xue et al. (2024) introduce ComfyBench, a benchmark for evaluating LLM-based agents’
ability to design Collaborative AI Systems using the ComfyUI platform and propose ComfyAgent, a
framework for autonomous design.While ComfyAgent outperforms baseline agents, the results highlight
the ongoing challenges in achieving fully autonomous design of complex AI systems. Si et al. (2024)
present Design2Code, a real-world benchmark for evaluating Multimodal Large Language Models
(MLLMs) on code generation from visual designs. Experiments using this benchmark demonstrate that
GPT-4V outperforms other baselines and can even generate web designs considered superior to the
originals, highlighting the model’s understanding of modern web design principles.
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2.6. HVAC control with generative AI

Studies by Song et al. (2023b) and Ahn et al. (2023) have explored the use of LLMs for HVAC control on
simulation. Song et al. (2023b) employed a virtual building simulation model (BEAR) to evaluate the
performance of GPT-4 by OpenAI (2023) in controlling HVAC. Their research provided inputs like
indoor/outdoor temperature, solar irradiance, setpoint temperature, and power status to GPT-4, and it
outputted a value between�1 and 1, indicating howmuch warmer/cooler the virtual environment should
be. The study found that GPT-4’s zero-shot inference achieved performance comparable to reinforcement
learning methods, although it lagged behind Model Predictive Control (MPC). Ahn et al. (2023) applied
ChatGPT to autonomous building system operation, validating its effectiveness on a virtual office
building simulation model. Their research demonstrated success in minimizing energy consumption
across various building systems, including HVAC, chillers, cooling towers, and pumps. Compared to
deep reinforcement learning, ChatGPT achieved a 16.8% reduction in energy consumption, while deep
reinforcement learning resulted in a 24.1% reduction. The study highlighted the promise of ChatGPT-
based control due to its lower learning cost compared to reinforcement learning, making it potentially
viable for real-world deployment.

While these studies demonstrate the potential of using GPT-like general-purpose LLMs for zero-shot
HVAC control with minimal training costs, they were all based on simulations. This research takes a step
forward by conducting a real-world case study in an actual office environment. We aim to leverage
multimodal generative AI to control HVAC and minimize energy consumption while considering office
workers’ comfort. Our approach integrates real-time data from various IoT sensors and occupants’
feedback, providing a novel framework for exploring the practical application of generativeAI in building
system control.

3. Methodology

3.1. Case study modeling

A 322 m2 office space in the Yokohama Dia Building in Yokohama, Japan, was rented for a field
experiment. The office layout is shown in Figures 1 and 2. An average of 18.6 people worked in the office
during the experimental period. The roomwas equippedwith sevenHVACunits, eachwith a thermometer
to measure the spatial temperature within the office. The objective of this experiment was to minimize
energy consumption while considering the comfort of occupants.

Song et al. (2023b) conducted research utilizing generative AI for HVAC control. They provided the
following reward function as a prompt to the AI:

1:0�
P

0≤ i < n∣ai∣
n

� �
+ α � 1�

P
0≤ i < n ti�Tð Þ2

T �n

 !
(1)

where ai represents the action value (�100 to 0) for how much to open the air conditioner valve in the ith
room in the simulation, n represents the number of rooms, T represents the target room temperature
setting, and ti represents the indoor temperature of a specific room. This equation aims to minimize the
difference between the target temperature and the current temperature while minimizing valve operation
to ensure energy efficiency.

As a preliminary experiment, we used this reward function as a prompt and provided hypothetical
room temperatures to GPT-4 (OpenAI, 2023) to evaluate its feasibility as a simulator for HVAC
temperature setting. Specifically, we assumed one HVAC unit per room and set the target room
temperature to 22°C for cooling. We then instructed GPT-4 to calculate the action values for hypothetical
current room temperatures of [19°C, 23°C, 25°C, 20°C]. The output results were [�30,�20,�60,�20].
This indicated significant fluctuations in the action values, with only about 30% of the trials in the
preliminary experiment producing outputs with consistent magnitude relationships.
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3.2. Human feedback

We hypothesized that increasing the constraints within the reward function might stabilize GPT-4’s
output. Therefore, in addition to the objective of “controlling air conditioners to create an optimally
tempered environment,” we explicitly added “providing instructions to office workers based on their
feedback to enhance their comfort” to the prompt as a role for the LLMs. Specifically, we provided
feedback information such as “Currently, I am in Room 1, andmy comfort level is 5 on a scale of 1 to 10,”
along with the aforementioned office environment simulation information. The output resulted in action
values of [�10, �30, �50, �15] and a human-directed instruction stating, “Since you are currently in
Room 1with a comfort level of 5, we recommendmoving to a room closer to the target temperature. Since
Room 3 is warmer than the target temperature and you currently feel cold in Room 1, we recommend
moving to Room 3.” This result demonstrates that while generative AI may produce fluctuating results
when seeking precise solutions, adding linguistic explanations alongside action values enables logical and
concrete explanations. Furthermore, incorporating human feedback into the generative AI model
increases the simulation’s specificity and leads to more relevant responses. Based on this preliminary

Figure 1. CG rendering of the office used in this experiment, and the opposing view.
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experiment, we decided to incorporate office worker feedback into the prompts for our main study,
enabling the generative AI to perform simulations that consider subjective sensory information.

3.3. Energy consumption estimation

The reward function used in Song et al. (2023b)’s input to the generative AI was an equation related to
valve control for air conditioners installed individually in each room. However, since the target office for
this field experiment has seven HVAC units in one room, it became necessary to modify the reward
function equation. Therefore, based on the research by Semitsu et al. (2023), we decided to use the
following equation as the reward function, representing the estimated energy consumption PE of each
HVAC unit:

ΔT tð Þ= Tset tð Þ�Tcurrent tð Þ (2a)

D tð Þ= 1, ifΔT tð Þ≥ 1:5

0, otherwise

�
(2b)

PE = 3kW � 1
H

XH�1

t = 0
D tð Þ (2c)

Figure 2. The overheadmap that shows the location of office workers and the spatial distribution of office
temperature via MELRemo-IPS IoT sensor device. Triangles (Δ) indicate the installation locations of the
MELRemo-IPS sensors in Figure 3a, while inverted triangles (∇) represent the positions of the Soracom
IoT sensors in Figure 3b. Human figures represent the location of office workers. The color distribution

visualizes the estimated temperature in degrees Celsius.
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The variable t represents time (in hours), T set tð Þ represents the set temperature at time t (°C), and Tcurrent tð Þ
represents the current temperature at time t (°C). ΔT tð Þ represents the difference between the set
temperature and the current temperature at time t (°C). Additionally, D tð Þ is a variable that indicates
whether the difference between the set temperature and the current temperature at time t is greater than or
equal to 1.5°C (1: greater than or equal to 1.5°C, 0: less than 1.5°C), and H represents the measurement
duration in hours. In this experiment, H is set to 2. Semitsu et al. (2023) developed a machine learning
model to predict air conditioning energy consumption in an office, utilizing the difference between set
temperature and current room temperature as an explanatory variable and finding that a difference
exceeding 1.5°C resulted in an approximate +3 kW impact on power consumption. In this experiment,
we predicted the hourly power consumption for each HVAC unit and included it in the prompt.

3.4. Office overhead map analysis

To enhance the specificity of generative AI simulations, overhead imagery incorporating room layout,
temperature distribution, and occupant locations were introduced (Figure 2). This leveraged [MELRemo-
IPS], a commercial system that maps office worker locations and indoor temperature onto floor plans.
Worker locations are determined via Bluetooth signal strength between registered devices and central
units (see Figure 3a). Spatial temperature prediction utilizes data from HVAC-integrated thermal sensors.
Furthermore, a separate commercial product from [SORACOM] provides localized illuminance and
temperature measurements.

Leveraging GPT-4V’s image-to-text capabilities and employing the prompt engineering technique of
Yang et al. (2023b), we provided the model with overhead imagery and prompted it to describe occupant
positions, room temperature, and spatial information (see Figure 6).Whileminor inaccuracies in localized
temperature and precise positioning were observed, the model effectively identified general “hot” and
“cold” zones. Consequently, these descriptions were integrated, anticipating a positive impact on HVAC
control strategy. This dynamic approach incorporates real-time office information into the prompt,
enabling the multimodal foundation model to reflect the dynamically changing office environment.

3.5. Proposed system concept and framework

This article proposes a system that utilizes generative AI to optimize the environment within an office. As
illustrated in Figure 4, the system operates as follows: environmental data from the office, including IoT
sensor information and feedback from office workers, are sensed in the physical domain and transmitted
to the cloud. In the cyber domain, within the cloud, prompts are generated based on the acquired office
environment data, and these prompts are used as input to a generative AI model. The generative AI model

Figure 3. In this experiment, (a) was used to track occupant locations and estimate spatial temperature
distribution, while (b) was employed for measuring illuminance and obtaining pinpoint temperature.

Data-Centric Engineering e31-11

https://doi.org/10.1017/dce.2025.10010 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10010


is tasked with predicting optimal HVAC setpoint temperatures for different zones or units within the
office. These predicted setpoints are then communicated to office occupants, who can implement the
changes using thermostats to control the HVAC system. The resulting changes in the HVAC system, in
turn, affect the office environment. This iterative cycle allows the system to adapt to the dynamically
changing office environment. The optimization of temperature setpoints using generative AI in the cloud
represents the cyber-domain component of the system, while the HVAC control and data acquisition from
the office constitute the physical-domain component. Therefore, this loop exemplifies a Cyber-Physical
System (CPS).

To realize AI systems driven bymachine learning and deep learning, incorporating human intervention
in specific decision-making and control processes is referred to as “Human-in-the-Loop” (HITL).
However, this study proposes an “Office-in-the-Loop” system that goes beyond relying solely on human
feedback. Instead, it integrates a comprehensive range of office information, including IoTsensor data and
real-time power consumption predictions, as constraints and inputs for the generative AI model. This
approach utilizes diverse data sources to guide the generativeAI’s decision-making and control processes,
going beyond human feedback alone.

We hypothesized that generative AI could be used as a simulator for real-world optimization and
implemented the following flow (see Figure 5): (1) We deployed IoT sensors in a real-world office to
acquire environmental data and obtained subjective feedback on comfort from officeworkers, whichwere
sent to a Prompt Generator. (2) The IoT sensor data was analyzed to create a map of the office layout
drawing, showing the estimated spatial distribution of office worker locations and indoor temperatures.
(3) This map was input to a multimodal generative AI to generate a textual description, which was also
sent to the Prompt Generator. (4) The Prompt Generator automatically summarized the received
information and created tasks with clearly stated Objectives and Specific Instructions, allowing LLMs
to reason in a more realistic scenario. Every 2 h, the IoT sensor data was input to LLMs as Few-shot
Examples via Demonstrations as Historical Data. (5) The text automatically generated by the Prompt
Generator was input to LLMs to predict HVAC temperature settings that could achieve the objectives.
(6) The actual HVAC temperature in the real-world office was changed. Since the office environment
changes dynamically, this was further sensed by IoT sensors, returning to the process in step 1).

Figure 4. Conceptual diagram of the proposed system, illustrating the cyber-physical loop: real-world
office environment data is collected, used by generative AI in the cloud to predict optimal HVAC

temperatures, and then applied to control the physical HVAC system.
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4. Implementation of our framework

4.1. Prompt design

Preliminary experiments (Section 3) demonstrated that integrating human feedback alongside energy
efficiency and comfort constraints within a generative AI simulation framework yields more realistic and
practical suggestions. This study explores effective prompting strategies for applying generative AI to a
practical scenario. Beginning with a review of existing research (Section 3.1), we modify our approach to
the specific case study by incorporating feedback mechanisms (Section 3.2), estimated power consump-
tion data (Section 3.3), and office map information (Section 3.4). The final prompt was validated in a
dedicated preliminary experiment conducted in a real office environment to confirm the effectiveness.
Moreover, incorporating office layout imagery enables the model to dynamically assess room state,
including spatial temperature distribution and occupant locations. Based on these findings, we carefully
designed our prompts.

First, as illustrated in Figure 6, we provide the Objectives and Specific Instructions within the prompt.
Here, we assign the role of an HVACmanager tasked with maintaining the room temperature at the target
level while optimizing energy consumption. We sequentially feed external environmental information,
such as outside temperature and sunlight intensity, along with details regarding HVAC placement and
control parameters within the room, prompting the model to predict the optimal set temperature for
each unit.

Next, we provide the following information to the prompt as the current situation: (1) room tempera-
ture of each area with an HVAC unit, (2) set temperature of each HVAC unit, (3) estimated power
consumption of each HVAC unit (calculated using Equation (2)), (4) feedback from office workers sent to
each HVAC unit, and (5) external environmental information including outside temperature and sunlight
intensity.

Figure 5. Overview of our system for HVAC control using a multimodal foundation model. Leveraging
generative AI as a simulator to achieve optimal HVAC forecasting that adapts to dynamically changing

real-world office environments.
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Subsequently, as depicted in Figure 2, we input the office layout image into the prompt and utilize a
multimodal foundation model to generate descriptions of the spatial temperature distribution and office
worker locations within the office.

Figure 6. Our prompt engineering for controlling HVAC.
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Finally, we provide Demonstrations containing Historical Data, including past LLM-generated set
temperatures, office environment information, and external environment information, to the prompt.

To ensure the LLM’s outputs are comprehensible and reliable, we have incorporated the concept of
Self-Consistency (Wang et al., 2023). Specifically, we provide a range for the control values (e.g., 18°C to
26°C) within the prompts as a guardrail and perform multiple inferences to make a comprehensive
judgment. The final HVAC setting value occurring most frequently over 10 trials was selected for
realizing a more stable prediction. During the experiment, human operators double-checked and ensured
the safety of the temperature settings. The experiment spans from 8 AM to 6 PM, with the generative AI
predicting optimal set temperatures for each HVAC unit every 2 h. Therefore, the Demonstrations
accumulate as examples every 2 h. Office workers provide subjective feedback on their thermal sensation
to each HVAC unit using a seven-point scale ranging from�3 to +3 (�3 being cold, 0 being comfortable,
and + 3 being hot), similar to the PMV index. Notably, we pair the LLM-generated set temperatures for
each HVAC unit with the actual room temperature of the corresponding area 2 h after setting, feedback
from office workers, and the estimated power consumption of each HVAC unit. As the Demonstrations
increase, the LLM’s simulated estimates are updatedwith real-world data, promoting adaptation andmore
accurate predictions aligned with the real-world environment as the trials progress.

In this article, we extend the previously discussed prompt engineering by investigating the impact of
allowing the generative AI to validate its own predictions using the acquired environmental data. This is
compared against the performance of Self-Consistency (Wang et al., 2023). We introduce Data-Driven
Reasoning, a technique that prompts the model to provide rational explanations for its predictions,
grounded in the environmental data. Our findings indicate that, combined with zero-shot CoT, Data-
Driven Reasoning not only facilitates the generation of human-interpretable explanations based on the
data but also improves prediction accuracy, achieving effective results with a reduced number of trials. A
detailed analysis of this is presented in the Ablation Study, Section 6.

4.2. Experimental design

This studywas conducted as a real-world experiment in an actual office environment for a total of one and
a half months, divided into two separate experimental periods. The first period ran from 15 January to
9 February, while the second period lasted from 26 February to 8 March. Three different approaches for
controlling the HVAC system were compared:

• Baseline: The baseline HVAC system operated in its default automatic mode, maintaining a constant
set temperature of 23°C, which is the standard winter setting for this particular office. While the
baseline system (e.g., [PEFY-P140M-E1]) lacks modern AI-powered features, its automatic mode
heuristically adjusts heating/cooling based on temperature fluctuations. Specifically, if the tempera-
ture deviates from the setpoint by 1.5°C for 3 min, the system activates the appropriate mode. This
represents a common, though simplistic, commercial HVAC setup.

• LLMs + MFMs: This approach integrates Large Language Models (LLMs) with Multimodal
Foundation Models (MFMs). The MFM analyzes overhead office imagery, extracting environmen-
tal information such as occupant count and temperature distribution. This information, combined
with estimated energy consumption data and two-hourly occupant comfort feedback, is input to the
LLMs, which subsequently generate optimal HVAC set temperatures.

• LLMs: This approach was similar to LLMs + MFMs, but without the use of the MFM to analyze
overhead images.

While the experiment planwas finalized 3weeks prior to execution, the specific execution dates for the
proposed method and baseline were not pre-determined with respect to weather conditions. To ensure the
robustness and reliability of the baseline measurements, we performed each step of the process twice over
multiple weeks. Due to the large room (322m2), room temperature has not changed rapidly in response to
HVAC setpoint adjustments, indicating a significant thermal inertia. This is due to the large heat capacity
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such as air, furniture, and walls. Short control intervals would be insufficient to induce a perceivable
temperature change for occupants. Therefore, to account for this thermal inertia and ensure a significant
impact on room temperature, a control frequency of 2 h was selected for this experiment.

5. Experiments and results

The experiment was conducted over a period from 15 January to 8 March, during which the average
outdoor temperature was a low 8.38°C and the average indoor temperature wasmaintained at 22.2°C. The
average daily energy consumption for the entire experimental period was 54.1 kWh. A total of 30 office
workers, men and women in their 20s to 50s, participated in the experiment, with an average daily
occupancy of 18.6 people. The LLMused was GPT-4 (gpt-4-1106-preview, OpenAI, 2023) and theMFM
was GPT-4V (gpt-4-1106-vision-preview, Yang et al., 2023b). The total cost of running the system, even
with the more expensive GPT-4V, was only $3.62 per day. Comfort feedback was aggregated using the
root mean square (RMS) to account for individual variations in thermal comfort perception:

Rij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni

XM

j = 1
x2ij

r
(3a)

Ctotal =
1
N

XN

i = 1
Rij (3b)

where xij corresponds to the comfort feedback received from area j at turn i. N is the number of total turn
andM is the number of total area (we set N=5 andM=7, respectively). ni represents the number of areas
providing valid feedback at turn i. Rij is the RMS comfort index for all areas at turn i. Ctotal signifies the
average RMS comfort index for area j.

Table 1 summarizes the average daily measured electricity consumption and the RMS of occupant
feedback for each experimental condition. The electricity consumption data (kWh) used in this study is
derived from the actual monthly electricity bills provided by the building owner to the office tenants. A
lower RMS value is desirable. It shows that both LLM-based approaches significantly improved energy
efficiency and comfort compared to the baseline. LLMs alone achieved a higher energy efficiency
improvement (47.92%) than LLMs +MFMs (34.97%). Both approaches showed similar levels of comfort
improvement (26.36% and 25.93%). The results in Table 1 suggest that the proposed method achieves
more stable comfort, as indicated by the smaller RMS value and lower variability in feedback, with
responses concentrated around 0, representing a comfortable state. On the other hand, the baseline
exhibits a larger RMS value and greater variability in feedback, with responses deviating significantly
from the mean, indicating a wider range of comfort perceptions among occupants.

Figure 7 shows box plots of electricity consumption and occupant feedback. LLMs alone demonstrated
a smaller variance in energy consumption compared to LLMs +MFMs, indicatingmore consistent energy
savings. However, both LLM-based approaches exhibited similar effectiveness in improving comfort
levels, although LLMs alone showed greater variability in feedback scores.

Table 1. Comparison of energy efficiency and comfort

Method

Energy consumption Occupants’ feedback

Measured (kWh) Reduction (%) RMS Reduction (%)

Baseline 82.40 – 1.180 –

LLMs 42.92 47.92 0.869 26.36
LLMs + MFMs 53.58 34.97 0.874 25.93
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Figure 8 depicts indoor temperature fluctuations and corresponding HVAC set temperatures at 2-h
intervals (10 AM–6 PM) for three experimental days. In the first column, this subplot represents a day of
4March with the baseline HVAC control. As the set temperature remained fixed at 23°C with auto-mode,
therewas a significant difference between the lowest and highest recorded indoor temperatures, indicating
potential discomfort due to temperature fluctuations. In the second column, this subplot demonstrates the
results from a day of 7 March when the HVAC system was controlled by the LLMs approach. It can be
observed that after the second time step, the indoor temperature exceeded the set temperature, prompting
the system to turn off the HVAC unit to prevent overheating. This suggests the LLM’s ability to
proactively adjust to changing conditions. In the third column, this subplot showcases the performance
of the combined LLMs and MFMs approach on 8 March. Notably, after initially raising the set
temperature in the second time step, the system subsequently lowered it in the third time step as the
indoor temperature continued to rise. This adaptive behavior demonstrates the potential benefit of
integrating visual information through MFMs for finer control. Both the LLMs and LLMs + MFMs
approaches exhibited a smoother and more gradual control strategy compared to the baseline. This
resulted in smaller temperature fluctuations, which likely contributed to improved thermal comfort for the
office workers. Furthermore, the ability to turn off unnecessary HVAC units as deemed by the generative
AI models likely contributed to significant energy savings.

Further details on the behavior of the generative AI were analyzed by visualizing the time series data of
feedback, indoor/outdoor temperatures, and the HVAC setpoint. The temperature predictions for HVAC
control (see Figures 9 and 10) are informed by all feedback received up to the time of prediction.
Therefore, control actions reflected the system’s state at each prediction time. Figure 9 shows the results
from the experiment day where control was managed exclusively by LLMs. Initially, in response to
feedback indicating slight coldness (�1), the LLM set the temperature to 20°C. Subsequent feedback of
“comfortable” (0) led to the deactivation. This deactivation continued following further “comfortable
range” feedback (0.6). The LLM’s ability tomaintain comfort while deactivating the system demonstrates
its potential for energy savings.

Figure 10 illustrates environmental variations in Area 6 and 7 during MFM deployment. In Area
7 (10b), the system maintained a constant 20°C set temperature without feedback, likely to mitigate heat
loss through windows, given the low external temperature (1°C). While occupant feedback was not
consistently available, office workers were confirmed via office map data, preventing deactivation.

Figure 7. Box plots of electricity consumption and occupant feedback across experimental conditions.
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Figure 8. Office temperature and HVAC setpoint are shown for seven areas, comparing different
experimental methodologies (columns) and areas (rows). The x-axis represents time of day, and the y-axis
represents temperature. Blue lines indicate room temperature, green lines HVAC setpoint, and red dots

HVAC shutdowns, respectively.
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Conversely, in Area 6 (10c), the system initially remained off at 17°C. Negative comfort feedback (�1)
prompted a temperature increase to 19°C and system activation. Subsequent comfortable feedback (�0.5,
0) triggered deactivation. The absence of adjacent windows in Area 6 suggests minimal thermal
conduction, potentially prioritizing continued operation in Area 7 due to thermal inertia. In contrast to
Figure 10, relying solely on LLMs can lead to HVAC deactivation even with occupants present, as the
absence of feedback prevents the LLMs from considering occupancy in their predictions. Conversely,
incorporating MFMs allows for the inclusion of office workers’ locations, ensuring that the presence of
people is considered even in the absence of explicit feedback.

Figure 11a,b detailed breakdown of actual electricity consumption and user feedback. Figure 11a
shows the hourly energy consumption for each approach, along with the average outdoor temperature.
Previous analyses have demonstrated an inverse correlation between outdoor temperature and power
consumption. It can be observed that the baseline approach maintained a relatively constant energy
consumption regardless of outdoor temperature fluctuations, except during periods of extremely low
temperatures. In contrast, LLMs alone demonstrated robust energy savings by dynamically adjusting
energy consumption in response to changes in outdoor temperature. LLMs + MFMs showed a similar
trend but exhibited higher energy consumption during periods of extremely low temperatures. Figure 11b
illustrates the user feedback scores alongside the number of office workers present in the office. Notably,
feedback varied even with a similar number of occupants, indicating individual preferences and potential
limitations of the baseline system in adapting to feedback. Both LLM-based approaches, by leveraging
feedback to predict optimal set temperatures, exhibited a tendency toward lower feedback scores,
suggesting improved responsiveness to user comfort.

Table 2 presents the detailed correlations between outdoor temperature, measured energy consump-
tion, and estimated energy consumption. The correlation map utilizes Spearman’s rank correlation
coefficient that indicates both positive and negative associations, with larger absolute values signifying
stronger correlations. From Table 2, it is evident that the predicted energy consumption has a negative
correlation with outdoor temperature. Conversely, the predicted energy consumption shows a positive
correlation with the actual measured energy consumption. This finding supports the validity of incorp-
orating predicted energy consumption as input to the generative AI model for controlling energy usage.
Interestingly, the measured energy consumption exhibits a negative correlation with outdoor temperature.

Figure 9. Experiments conducted on 29 February in area 5.
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This suggests that the generative AI system may have significantly reduced electricity consumption,
particularly on hotter days (shown in Figure 11a).

Next, a correlation analysis was conducted between the average feedback input to the generative AI
and the average HVAC setpoint temperature output by the generative AI. Figure 12a presents the analysis
results from 15 January to 9 February, while Figure 12b presents the analysis results from 26 February to
8 March. As feedback is received from occupants in each area where HVAC units are located, there are
seven HVAC outputs corresponding to seven feedback inputs. The feedback was averaged daily for each
area using the absolute value. Figure 12b, unlike Figure 12a, shows a positive correlation between the
feedback input AI and the output temperature. Referring to Figure 11b, it can be observed that the period
from 26 February to 8 March exhibited less variability in feedback and lacked extreme temperature
differences across areas, which may explain the observed positive correlation.

A correlation analysis using the least squares method was conducted to examine the relationship
between the actual power consumption as the dependent variable and five independent variables: the three

Figure 10. Experiments with LLMs and MFMs conducted on 5 February.
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experimental conditions, outside temperature, and the number of occupants. The results in Table 3,
indicate amoderate positive correlation only for the baseline condition. In contrast, the use of LLMs alone
showed a moderate negative correlation, while combining LLMs and MFMs resulted in a weak negative
correlation. Concerning external factors, outside air temperature exhibited a moderate negative correl-
ation, and the number of occupants showed a weak negative correlation. These findings suggest that
energy consumption tends to increase under the baseline condition and decrease when using LLMs alone.
The addition of MFMs, however, did not show a clear impact on energy consumption. Interestingly,
higher outside air temperatures were associated with a decrease in energy consumption. However, since

Figure 11. Differences in (a) measured electricity consumption and (b) occupant feedback across
experimental conditions.

Table 2. Spearman’s correlation coefficients between factors

Outside temp. Estimated cons. Measured cons.

Outside temp. 1.000 �0.705 �0.254
Estimated cons. �0.705 1.000 0.214
Measured cons. �0.254 0.214 1.000

Note: Cons., energy consumption; Temp., temperature.
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none of the variables demonstrated a strong correlation exceeding 0.7, a regression analysis was
performed to further investigate their individual contributions to power consumption reduction.

A regression analysis, employing the least squares method, was performed to further investigate the
factors influencing power consumption reduction (shown in Table 4). To avoid multicollinearity, the
baseline condition was used as the reference level. The model demonstrated a high goodness-of-fit,
achieving an R-squared value of 0.898, indicating that themodel explains 89.8% of the variance observed
in the data. The intercept represents the predicted power consumption when all other variables are held

Figure 12. Correlation map between (a) occupant feedback (F) and (b) predicted optimal HVAC settings
(P) for each office area (number). Redder hues correspond to positive correlations.

Table 3. Correlation analysis between factors/conditions and measured energy consumption

Factor/condition Correlation coefficient

Outside temperature �0.450
Occupant �0.303
LLMs �0.474
LLMs + MFMs �0.023
Baseline 0.649

Table 4. Results of the regression analysis

95% confidence interval

Factor Coefficient Std. error t-value p-value Lower Upper

Intercept 130.264 16.410 7.938 0.000 96.395 164.134
Outside temperature �6.351 0.678 �9.365 0.000 �7.751 �4.951
Occupant 0.720 0.966 0.745 0.463 �1.274 2.714
LLMs �49.512 3.940 �12.567 0.000 �57.643 �41.380
LLMs + MFMs �38.196 3.888 �9.824 0.000 �46.220 �30.172
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constant at zero. Notably, utilizing LLMs alone resulted in an average reduction of 49.512 kWh in actual
power consumption, while combining LLMs and MFMs led to an average decrease of 38.196 kWh.
Furthermore, a 1°C rise in outside temperature was associated with an average reduction of 6.351 kWh in
power consumption. These variables exhibited p-values less than 0.05, indicating their statistically
significant impact on reducing power consumption. Conversely, while an increase of one occupant
was associated with a 0.72 kWh increase in power consumption, this effect was not statistically
significant. These results confirm that both LLM-based approaches, whether used individually or in
combination with MFMs, significantly reduced energy consumption compared to the baseline. Further-
more, the analysis revealed that higher outside air temperatures were linked to lower energy consumption,
likely attributable to reduced cooling demands. However, the number of occupants did not significantly
impact energy consumption in this experimental setting.

6. Ablation study

6.1. Rational explanation in data-driven reasoning

As an ablation study, the same prompts used in the 7 March experiment were input to modern MFMs
(Gemini-1.5-pro-exp-0827, GeminiTeam, 2024a) and GPT-4o-20240513 (OpenAI, 2024). Optimal
settings for the seven HVAC units were predicted based on the mode of 10 trials. The modern MFMs
tended to produce a more stable setpoint prediction when the mode of 10 trials was taken same as Self-
Consistency (Wang et al., 2023). Table 5 indicates a tendency toward convergence to similar results. The
Turn number represents the prediction results at 2-h intervals, starting at 10:00 AM. Although the
generative AI models produce similar predictions for the afternoon, their predictions diverge in the
morning. This divergence can likely be attributed to the more substantial fluctuations in both outdoor and
indoor temperatures during the morning hours, coupled with the area-specific variations in feedback.
Consequently, the models may infer multiple plausible optimal temperatures from similar input infor-
mation.

Table 6 presents the output and reasoning generated by Gemini1.5 (GeminiTeam, 2024a), a multi-
modal generative AI, when tasked with predicting HVAC settings. It seems that target temperatures for
each area are determined based on the current room temperature and feedback. Furthermore, the HVAC

Table 5. Variations in daily predictions across different generative AI models on 7 March

Turn Method 1 2 3 4 5 6 7

Turn 1 GPT–4 20 20 22 20 22 20 22
GPT–4o 22 21 23 21 24 20 23
Gemini1.5 22 21 23 21 23 21 23

Turn 2 GPT–4 20 20 21 20 21 20 21
GPT–4o 21 20 21 20 21 20 21
Gemini1.5 21 20 22 20 22 20 22

Turn 3 GPT–4 – – 20 20 20 20 –

GPT–4o 19 19 20 20 20 20 20
Gemini1.5 21 21 22 20 22 20 22

Turn 4 GPT–4 – – 20 20 20 – –

GPT–4o – – 20 20 20 20 –

Gemini1.5 – – 20 20 20 20 –

Turn 5 GPT–4 – – 20 20 20 – –

GPT–4o – – 20 20 20 19 –

Gemini1.5 – – 20 20 20 – –

Note: “–” indicates inactivity; all values are in degrees Celsius. Italics denote area numbers.
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setpoint is determined by considering factors such as proximity to windows and illuminance intensity to
achieve these target temperatures. Given the improved reasoning capabilities of these state-of-the-art
models, it is reasonable to expect that incorporating human-understandable explanations into their outputs
will enhance the acceptability and adoption of generative AI for industrial equipment control in industrial
practical scenarios.

Furthermore, acknowledging the remarkable recent advancements in Agentic AI, we investigated
whether the simulation capabilities of these models, particularly large-scale generative AI models
designed for multi-stage deep reasoning, could yield more rational and mathematically sound explan-
ations. This investigation is based on the hypothesis that the internal representations of these modern
generative AI models, trained with vast numbers of parameters, sufficiently learn real-world phenomena
and can therefore function as world models.

For example, OpenAI’s o1 (OpenAI, 2025) is trained with large-scale reinforcement learning to reason
using CoT prompting, enabling it to respond with deliberate contextual consistency. Similarly, Google’s
Gemini 2.0 (Pichai et al., 2024) is reportedly developed for Agentic AI, capable of understanding the
world more deeply and reasoning autonomously over multiple steps.

Initially, we examined how predictions varied when Agentic AI models were provided with prompts
summarizing historical information obtained from our experiments, including past IoTsensor data, office
worker feedback, and HVAC settings. Previous experiments revealed that predicting precise optimal
temperatures with generative AI models was challenging, with variations of around 2°C observed across
trials. Therefore, we employed Self-Consistency, a prompt engineering technique that involves multiple
inference runs and selecting the mode of the outputs, to stabilize predictions. However, Self-Consistency
incurs a cost proportional to the number of inference runs required to determine the mode.

In this study, we discovered that incorporating Data-Driven Reasoning, where the generative AI
explains its rationale based on provided data, had the effect of stabilizing the predicted optimal HVAC
temperatures, causing them to converge to a consistent value. The following prompt, adapted from the
main experiment, was used for the Data-Driven Reasoning runs:

[Provide a rationale for each of your predicted optimal temperatures, based on observed sensor data
and feedback.]

Table 6. Results of querying Gemini1.5 (GeminiTeam, 2024a) on March 7 (Turn 4 prompt) for the
rationale behind HVAC settings

Room temperatures are currently between 23°C and 26°C, with feedback indicating a comfortable
environment.

To prioritize energy conservation, the following AC settings are maintained:
• ACs 1, 2, and 7 (near windows, medium-high sunlight): Deactivated with resulting temperatures
of 23–24°C and “comfortable” feedback. Despite a 1°C rise in external temperature, these units
remain off due to sunlight’s influence and will be monitored.

• ACs 3 and 5 (nearwindows, high sunlight): Set at 20°C,maintaining room temperatures at 23–24°C
with “comfortable” feedback. This setting is optimal given the strong sunlight, which is expected to
keep temperatures comfortable even at a lower set point.

• ACs 4 and 6 (interior, influenced by ACs 3 and 5): Set at 20°C, maintaining room temperatures at
24–26°C with “comfortable” feedback. The settings for ACs 3 and 5 should sufficiently regulate
temperatures in these areas.

Overall, the current configuration prioritizes energy conservation by minimizing changes and keeping
unnecessary units off. Ongoing temperature and comfort feedback will be monitored, and adjustments
made as needed. Specifically, window-side AC settings will be reevaluated if sunlight intensity
changes.
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Therefore, for the days during the experimental period where only LLMs were used, we conducted
10 inference runs using Self-Consistency withmodernmodels such as o1 andGemini 2.0 to determine the
mode. We then evaluated how closely a single inference run using Data-Driven Reasoning with the same
model matched the Self-Consistency result, using the following methods:

• HVACON/OFF prediction: The HVACON/OFF predictions in our experiments were treated as a
binary classification task. We assessed whether the Data-Driven Reasoning prediction matched the
mode of the 10 Self-Consistency trials, calculating Precision and Recall.

• HVAC temperature prediction: For HVAC temperature predictions, we calculated the success rate
of the single Data-Driven Reasoning prediction falling within ± 1°C and ± 0.5°C of the mean of the
10 Self-Consistency trials. We also calculated the Mean Absolute Error (MAE) between the Data-
Driven Reasoning prediction and the mean of the Self-Consistency trials.

• Temperature parameter: The temperature parameter for the generative AI models was set to 0, as
used in the main experiments. However, for o1, the default value was used, as this model does not
support temperature modification.

For the experiments, we utilized the following Generative AI models: GPT-4 (gpt-4-1106-preview,
OpenAI, 2023), GPT-4o (2024-05-01-preview, OpenAI, 2024), OpenAI o1 (2024-12-01-preview,
OpenAI, 2025), Claude 3.5 Sonnet V2 (claude-3-5-sonnet-v2@20241022, Anthropic, 2024), Gemini
1.5 Pro (gemini-1.5-pro-002, GeminiTeam, 2024a), and Gemini 2.0 Flash (gemini-2.0-flash-exp, Pichai
et al., 2024).

Figure 13 illustrates the prediction spread for the optimal HVAC temperature when historical data from
the experimental period was provided as input to each generative AI model without employing Data-
Driven Reasoning, instead using Self-Consistency with 10 inference trials to determine the mode.
Utilizing the prompt structure shown in Figure 6 without Data-Driven Reasoning and performing
10 inferences via Self-Consistency tends to narrow the prediction spread of the optimal temperature.
However, the results indicate that, depending on the model, the distribution containing 50% of the data
(i.e., interquartile range) still varies by approximately 2 °C across the dataset.

Figure 13. Box plot of HVAC temperature predictions from 10 inferences using Self-Consistency without
Data-Driven Reasoning.
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Table 7 presents the results comparing Data-Driven Reasoning against Self-Consistency for two tasks:
binary classification (i.e., predictingHVACON/OFF state) and temperature prediction (i.e., predicting the
optimal setpoint). Each numerical value in the table represents the average performance over the 13-day
experimental period, where the historical informationwas fed into each generative AImodel to predict the
HVAC operational strategy.

First, regarding the Binary Classification task (see Table 7), the accuracy exhibited significant
variation depending on the generative AI model used. NotablyMFMs such as GPT-4o and Gemini 1.5
Pro, as well as the agentic AI model Gemini 2.0, consistently predicted the HVAC ON/OFF state with
stability. For these models, the accuracy achieved with a single prediction using Data-Driven Reasoning
was remarkably close to the accuracy obtained using the mode of 10 trials with Self-Consistency alone,
demonstrating high performance. Conversely, models like OpenAI o1 and Claude 3.5 Sonnet showed a
tendency for their ON/OFF instructions to fluctuate across trials, resulting in somewhat lower accuracy.
These findings suggest that while model-specific accuracy differences exist, employing Data-Driven
Reasoning enables high-accuracy prediction of HVACoperational states for the binary classification task.

Next, focusing on the Temperature Prediction task (see Table 7), we examined the accuracy of
predictions falling within ± 1°C of the mean temperature predicted by Self-Consistency. In this task
too, multimodal foundation models like Gemini 1.5 Pro and the agentic AI Gemini 2.0 demonstrated
stable performance, predicting the optimal HVAC setpoint temperature with high accuracy, exceeding
90%. Furthermore, Gemini 2.0 achieved an accuracy of over 90% evenwithin the stricter range of ± 0.5°C
from the Self-Consistency mean prediction. Multimodal models like GPT-4o and Gemini 1.5 also
achieved accuracies exceeding 80% within the ± 1°C range. Referring back to the distribution of
predicted temperatures using Self-Consistency shown in Figure 13, it is evident that while the prompt
engineering strategy from the proposed method (see Figure 6) helps reduce prediction variance, consist-
ently achieving temperature predictions with over 90% accuracy within a ± 0.5°C range remains a
challenging task. However, the effectiveness of our proposed approach, particularly the Data-Driven
Reasoning component, becomes evident when considering the initial prediction spread. As shown by the
box plot in Figure 13, the interquartile range (IQR) of the Self-Consistency predictions spans approxi-
mately 2°C, representing the central 50% of the data and indicating significant initial variability. Despite
this wide initial distribution, our method enables all tested generative AI models to achieve over 50%
accuracy within the narrow ± 0.5°C range, with Gemini 2.0 remarkably surpassing 90%. This demon-
strates that Data-Driven Reasoning effectively mitigates the inherent prediction variance, yielding highly
precise and reliable temperature setpoints. Furthermore, examining the Mean Absolute Error (MAE) in
Table 7, the average prediction errors for Gemini 2.0, Gemini 1.5, and GPT-4 were below 0.5°C,
indicating that their responses were stable relative to the given information. In contrast, OpenAI o1 sets
a fixed default temperature parameter, causing its predictions to deviate significantly depending on the
target, thus resulting in the lowest accuracy for this task in our experiments. These results collectively
indicate that although performance fluctuations exist depending on the specific generative AImodel used,

Table 7. Performance comparison of different models for HVAC control tasks

Model

Binary classification (ON/OFF) Temperature prediction

Precision Recall F1 MAE (°C) Acc. ( ± 1°C) Acc. ( ± 0:5 ° C)

GPT–4 1.0000 0.8869 0.9399 0.2667 0.8571 0.7802
GPT–4o 0.9792 0.9861 0.9826 1.1667 0.8681 0.8131
OpenAI o1 0.8181 0.9792 0.8914 4.2529 0.6923 0.6264
Claude 3.5 0.7500 0.7467 0.7483 1.2912 0.8462 0.7363
Gemini 1.5 1.0000 0.9722 0.9859 0.2591 0.9341 0.8681
Gemini 2.0 0.9583 0.9458 0.9521 0.3287 0.9451 0.9231
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employing Data-Driven Reasoning offers the potential to reduce the computational and financial costs
associated with prompt engineering techniques like Self-Consistency, which require multiple inferences
to determine the most frequent output. This reduction in overhead is a significant consideration for
practical deployment in industrial scenarios.

6.2. Impact of advanced agentic AI on energy consumption

We simulated the potential energy savings achievable by operating the HVAC system with optimal
temperature settings predicted by state-of-the-art Agentic AI, using the experimental history data as input.
The regression coefficient bLLMs = �49:512 obtained from the regression analysis (see Table 4) repre-
sents the change in total daily energy consumption when switching from the baseline control strategy
without LLM to the LLM-based control strategy. This coefficient cannot be directly applied to tempera-
ture differences. Therefore, we used the regression coefficient bLLMs to estimate the impact on the energy
by the change in the HVAC ON/OFF by comparing control strategies, between the one based on GPT-4
used in the original experiment and that of the new Agentic AI models.

First, using the 13-day experimental history data employing only the LLM, we prepared prompts
containing one day’s worth of demonstration information. These prompts were used as input for each
Agentic AI. We employed the Self-Consistency method, performing 10 trials and selecting the mode as
the predicted optimal HVAC settings (temperature and ON/OFF state) for each Agentic AI. For each
HVACunit, the estimated energy changewas calculated based on the agreement between theAgentic AI’s
prediction and the GPT-4 prediction used in the experiment. If the predictions matched, the estimated
energy change was set to 0. If the Agentic AI predicted OFF while GPT-4 predicted ON, the estimated
energy change was the negative of the average energy impact per HVAC unit. Conversely, if the Agentic
AI predicted ONwhile GPT-4 predicted OFF, the estimated energy changewas the positive of the average
energy impact per HVAC unit.

The average energy impact per unit is calculated by dividing the regression coefficient bi by the number
of HVAC units (N), assuming equal contribution from each unit. The total estimated daily energy change
was calculated by summing the ΔEi values for all seven HVAC units. This change was then added to the
average daily energy consumption of GPT-4 during the experiment (42.92 kWh) to obtain the estimated
total daily consumption of the new model. Furthermore, we calculated the percentage change in energy
consumption of each Agentic AI relative to the GPT-4-based operation and baseline. The results are
shown in Table 8.

Based on the results in Table 8, projections suggest a high likelihood that utilizing newer generative AI
models—specifically GPT-4o, OpenAI o1, and Gemini 1.5—for HVAC operation could achieve further
reductions in energy consumption compared to the GPT-4 model used in the actual experiments. For
Gemini 2.0, the projected energy consumption was equivalent to that of the actual GPT-4 operation,

Table 8. Model comparison of estimated energy consumption and reduction from baseline

Model
Total estimated

consumption (kWh)
Percentage change
from GPT-4 (%)

Percentage change
from baseline (%)

GPT–4 42.92 – �47.92
GPT–4o 42.38 �1.28 �47.35
OpenAI o1 40.74 �5.08 �50.56
Claude 3.5 49.45 +15.21 �39.99
Gemini 1.5 41.83 �2.54 �49.24
Gemini 2.0 42.92 0.00 �47.92
Baseline (w/o GenAI) 82.40 +91.99 –

Note: The power consumption values for Baseline and GPT-4 represent the actual usage measured during the experiments, as presented in Table 1.
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attributed to the lack of relative changes in its predicted HVACON/OFF switching behavior. Conversely,
predictions from Claude 3.5 frequently indicated activating the HVAC (i.e., ON state) during periods
when the actual control (i.e., implemented by GPT-4) maintained an OFF state; consequently, its use is
projected to increase energy consumption relative to GPT-4. However, it is anticipated that all evaluated
generative AI models can deliver substantial energy savings compared to the baseline HVAC automatic
operation mode (i.e., operation without generative AI).

6.3. Mathematical modeling of office environments using agentic AI

As an additional experiment, we investigated whether the detailed historical information obtained in
our experiments, including IoT sensor data and worker feedback, could be leveraged by a state-of-the-
art Agentic AI to generate a mathematical formulation for optimizing the trade-off between office
environment comfort and cost reduction on a daily basis. Typically, optimizing the control of office
equipment involves accumulating a large amount of data and then using reinforcement learning to train
the weights of a human-defined model. In this experiment, we provided the following additional
prompt to the Agentic AI, instructing it to perform the office environment modeling itself and to derive
optimal coefficients and weights using the historical information, and examined whether the AI could
explain it.

[In the previous task, you predicted the optimal temperature for each HVAC unit based on the
provided IoT sensor information and worker feedback. This task involves addressing the inherent
trade-off between: (1) the increased cost of operating HVAC units continuously or with large
deviations from the current set temperature, and (2) the decreased worker comfort if the environ-
ment is not maintained at a comfortable level, even at a higher cost. Based on the information
currently available, please formulate a mathematical expression to represent this trade-off and
provide a detailed explanation.

In formulating the equation, please be sure to consider all available sensor data andworker feedback
from today, and to incorporate coefficients (weights) that optimize for both comfort and power
consumption. Explain the specific values assigned to these weights and provide a justification for
your choices. Specifically, the weights and coefficients must demonstrably achieve the optimal
balance based on today’s data, and your reasoning needs to be clearly attributable to the provided
information.]

Tables 9–11 show the predicted optimal HVAC temperatures when all prompts up to Turn 5 on 7 March
are given, along with the explanations of the office environment modeled from the daily office
environment data described by each Agentic AI. While all methods yielded the same optimal HVAC
temperature setting prediction, the resultingmathematical formulations of the office environment differed
across the models.

Looking at the results of GPT-4o in Table 9, the model calculated weights that prioritize reducing
power consumption over improving comfort, and provided a justification for this. However, it failed to
adequately explain the equations for energy consumption and comfort.

The results of OpanAI o1 in Table 10 show that the model consists of three component equations: one
relating to the temperature perceived as comfortable by office workers and the current room temperature,
another relating to the outside temperature and the current set temperature, and a third relating to sudden
changes in the set temperature. This model emphasizes comfort in its equation explanation. Notably, it
provides a comprehensive explanation of the phenomena, including how a large difference between the
outside temperature and the set temperature leads to significant power consumption, and how abruptly
changing the set temperature oneself places a large load on the HVAC system, increasing power
consumption. All of these equations are constructed based on the acquired data, resulting in higher
explanatory power compared to the results of GPT-4o.
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Table 9. Results of querying GPT-4o (OpenAI, 2024) on 7 March (Turn 5 prompt) for the rationale
behind HVAC settings with mathematical reasoning

Optimal settings: [0, 0, 20, 20, 20, 0, 0]
To formulate the trade-off problem, we consider the following function:

L = α×E + β × 1�Cð Þ
where:

• L is the total cost.
• E is the energy consumption.
• C is the comfort index (ranging from 0 to 1, where 1 is the most comfortable).
• α and β are weighting coefficients.

Specific values of the weights:
• α= 0:6: Because it is important to reduce energy consumption.
• β = 0:4: Comfort is also important, but we place more emphasis on energy saving.

Reasons:
• Realistic demand for high energy costs and the need to avoid waste.
• Policy to prioritize energy saving, even if it sacrifices comfort to some extent.
• Because the comfort level of “slightly warm” was considered acceptable.

This allows us to reduce energy consumption while ensuring comfort.

Note: The results of the optimal temperature prediction for HVACs 1 through 7 in the “Optimal settings” are shown in order from the beginning of the
array. 0 indicates shutdown, and each numerical value represents the temperature in degrees Celsius.

Table 10. Results of querying OpanAI o1 (OpenAI, 2025) on 7 March (Turn 5 prompt) for the
rationale behind HVAC settings with mathematical reasoning

Optimal settings: [0, 0, 20, 20, 20, 0, 0]
To adjust the trade-off between the comfort of each area and the energy consumption cost of the air

conditioning, we can formulate the problem as minimizing an objective function F, as follows. Let i be
the index of the air conditioner (and its corresponding area), Ti be the actual room temperature
maintained by air conditioner i, Tset,i be the set temperature of air conditioner i, Tpref ,i be the preferred
temperature of the occupant (estimated from actual feedback), Tout be the outdoor temperature, and
ΔTprev,i be the change in set temperature from the previous time step. The coefficientsw1,w2, andw3 are
weighting factors.

F =
X
i

w1 × Ti�Tpref ,i

� �2
+w2 × Tset,i�Toutð Þ2 +w3 × ΔTprev,i

� �2h i

The first term represents the occupant’s discomfort (the squared difference between the actual room
temperature and the preferred temperature). The second term indicates that the energy consumption
increases as the difference between the set temperature of the air conditioner and the outdoor
temperature increases. The third term represents the fact that a larger change in the set temperature
requires a more rapid change in operation, resulting in extra energy costs. The weights w1, w2, and w3

are determined based on the operational policy, such as prioritizing comfort or energy saving. As an
example, consider the settingsw1 = 1:0,w2 = 0:6, andw3 = 0:3.w1 is set to the largest value to prioritize
the comfort of the occupants. w2 is given a moderate value to consider energy saving in parallel. w3 is
included to suppress the load caused by abrupt operations; it is set to a smaller, but non-negligible value
for control purposes. This configuration aims to satisfy comfort levels while avoiding excessive setting
changes and limiting increases in power consumption.

Note: The results of the optimal temperature prediction for HVACs 1 through 7 in the “Optimal settings” are shown in order from the beginning of the
array. 0 indicates shutdown, and each numerical value represents the temperature in degrees Celsius.
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The results of Gemini 2.0 in Table 11 show that the weight settings prioritize the comfort of office
workers. Regarding the comfort equation, the sum of the difference between the ideal room temperature
and the current room temperature, plus the feedback on the current room temperature, is inverted. This
indicates that a smaller difference between the ideal temperature and the current temperature, and
feedback closer to 0 (indicating comfort), is better. On the other hand, the equation for energy consump-
tion is designed such that the smaller the discrepancy between the set temperature and the room
temperature, the higher the overall evaluation.

As shown in Tables 9–11, the variations in the explanations provided by each Agentic AI demonstrate
that even when using the same prompts, including sensing data of the office environment and worker
feedback information, to predict the same optimal temperature setting, the mathematical explanations of
how the office environment was modeled and how the optimal setting temperature was derived differ.

An interesting point of this experiment is that when Agentic AI is used to provide mathematical
explanations for complex real-world events, it can provide rational explanations based on various
explanatory variables of the office environment obtained on that day. Specifically, the problem of
designing the weights of the cost function included in the equation typically requires collecting a large
amount of data and performing reinforcement learning or physical modeling to construct a highly accurate
simulator. However, the results of this experiment suggest that Agentic AI has the potential to be used as a
simplified simulation even though in real-world complex scenarios.

7. Discussion

In Section 5, we demonstrated that by using generative AI to predict the optimal temperature for HVAC in
an actual office, over approximately one and a half months of empirical experiments, energy efficiency
improved by 47.92% and office worker comfort increased by 26.36% compared to HVAC’s automatic
operation mode without generative AI. In Section 6, under the hypothesis that the simulation capability of
Agentic AI (i.e., its internal representation of the environment) is learned to approximate the world like a
World-model through vast amounts of training data, enabling it to infer causes from observational
information such as IoT sensors and predict future or unknown events from these inferred causes, we
proposed Data-Driven Reasoning.We showed that this can stabilize the inference accuracy of Agentic AI
and validated the explainability of Agentic AI through rational textual explanations and mathematical
formulas.

Regarding the implementation of the proposed approach in existing real-world buildings, as described
in this study, the optimal temperature settings for office building HVAC can be readily determined by
deploying IoTsensors in existing buildings and leveraging cloud services. In this experiment, since only a
part of the office building was targeted, the HVAC temperature settings were performed manually;
however, for an entire building, automation is desirable. In such cases, automatic control is considered
feasible by formatting the generative AI’s output into a format such as JavaScript Object Notation
(JSON) that can be read by a typical existing building’s central control system. The focal point of this
solution is how to connect the cloud and the building system. For example, implementation is easier
with newer systems that can be operated via APIs. However, for on-premise systems, manual operation,
as in this experiment, or the use of IoT devices that physically operate switches directly, is more
realistic. Furthermore, when considering operating generative AI itself within an on-premise system,
the trade-off between the number of parameters in LLM or VLMmodels and their inference capabilities
becomes crucial for feasibility. Recently, models have been developed that are lightweight enough to
run on smartphones while possessing the versatility to solve general problems. In the future, whether
lightweight models can maintain performance during inference and whether they can operate on GPUs
that do not require electrical work will also be important for widespread adoption.

Moreover, in implementing the Data-Driven Reasoning using Agentic AI as proposed in Section 6,
real-world observation data from IoTsensors are crucial for rational explanations and reasoning. Regarding
IoT devices deployment, we propose the following recommendations:
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Table 11. Results of querying Gemini2.0 (Pichai et al., 2024) on 7 March (Turn 5 prompt) for the
rationale behind HVAC settings with mathematical reasoning

Optimal settings: [0, 0, 20, 20, 20, 0, 0]
To formulate the trade-off problem, we define the following elements:

• C: Comfort
• E: Energy Consumption
• wc: Weighting factor for comfort
• we: Weighting factor for energy consumption
• Ti: Set temperature of air conditioneri
• Ri: Room temperature in the area of air conditioneri
• Fi: Feedback for air conditioner i (quantified)
• Pi: Power consumption of air conditioneri

Comfort is evaluated based on the room temperature and feedback in each area. To quantify the feedback,
we use the following mapping: Very Cold: �3, Cold: �2, Slightly Cold: �1, Just Right: 0, Slightly
Warm: 1, Warm: 2, Very Warm: 3

The comfort index is defined as the reciprocal of the sum of the deviation from the ideal room temperature
and the deviation of the feedback. We assume an ideal room temperature of 23∘C.

C =
X7
i = 1

1

jRi�23j+ jFijð Þ (4)

Energy consumption is defined as the sum of the power consumption of each air conditioner. We assume
that power consumption is proportional to the absolute difference between the set temperature and the
room temperature.

E =
X7
i = 1

∣Ti�Ri∣ (5)

The objective function is defined as the weighted sum of comfort and energy consumption. The objective
is to maximize this function.

Maximize :wc �C�we �E (6)

wc (Comfort weight): 0.7
A high weight is assigned to comfort because it directly impacts employee productivity. In particular, it is

important to avoid making employees feel cold, especially when the outside temperature is low.
we (Energy consumption weight): 0.3
Energy consumption is also important, but it has less direct impact than comfort, so a slightly lowerweight

is assigned.
These weights were determined based on past data and the current situation. Past data indicates that

employees are more likely to feel dissatisfied and experience reduced productivity when the room
temperature is low. In addition, since the current outside temperature is low, it is important to manage
heating appropriately and maintain a comfortable room temperature. The equations provide a
framework for balancing comfort and energy consumption. By setting a high weight for comfort, we
can prioritize employee comfort while minimizing energy consumption. By comprehensively
considering this information and using the above equations, the optimal set temperature for each air
conditioner was determined.

Note: The results of the optimal temperature prediction for HVACs 1 through 7 in the “Optimal settings” are shown in order from the beginning of the
array. 0 indicates shutdown, and each numerical value represents the temperature in degrees Celsius.
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• In areas with many windows, intensive deployment is desirable to accurately grasp and consider the
difference between external and internal temperatures.

• In areas with high human traffic, prioritized deployment is recommended as temperatures fluctuate
significantly.

• In areas with private rooms, installing one IoT sensor in each room can be a strategy for improving
comfort, for example, by enabling Agentic AI to provide room recommendations to individuals.

• In large areas, as in this experiment, deploying sensors at intervals of 7.2–9 m, which is the typical
installation interval for office HVAC systems (recommended by MELRemo-IPS), allows the
generative AI to consider the heating/cooling effects of each air conditioner.

• When aiming to improve comfort using generative AI, as in the proposed method, human feedback
and actual environmental data are paired for the generative AI to determine the optimal temperature.
If IoT sensors are deployed too sparsely, data-driven rationality may be compromised. Therefore,
deploying them at a ratio of one unit per 7.2–9m, consistent with office HVAC installation intervals,
allows for effective monitoring of the indoor environment.

The relationship between inter-device distance/density and HVAC control performance could be a future
research topic. Furthermore, IoT sensors have recently become inexpensive and highly functional, and
their cost is considered sufficiently low compared to the benefits obtained from energy reduction, as
shown in our experimental results.

In systems that aim for optimization by continuously fitting to a dynamically changing real environ-
ment, such as the cyber-physical loop (Figure 4) proposed in this article, the need for real-time
performance increases as the goal is to improve human comfort (or user experience) in more volatile
environments. For example, scenarios requiring real-time performance include:

• Spaces with large numbers of people entering and exiting irregularly: large commercial facilities,
airports, stations, automobiles, trains.

• Properties where comfort affects service quality: gyms, hotels, elderly care facilities.
• Spaces with drastic changes in the external environment: top floors of buildings, glass-walled
buildings, spaces connected to the outdoors like cafe terraces or station buildings.

By grasping such highly variable environments in real-time, it becomes possible to recommend optimal
spaces for each user. For example, as in this experiment, by distinguishing which area sent individual
feedback and storing it as a history for a certain period, information regarding preferences such as whether
a person feels hot or cold, likes sunny places, or prefers private rooms can be obtained. In this method,
Agentic AI searched user feedback and reflected it in HVAC control; however, since it is also easy to
recommend which area/space is most suitable for a user, a building system that aims for optimization by
guiding users can be realized by considering real-time capabilities. Regarding the cost of generative AI
associated with real-time performance, due to the efforts of various cloud vendors, the inference cost per
prompt has been decreasing year by year. For instance, compared to the inference cost of GPT-4 (text-
based) in early 2024, Gemini 1.5 Pro (multimodal), which was one of the lowest-cost generative AIs
around autumn 2024, could perform inference at about 1/30th of the cost, and about 1/5th of the cost
compared to GPT-4o (multimodal). This indicates that significant cost reductions can be expected even
with increased real-time performance. Furthermore, as a trend, generative AIs with smaller parameter
sizes but comparable generalization capabilities to GPT-3 or GPT-4, such as Gemma3 and Qwen3, are
emerging. Thus, it is also possible to reduce total costs by fine-tuning these smaller models to create
specialized models.

8. Conclusion and future work

This research introduces an “Office-in-the-Loop” system for real-world HVAC control, leveraging
generative AI to optimize energy efficiency and occupant comfort in an office environment. The system
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utilizes predicted power consumption values as a constraint for the AI model to minimize energy usage,
successfully achieving significant reductions in actual electricity consumption during field experiments.
Few-shot learning, incorporating paired examples of user feedback and corresponding HVAC actions, is
employed to balance energy-saving measures with occupant comfort. The observed positive correlation
between actual and predicted power consumption validates the model’s effectiveness in achieving both
energy efficiency and comfort goals.

Furthermore, this research investigated the control of HVAC systems using Agentic AI capable of
more sophisticated reasoning. In our proposed method, we employed Data-Driven Reasoning, which
compels the Agentic AI to rationally explain the basis for its control decisions using acquired data. We
confirmed that this enables the Agentic AI to consistently arrive at the most rational solution among
multiple possibilities. Simulation results also indicate that employing this state-of-the-art generative AI is
projected to achieve significant reductions in power consumption compared to conventional operations
without generative AI. Additionally, based on acquired IoT sensor data and human feedback, we tasked
the Agentic AI with hypothesizing a mathematical model to predict HVAC control. We verified its
generalization capability, demonstrated by its ability to formulate inherent trade-offs within the office
environment and provide reasoned explanations extending even to the coefficients of the derived cost
function.

While the system successfully reduced energy consumption and improved comfort, challenges remain
regarding reliance on user feedback collected at 2-h intervals. Limited early morning feedback due to
varied work schedules (see Figure 14a) hinders timely comfort adjustments. Furthermore, inconsistent
feedback collection across areas stems from dynamic workspace utilization (see Figure 14b). Future
iterations could address these limitations by incentivizing feedback from under-represented areas or
inferring comfort levels through occupant behavior analysis.

One approach to mitigate variability in feedback responses is to predict the thermal insulation
performance of clothing using generative AI-based camera image analysis. For instance, our verification
usingGPT-4V demonstrated that, as illustrated in Figure 15, when a person is visible in the camera’s view,
a reasonable estimation of their clothing’s thermal insulation performance can be achieved. As a
preprocessing step, bounding boxes were drawn on the input images beforehand using the Exceeding
You Only Look Once (YOLOX) object detection method (Ge et al., 2021). However, issues such as
missed detections of individuals and the effects of occlusion were observed, suggesting that counter-
measures, such as increasing the number of cameras, may be necessary.

Despite these limitations, the study demonstrates the potential of generative AI for achieving
substantial energy savings while maintaining occupant comfort in real-world office settings. Future
researchwill explore automating comfort feedback through behavior analysis and extending the system to

Figure 14. Limitations in (a) the time and (b) space of the feedback.
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larger, energy-intensive facilities like data centers and industrial plants, evaluating its effectiveness in
these more complex contexts.
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