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The spectrum of a prespectral operator was investigated by Dowson in [4]. The
question was left open there whether, if a prespectral operator has closed range, the same
is true for its scalar part. In this paper we answer this in the affirmative and point out
some consequences concerning the essential spectra of prespectral operators. Also,
following Taylor and Halberg [11], we present the state diagram of a prespectral operator,
which will show, in a sense, the sharpness of the results of the spectral theory of such
operators.

We will assume familiarity with the basic properties of prespectral operators given in
[1], [3] and [4]. In the paper X denotes a Banach space over the complex field C, with
norm | • | and dual space X*. B(X) denotes the Banach algebra of bounded linear operators
on X. If V is in B(X), Z(V), R(V), s(V), r(V) and V* denote its null space, range,
spectrum, resolvent set and adjoint operator, respectively. For a prespectral operator T, in
B(X), of class F, T= S + N denotes its canonical decomposition and, as a rule, E denotes
its resolution of the identity of class V. T\Y denotes the restriction of T to the sub-
space Y, and if zeC, then Ez, Ez, and Nz denote E{{z}), E(C\{z}) and N|E({z})X,
respectively. If I is the ideritity in B(X), we shall write T-z rather than T-zI.

THEOREM 1. If T is prespectral with closed range, then R(S) is closed.

Proof. Let E denote the resolution of the identity of class F for T, and assume first
that Eo = 0. Then Z(T) = {0} by [4, Theorem 6.13]. Since R(T) is closed, there is a
positive p such that for every x in X we have |Tx|3=p dist (x, Z(T)) = p|x|. By a result of
Dowson ([2, Theorem 1]), then Oer(T); hence OE r(S).

If Eo*0, then the restriction V = T | £ 0 . X in B(E0.X) is prespectral with resolu-
tion of the identity F(b) = E(b) \ EQ.X of class T (here V = {g + (E0,X)x; g6T}c
X*/(£OX)X, where Hx is the annihilator in X* of H<=X), and F0 = 0. If yeR(V), then
there is a sequence {xn} in E 0 X such that Vxn —> y, and y = Tx, for some x in X, because
R(T) is closed. Then VE0-x = TEox —E0.Tx = y; hence i?(V) is closed and, by the
preceding paragraph, Oer(V). From [3, Theorem 2] the scalar part of V is S \ E0.X; thus
SE0.X = E0.X, and SEo = 0 implies SX = EO.X; hence R(S) is closed.

THEOREM 2. Suppose T is prespectral with resolution of the identity E of class T, and z
is a complex number. Then R(T-z) is closed if and only if
(1) z is an isolated point of s(T) or is in r(T), and
(2) R{(T-z)Ez) = R(Nz) is closed.

Proof. T-z = S-z + N, where S-z is a scalar type prespectral operator with
resolution of the identity G(b) = E(b + z) (b Borel set) of class T ([1, 3.1]), so we may and
shall suppose that z = 0. The operator T—c(c complex) is completely reduced by the
subspaces (E0X; Eo-X) with restrictions N0-cE0 and T\EffX-cE0., respectively. If
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R(T) is closed, then the proof of Theorem 1 and [10, Section 5.4] yield that (T-cy^e
B(X) for every c in a punched neighbourhood of 0; thus (1) holds. Further, if TEoxn —* y,
then Tx = y for some x in X, for R(T) is closed. But TEox = E0Tx = Eoy = y; thus (2) is
also true.

Conversely, if (1) and (2) hold, yeR(T) and Txn -» y, then TEoxn-»Eoy; hence
TEov = Eoy, for some v in X. By (1), E(U) = 0 for some punched open neighbourhood U
of 0 and, with the notation of Theorem 1, F0 = E0 | Eo.X = 0; therefore F(t/U{0}) = 0.
Hence 0 e r(T | E0.X); thus there is u eE0.X such that Tu = E0.y. But then T(Eov + u) = y,
and the proof is complete.

For a linear operator V in B(X) the quantities nullity n( V), defect d( V), ascent a( V)
and descent e(V) are defined e.g. in [7, p. 197]. We define the essential spectra, studied
by Gramsch and Lay [6], by means of the regularity sets G,, where Ve Gf (i = l,
2 , . . . , 11) means G,: V"1 e B(X), G2: n(V) = d(V) and a(V) = e(V) are finite,
G3:n(V) = d(V) are finite, G4:n(V)-d(V) is finite, Gs:n(V) is finite and R(V) is
complemented, G6:d(V) is finite and Z(V) is complemented, G7:n(V) is finite and
R(V) is closed, G8:d(V) is finite, G,= C7UG8, G10:i?(V) is closed, Gu:a(V) and
e(V) are finite.

The essential spectrum sf(V) is the set of all complex numbers c such that V-ctL G;
(i = 2, 3, . . . ,11) . For i = l we obtain the spectrum s(V). The following result was
obtained in [8] for spectral operators.

LEMMA. If T is a prespectral operator, then the essential spectra st(T) (i = 2, 3 , . . . , 9)
are identical.

Proof. If z is a nonisolated point of s(T), then Theorem 2 implies that zesl0(T);
hence z e Sj(T) (i = 2, 3 , . . . , 9). If z is an isolated point of s(T) and T - z € G9, then [7,
Theorem 2.9] yields that T - z s G 2 . Since G2cGi<=G9 (i' = 3, 4 , . . . , 8), the lemma is
proved.

THEOREM 3. If T is in B(X), then st(T) = s^T*) for i = 2, 3, 4, 9, 10, 11, s7(T) = ss(T*)
and s8(T) = s7(T*). If, in addition, T is prespectral, then st(T) = st(T*) for i = 2, 3 , . . . , 11.

Proof. Studying the various properties of T-z and T*-z we may and shall
suppose that z = 0. Since s(T*) = s(T), their isolated points are also identical. FOP the
resolvent operators, we have R(u; T*) = R(u; T)*; hence if 0 is an isolated singularity of

oo

s(T) with Laurent expansion around 0 given by R(u; T)= £ ukAk, then R(u; T*) =
Ic=— oo

X ukA* in a punched neighborhood of 0. Therefore 0 is a pole of T of order p if and
k=—oo

only if it is a pole of T* of order p, hence sn(T) = su(T*), by [7, Theorem 2.1]. It is
known that JR(T) and R(T*) are closed simultaneously, and if they are, then n(T*) =
d(T) and d(T*) = «(T). Hence we obtain the general statements for the indices i = 2, 3, 4,
7, 8, 9, 10. If T is prespectral, so is T* by [1, 3.10]; thus the last statement follows from
the Lemma.
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REMARK. For an arbitrary T, in B(X), it is known that ss(T) •=> s6(T*) and s6(T) =>
ss(T*), where the inclusions can be proper; cf. Pietsch [9, pp. 363-367].

According to Taylor [10, pp. 235-236], we say that an operator T, in B(X), is in state
I, II or III, if R(T) is X, dense in X but not equal to X, or not dense in X, respectively.
Further, T is in state 1, 2 or 3, according as T"1 exists and is continuous, exists but is not
continuous, or does not exist, respectively. T is in state Ab, if it is in the states A and b
(A = I, II, III; b = 1, 2, 3), and we say that T, or that the pair (T, T*), is in the state (Ab,
Cd), if T is in state Ab and T* is in state Cd.

THEOREM 4. (i) If T, in B(X), is prespectral, then T is not in the states (I3, III^ or (III1(

I3). (ii) If T is prespectral of finite type, then the states (II3, III2) and (III2, II3) are
impossible, (iii) // T is spectral of finite type, then the state (HI2, III3), and if T is prespectral
of finite type and X* is weakly complete, then the state (II2, III2) are impossible, (iv) All
other states, possible by the state diagram in [10, p. 237], can actually occur for spectral (if
excluded by (iii), then prespectral) operators.

Proof. If T is prespectral, so is T* by [1, 3.10]. If T is in state 1, then for every x in
X and some positive p we have |Tx|^p |x|; hence R(T) = X by [2, Theorem 1], which
proves (i). If T is prespectral of finite type, with canonical decomposition T=S + N and
resolution of the identity £ of class F, and T is in state 3, then Eo # 0 by [4, Theorem
6.13]. T\E0X = N\E0X = N0 is nilpotent; hence either No = 0 or N^O and K+l = 0,
for some positive integer k. We show that even in the latter case R(N0) is not dense in
E0X. Supposing it is, we can choose elements x, xn (n = l, 2 , . . . ) in E0X such that
NQX^O and NQxn -*• x. But then 0 = No+1xn -» Nfa, a contradiction. By [10, Theorem
5.4-B], R(T) is not dense in X; hence the state II3 is impossible for T. Since T* is also
prespectral of finite type, (ii) is proved. Finally, if T is prespectral of finite type and X* is
weakly complete, then T* is spectral of finite type. For such operators the residual
spectrum is empty, by [5, XV. 8.3] which proves (iii).

The states (Iu It), (II2, II2) and (III3, III3) can occur even for a bounded selfadjoint
operator in Hilbert space. To complete the proof we give the following examples.

E X A M P L E 1. L e t X=£x a n d for x = (xl,x2,...)etl l e t Tx = (clx1,c2x2,...)
 w i t n

ck = k~\ Define Fkx = ( 0 , . . . , 0, xk, 0 , . . . ) and E(b)x = I Fkx (b Borel set). Then T is
ckeb

spectral of scalar type with resolution of the identity E, and T is in state II2. In X* = €„
for y* = (yj, y2 , . . . ) we have T*y* = (ciyu c2y2, . . .) , and T* is in state IH2. T* is
prespectral of scalar type with resolution of the identity E* of class X, but not spectral. By
(ii) and [10, p. 237] T**, prespectral of scalar type of class X*, must be in state III3.

EXAMPLE 2. The states (HI2, III3) and (II2, III2) are possible for quasinilpotent
operators in JB(X), even if X* is weakly complete. Let X = C[0,1], the space of functions
continuous in [0,1], Tx = y, where y(t) = J{, x(s) ds. Then T is in state III2, and X* is
NBV[0,1], the space of functions of bounded variation normalized by the requirements of
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continuity from the right in (0, 1) and x*(0+) = 0. By the Riesz representation theorem,

(T*x*)(0=j'(x*(l)-x*(s))ds;

hence J?(T*)c AC[0,1], the subspace of absolutely continuous functions, and T* is in
state III3.

Now let To denote the restriction of T to Xo = Co[0,1], the subspace of functions
such that x(0) = 0; then To is in state II2. The annihilator of Xo in NBV[0,1] is the set of
all functions vanishing in (0,1]; which are continuous from the right in [0,1). Since NBV
is weakly complete, so is NBV0, and T j is in the state III2.

EXAMPLE 3. The states (III2, II3) and (II3, III2) are possible even for quasinilpotent
operators in B{£2). For x = (x1; x2,...)e€2 define Tx = (0, axxu a2x2,...), where
ak = 2 ~ \ Then | r n |=s a1 ...an = 2~(n+1)n'2; thus T is quasinilpotent and is in state III2. For
y* = (yi» y2, • • • ) e ^2 w e have T*y* = ( a ^ , a 2 y 3 , . . . ) ; hence the pair (T, T*) is in state
(III2, II3). Finally, the quasinilpotent T* in B(t2) is clearly in the state (II3, III2).

According to [10, p. 237] and Theorem 4, we obtain the following state diagram.

STATE DIAGRAM FOR PRESPECTRAL OPERATORS

HI3 x x x r or sf
III2 x r o r / * / x x

* « • < • " * I t I % x I x
II X X X X

II II2 n 3 HI2 III3

State of T
r: Impossible with X reflexive,
/ : Impossible with T of finite type,

f*\ Impossible if T is of finite type and X* is weakly complete,
sf: Impossible with T spectral of finite type.

The states marked by x or not occurring in the diagram are impossible in the general case.
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