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Abstract
Resolvinga problem of Conlon, Fox and Rödl, we construct a family of hypergraphs with arbitrarily large tower height
separation between their 2-colour and q-colour Ramsey numbers. The main lemma underlying this construction
is a new variant of the Erdős–Hajnal stepping-up lemma for a generalized Ramsey number 𝑟𝑘 (𝑡; 𝑞, 𝑝), which we
define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices
spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers.
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1. Introduction

Let 𝐾 (𝑘)
𝑛 denote the complete k-uniform hypergraph on n vertices. We define 𝑟𝑘 (𝐺; 𝑞) for 𝑘, 𝑞 ∈ N

as the smallest integer n such that in every q-colouring of 𝐾 (𝑘)
𝑛 , there is a monochromatic copy of the

hypergraph G. For simplicity, when G is 𝐾 (𝑘)
𝑡 , we write 𝑟𝑘 (𝐺; 𝑞) = 𝑟𝑘 (𝑡; 𝑞). Observe that when 𝑞 = 2,

𝑟𝑘 (𝐺; 2) and 𝑟𝑘 (𝑡; 2) coincide with the classical Ramsey numbers 𝑟𝑘 (𝐺) and 𝑟𝑘 (𝑡), and we will denote
them as such. One of the most central open problems in Ramsey theory is determining the growth rate
of the 3-uniform Ramsey number 𝑟3(𝑡).

A famous result of Erdős, Hajnal and Rado [9] from the 60s shows that there exist constants c and 𝑐′

such that

2𝑐𝑡
2
≤ 𝑟3(𝑡) ≤ 22𝑐′𝑡 .
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Note that the upper bound is essentially exponential in the lower bound. Despite much attention, this
remains the state of the art. Perhaps surprisingly, if we allow four colours instead of two, Erdős and
Hajnal (see, for example, [12]) showed that the double-exponential upper bound is essentially correct
(i.e., there is a 𝑐 > 0 such that 𝑟3 (𝑡; 4) ≥ 22𝑐𝑡 ). More recently, Conlon, Fox and Sudakov [6] proved a
super-exponential bound with three colours – that is, that there exists 𝑐 > 0 such that 𝑟3(𝑡; 3) ≥ 2𝑡𝑐 log 𝑡 .
Erdős conjectured that the double-exponential bound should hold without using extra colours, offering
$500 dollars for a proof that 𝑟3 (𝑡) ≥ 22𝑐𝑡 for some constant 𝑐 > 0. Raising the stakes for this conjecture
is the ingenious stepping-up construction of Erdős and Hajnal (see, for example, [12]), which shows
that for all q and 𝑘 ≥ 3,

𝑟𝑘+1(2𝑡 + 𝑘 − 4; 𝑞) > 2𝑟𝑘 (𝑡;𝑞)−1. (1.1)

For the past 60 years, we have used (1.1) to stack our lower bounds for 𝑟𝑘 (𝑡; 𝑞) upon that of 𝑟3 (𝑡; 𝑞),
yielding that 𝑟𝑘 (𝑡) ≥ 𝑇𝑘−1 (𝑐𝑡

2), where𝑇𝑘 (𝑥), the tower of height k in x, is defined by𝑇1 (𝑥) = 𝑥, 𝑇𝑖+1 (𝑥) =
2𝑇𝑖 (𝑥) . The corresponding upper bounds of 𝑟𝑘 (𝑡) ≤ 𝑇𝑘 (𝑂 (𝑡)) (see [7; 8; 9]) are once again exponential
in the lower bounds, and thus a positive resolution of Erdős’s conjecture would be the decisive step in
showing that 𝑟𝑘 (𝑡) = 𝑇𝑘 (Θ(𝑡)) for all 𝑘 ≥ 3.

Due to the lack of progress on this central conjecture, it is natural to try to understand just how
significant a role the number of colours can play in hypergraph Ramsey numbers and whether or not
there could really be such a large difference between 𝑟3(𝑡) and 𝑟3(𝑡; 4). One argument in favour of
the conjecture is that the reliance on extra colours to prove a double-exponential lower bound may be
a technical limitation of the stepping-up construction. This is challenged by a stunning discovery of
Conlon, Fox and Rödl [5] who exhibited an infinite family of 3-uniform hypergraphs called hedgehogs,
whose Ramsey numbers display a strong dependence on the number of colours. Namely, they showed
that the 2-colour Ramsey number of hedgehogs is polynomial in their order, whereas the 4-colour
Ramsey number is at least exponential. To understand just how significant a role the number of colours
could play they asked the following:

Question 1.1. For any integer ℎ ≥ 3, do there exist integers k and q and a family of k-uniform
hypergraphs for which the 2-colour Ramsey number grows as a polynomial in the number of vertices,
while the q-colour Ramsey number grows as a tower of height h?

Our main contribution is to answer this in the affirmative. Define the k-uniform balanced hedgehog
�̂� (𝑘)

𝑡 with body of order t to be the graph constructed as follows: take a set S of t vertices, called the body,
and for each subset 𝑋 ⊂ 𝑆 of order � 𝑘2 �, add a k-edge e with 𝑒 ∩ 𝑆 = 𝑋 such that for all 𝑒, 𝑓 ∈ 𝐸 (�̂� (𝑘)

𝑡 ),
we have 𝑒 ∩ 𝑓 ⊂ 𝑆. The hedgehog 𝐻 (𝑘)

𝑡 as defined by Conlon, Fox and Rödl differs only in that they
consider every 𝑋 ⊂ 𝑆 of order 𝑘 − 1 rather than � 𝑘2 �. We observe that for 𝑘 = 3, the two definitions
coincide. When the uniformity is clear from the context, we shall drop the superscript.

Theorem 1.2. There exist 𝑐 > 0 and 𝑞 : N→ N such that for all 𝑘 ∈ N and sufficiently large t, we have

(a) 𝑟2𝑘+1(�̂�𝑡 ) ≤ 𝑡𝑘+3, and
(b) 𝑟2𝑘+1(�̂�𝑡 ; 𝑞(𝑘)) ≥ 𝑇�𝑐 log2 log2 𝑘 � (𝑡) .

To prove this, we provide new stepping-up lemmas for a more general type of hypergraph Ramsey
numbers. Let 𝑟𝑘 (𝐺; 𝑞, 𝑝) for 𝑞 ≥ 𝑝 be the smallest integer n such that in every q-colouring of 𝐾 (𝑘)

𝑛 ,
there is a copy of the hypergraph G whose edges span fewer than p colours. As before, we use 𝑟𝑘 (𝑡; 𝑞, 𝑝)
when 𝐺 = 𝐾 (𝑘)

𝑡 and suppress p when 𝑝 = 2.
A standard application of the first moment method (see, for example, [1]) shows that for any 𝑘, 𝑞 ∈ N,

there exists 𝑐 > 0 such that 𝑟𝑘 (𝑡; 𝑞, 𝑞) ≥ 2𝑐𝑡𝑘−1 for all 𝑡 ∈ N. We note that in the graph case (𝑘 = 2), the
special case of 𝑞 = 𝑝 was already investigated by Erdős and Szemerédi [10] in the 70s; in fact, the more
general case when 𝑝 < 𝑞 is also indirectly discussed. They showed the following rather precise bounds:
for all 𝑞 
 𝑡, 2Ω(𝑡/𝑞) ≤ 𝑟2 (𝑡; 𝑞, 𝑞) ≤ 𝑞𝑂 (𝑡/𝑞) .
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These generalized hypergraph Ramsey numbers were also considered in a special case by Conlon,
Fox and Rödl [5] who asked if there exist an integer q and number 𝑐 > 0 such that 𝑟3 (𝑡; 𝑞, 3) ≥ 22𝑐𝑡 .
To date, the only nontrivial improvement on the first moment bound has been made by Mubayi and Suk
[16], who proved there exists 𝑐 > 0 such that for 𝑞 ≥ 9, we have 𝑟3 (𝑡; 𝑞, 3) ≥ 2𝑡2+𝑐𝑞 for 𝑡 ∈ N sufficiently
large; for all other values of 𝑘, 𝑞, 𝑝 ≥ 3, the random construction is essentially the state of the art. Our
knowledge (or lack thereof) is thus summarised by the following bounds for 𝑘, 𝑞, 𝑝 ≥ 3 and sufficiently
large 𝑡 ∈ N:

2𝑡
𝑐
≤ 𝑟𝑘 (𝑡; 𝑞, 𝑝) ≤ 𝑇𝑘 (𝑂 (𝑡)),

where 𝑐 ≥ 1 is allowed to depend on 𝑘, 𝑞 and p. Note that in this case, our upper bounds are a staggering
tower of height 𝑘 − 2 in the lower bounds.

A related notion called the set-colouring Ramsey number was introduced by Erdős, Hajnal and Rado
in [9] and subsequently studied in [19] and much more recently in [4] and [2]. Borrowing notation from
[4], let 𝑅𝑘 (𝑡; 𝑞, 𝑠) denote the minimum number of vertices such that every (𝑞, 𝑠)-set colouring of 𝐾 (𝑘)

𝑛

– that is, a colouring in which each k-set is assigned an element of
( [𝑞]
𝑠

)
– contains a monochromatic

𝐾 (𝑘)
𝑡 . Here, monochromatic means the intersection of the colour sets assigned to the edges is nonempty.

Observe that certain cases of 𝑅𝑘 and 𝑟𝑘 coincide. For example, 𝑅𝑘 (𝑡; 𝑞, 𝑞 − 1) = 𝑟𝑘 (𝑡; 𝑞, 𝑞) and in
general, we have the bound

𝑟𝑘 (𝑡; 𝑞, 𝑝) ≤ 𝑅𝑘

(
𝑡;
(

𝑞

𝑝 − 1

)
,

(
𝑞 − 1
𝑝 − 2

))
.

We prove lower bounds on 𝑟𝑘 (𝑡; 𝑞, 𝑝), thus giving lower bounds on certain set-colouring Ramsey
numbers. However, we are not able to definitively resolve any questions from [4] due to central gaps in
our understanding of hypergraph Ramsey numbers. See Section 5 for more on this.

Our main tool in the proof of Theorem 1.2 is the development of two new stepping-up constructions
which yield the first tower-type results of their kind. We show the following three stepping-up statements,
listed in order of decreasing strength, with 𝐶𝑘 = 1

𝑘+1
(2𝑘
𝑘

)
denoting the k-th Catalan number.

Theorem 1.3. Let 𝑘, 𝑞, 𝑝 ≥ 3. There exist 𝑐 ≥ 1 and 𝑡0 such that for all 𝑡 > 𝑡0,
(a) if 𝑝 ≤ 𝐶𝑘 − 2, then 𝑟𝑘+1(𝑡

𝑐; 𝑞, 𝑝) > 2𝑟𝑘 (𝑡;𝑞,𝑝)−1,
(b) if 𝑝 ≤ 𝐶𝑘 , then 𝑟𝑘+1(𝑡

𝑐; 2𝑞 + 𝑝, 𝑝) > 2𝑟𝑘 (𝑡;𝑞,𝑝)−1 and
(c) if 𝑝 ≤ 𝑘!, then 𝑟2𝑘 (𝑡

𝑐; 𝑞𝑝, 𝑝) > 2𝑟𝑘 (𝑡;𝑞,𝑝)−1.
Note that the growth rate in k which is implied by Part (c) (approximately a tower of height log2 𝑘)

of Theorem 1.3 is much smaller than that of Parts (a) and (b) because we can only step up at the cost
of doubling the uniformity size. Unfortunately, this does not allow us to answer the question of Conlon,
Fox and Rödl on 𝑟3(𝑡; 𝑞, 3) since 𝐶2 = 2, but already for 𝑘 ≥ 4, we have the following two corollaries:
Corollary 1.4. For all 𝑘 ≥ 4, there is 𝑞 ∈ N and 𝑐 > 0 such that 𝑟𝑘 (𝑡; 𝑞, 5) ≥ 𝑇𝑘−1 (𝑡

𝑐).
Corollary 1.5. For all 𝑘 ≥ 4, there is 𝑐 > 0 such that 𝑟𝑘 (𝑡; 3, 3) ≥ 𝑇𝑘−1 (𝑡

𝑐).
Observe that by the second corollary, the growth rate of 𝑟𝑘 (𝑡; 3, 3) matches the current best lower

bounds for 𝑟𝑘 (𝑡) up to a polynomial in t. The reason we have an absolute constant c in the exponent is
due to the use of an Erdős-Hajnal type result on sequences (see Section 2).

The second main element of our proof connects the problem of avoiding monochromatic balanced
hedgehogs to that of avoiding cliques that span few colours. It is a straightforward adaptation of ideas
from Conlon, Fox and Rödl [5].
Lemma 1.6. Given 𝑘, 𝑞, 𝑡 ∈ N, let 𝑝 =

(2𝑘+1
𝑘+1

)
and 𝑞′ =

(𝑞
𝑝

)
. Then

𝑟2𝑘+1(�̂�𝑡 ; 𝑞′, 2) > 𝑟𝑘+1

(
𝑡; 𝑞, 𝑝 + 1

)
− 1.
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Using this result along with Part (c) of Theorem 1.3 yields the lower bound in Theorem 1.2(b). It is
natural to ask whether one can combine the growth rate in k given by Part (a) of Theorem 1.3 with the
ability to impose as many colours as in Part (c). Unfortunately, the condition 𝑝 ≤ 𝐶𝑘 prevents us from
using Part (a) as the right-hand side because 𝐶𝑘 = 1

𝑘+1
(2𝑘
𝑘

)
<

(2𝑘+1
𝑘+1

)
. This is tantalisingly close, if not

a little curious, as the dependence on 𝐶𝑘 comes from our exact solution to a subsequence avoidance
problem (Corollary 2.4). We show that 𝐶𝑘 presents a natural barrier in this endeavour. This barrier is
made concrete by some new and tight results on the Ramsey theory of sequences, including an Erdős-
Hajnal-type result in Section 2.

1.1. Outline

The outline of the paper is as follows. In Section 2, we introduce and prove results on the Ramsey theory
of sequences. In Section 3, we use these to prove our stepping up constructions – namely, Theorem 1.3,
and in Section 4, we prove our hedgehog-related results, including Theorem 1.2 and Lemma 1.6, and
provide a construction of a degenerate hypergraph that relates to the Burr-Erdős Conjecture. To finish,
we pose some questions and problems highlighted by our results.

2. Ramsey theory of sequences

Let 𝑉 = {0, 1}𝑚 and given vectors 𝑣, 𝑤 ∈ 𝑉 , define

𝛿(𝑣, 𝑤) = max{𝑖 : 𝑣𝑖 ≠ 𝑤𝑖}.

We say 𝑣 < 𝑤 if 𝑣 𝛿 < 𝑤 𝛿 . For every set of vertices 𝑣1 < 𝑣2 < · · · < 𝑣𝑘+1 in V, there is a corresponding
sequence (𝛿1, 𝛿2, . . . , 𝛿𝑘 ) given by 𝛿𝑖 = 𝛿(𝑣𝑖 , 𝑣𝑖+1). In this section, we introduce some definitions that
will be useful in order to analyse the structure of these 𝛿-sequences.

We say a sequence 𝑆 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) is monotonic if 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑚 or 𝑎1 ≥ 𝑎2 ≥ · · · ≥ 𝑎𝑚.
Two sequences (𝑎1, 𝑎2, . . . , 𝑎𝑡 ) and (𝑏1, 𝑏2, . . . , 𝑏𝑡 ) have the same pattern if the relative ordering of
every pair of elements is the same; that is, 𝑎𝑖 > 𝑎 𝑗 , 𝑎𝑖 = 𝑎 𝑗 , or 𝑎𝑖 < 𝑎 𝑗 if and only if 𝑏𝑖 > 𝑏 𝑗 , 𝑏𝑖 = 𝑏 𝑗 ,
or 𝑏𝑖 < 𝑏 𝑗 respectively for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑡. A pattern is then the equivalence class of sequences with
respect to this relative ordering. Given sequences S and P, we say S contains the pattern P if we can
find a subsequence of S which has the same pattern as P; otherwise, we say S avoids P. A pattern is a
permutation pattern if there is a permutation in the equivalence class, and we often use this permutation
as a representative for the pattern. In what follows, we will mainly be concerned with permutations that
avoid the patterns 132 or 231.

2.1. Max-induced subsequences

With the aforementioned applications to hypergraph Ramsey theory in mind, we introduce ‘max-
induced’ subsequences. We say (𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑡 ) with 𝑖1 < 𝑖2 < · · · < 𝑖𝑡 is a max-induced subsequence
of (𝑎1, 𝑎2, . . . , 𝑎𝑚) if the maximum of (𝑎𝑖 𝑗 , 𝑎𝑖 𝑗+1, . . . , 𝑎𝑖 𝑗+1 ) is attained at 𝑎𝑖 𝑗 or 𝑎𝑖 𝑗+1 (i.e., at the left or
right extreme) for all 1 ≤ 𝑗 < 𝑡. We say a sequence S contains a max-induced pattern P if there is a
max-induced subsequence of S which has pattern P, and a family of sequences F has the max-induced
Erdős-Hajnal property with exponent 𝑐(F) if any sequence S that avoids every member of F as a max-
induced subsequence has a monotonic max-induced subsequence of order |𝑆 |𝑐 (F) , where |𝑆 | denotes
the length of the sequence. We are able to characterize the families with this property.

The following fact, whose short proof can be found in Section 3, relates the max-induced property
to our original motivation:

Claim 2.1. Suppose 𝑣1 < 𝑣2 < · · · < 𝑣ℓ+1 are vectors in {0, 1}𝑚 and let 𝛿𝑖 = 𝛿(𝑣𝑖 , 𝑣𝑖+1). If (𝛿𝑖1 , . . . , 𝛿𝑖𝑘 )
is a max-induced subsequence of (𝛿1, . . . , 𝛿ℓ), then there are 𝑣 𝑗1 , . . . , 𝑣 𝑗𝑘+1 such that 𝛿(𝑣 𝑗𝑠 , 𝑣 𝑗𝑠+1) = 𝛿𝑖𝑠
for each 𝑠 ∈ [𝑘].
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Define an interval in a sequence to be a subsequence of consecutive elements. The following theorem
is our core result on max-induced patterns:

Theorem 2.2. A finite family of patterns F has the max-induced Erdős-Hajnal property if and only if
F contains a 132-avoiding permutation pattern and a 231-avoiding permutation pattern.

Observe that if a single permutation is {132, 231}-avoiding, it must be decreasing up to some element
and increasing for the rest of the permutation. We say such a permutation has a unique local minimum,
and we immediately get the following corollary of Theorem 2.2:

Corollary 2.3. A permutation P has the max-induced Erdős-Hajnal property (with exponent 𝑐(𝑃) =
16−|𝑃 |) if and only if it has a unique local minimum (in other words, it is {132, 231}-avoiding).

An old result of Shelah [17] states that any graph which does not have large cliques or large inde-
pendent sets must contain exponentially many non-isomorphic induced subgraphs. Taking inspiration
from this, we may ask: given 𝑘 ∈ N, what is the largest integer 𝑓 (𝑘) for which there is 𝜀 > 0 such that
every sequence of length n either contains at least 𝑓 (𝑘) distinct max-induced patterns on k elements or
a max-induced monotonic subsequence of length 𝑛𝜀? It is well-known that the number of 132-avoiding
permutations on [𝑘] is exactly the Catalan number, 𝐶𝑘 (see, for example, [18, Section 1.5]). Thus, The-
orem 2.2 allows us to answer the above question exactly and is the origin of the Catalan number that
appears in Theorem 1.3.

Corollary 2.4. The value of 𝑓 (𝑘) is the number of 132-avoiding permutations (equivalently 231-
avoiding), which is equal to the Catalan number 𝐶𝑘 .

To prove Theorem 2.2, we require the following lemma:

Lemma 2.5. For every 𝑘 ≥ 1, there is a 231-avoiding permutation 𝑆𝑘 of length 2𝑘+1 − 1 that does not
contain a max-induced monotonic subsequence of length greater than 𝑘 + 1.

Proof. We proceed by induction on k. Note that for 𝑘 = 1, the permutation (1, 3, 2) works. Let
𝑆𝑘−1 = (𝑎1, 𝑎2, . . . , 𝑎𝑚𝑘−1 ) be a 231-avoiding permutation of length 2𝑘 − 1 with no max-induced
monotonic subsequence of length greater than k. Define the sequence 𝑆𝑘 = (𝑏1, . . . , 𝑏2𝑘+1−1) by

𝑏𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎𝑖 if 𝑖 < 2𝑘 ;
2𝑘+1 − 1 if 𝑖 = 2𝑘 ;
𝑎𝑖−2𝑘 + 2𝑘 − 1 if 𝑖 > 2𝑘 .

If (𝑏𝑖1 , . . . , 𝑏𝑖ℓ ) is a max-induced monotonic subsequence of 𝑆𝑘 , then either 𝑖ℓ ≤ 2𝑘 or 𝑖1 ≥ 2𝑘 .
Thus, by our choice of 𝑆𝑘−1, there is no max-induced monotonic component of length greater than 𝑘 + 1
in 𝑆𝑘 . Similarly, any possible 231 pattern (𝑏𝑖1 , 𝑏𝑖2 , 𝑏𝑖3) has either 𝑖3 < 2𝑘 or 𝑖1 > 2𝑘 by construction, so
the inductive hypothesis shows 𝑆𝑘 is 231-avoiding. �

Proof of Theorem 2.2. For the forward direction, suppose (without loss of generality) that F contains
no 231-avoiding permutation pattern. Then each sequence in F contains either the pattern 231 or two
elements which are equal. The sequence 𝑆𝑘 defined in Lemma 2.5 is an F-avoiding sequence of length
at least 2𝑘 containing no max-induced monotonic subsequence of length greater than 𝑘 + 1.

For the backwards direction, let L and R be two permutations such that L is 132-avoiding and R is
231-avoiding, and suppose S is a sequence of length n. We prove by induction on 𝑡 := |𝐿 | + |𝑅 | that
S contains at least one of L, R or a max-induced monotonic sequence of length at least 𝑛𝜀/2, where
𝜀 = 4−𝑡 . If 𝑡 ≤ 5, then one of L or R has at most two elements, so the statement is clear. We therefore
assume 𝑡 > 5, in which case we may assume also that n is large enough for the inequalities below.

We first describe an algorithm that shows either S contains a max-induced monotonic sequence of
length at least 𝑛𝜀/2 or there is an index i such that 𝑎𝑖 is the maximum in a substantial interval (i.e.,
𝑎 𝑗 ≤ 𝑎𝑖 for 𝑖 − 𝑛1−𝜀 ≤ 𝑗 ≤ 𝑖 + 𝑛1−𝜀).
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We will attempt to build an increasing sequence from the leftmost element and a decreasing sequence
starting from the rightmost element. Initialize index sets 𝐼 = [𝑛] and 𝐹left = 𝐹right = ∅. In the 𝑘 th

iteration of the algorithm, suppose the index 𝑗𝑘 ∈ 𝐼 is such that 𝑎 𝑗𝑘 = max𝑖∈𝐼 𝑎𝑖 . Let ℓ = max 𝐹left and
𝑟 = min 𝐹right. For 𝑘 = 1, we set ℓ = 0 and 𝑟 = 𝑛 + 1. Then
◦ if 𝑗𝑘 − ℓ < 𝑛1−𝜀 , add 𝑗𝑘 to 𝐹left, delete all 𝑖 ∈ 𝐼 such that 𝑖 ≤ 𝑗𝑘 , and proceed to the next iteration;
◦ if 𝑟 − 𝑗𝑘 < 𝑛1−𝜀 , add 𝑗𝑘 to 𝐹right, delete all 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑗𝑘 , and proceed to the next iteration;
◦ otherwise, the algorithm terminates.
Observe that (𝑎𝑖)𝑖∈𝐹left and (𝑎𝑖)𝑖∈𝐹right are max-induced monotonic sequences in S, so if either |𝐹left | ≥
𝑛𝜀/2 or |𝐹right | ≥ 𝑛𝜀/2, then we have constructed a max-induced monotonic subsequence of length
𝑛𝜀/2. This must be the case if the algorithm terminates due to deleting all of I.

Otherwise, suppose the algorithm terminates on the 𝑘 th iteration for some fixed k. Then 𝑗𝑘 satisfies
𝑎𝑖 ≤ 𝑎 𝑗𝑘 for 𝑗𝑘 − 𝑛1−𝜀 ≤ 𝑖 ≤ 𝑗𝑘 + 𝑛1−𝜀 . Furthermore, for 𝐹max := {𝑖 ∈ 𝐼 : 𝑎𝑖 = 𝑎 𝑗𝑘 }, the constant
sequence (𝑎𝑖)𝑖∈𝐹max is a max-induced monotonic sequence in S, so we may assume |𝐹max | < 𝑛𝜀/2.

Our goal now is to show that S must contain a max-induced copy of either L, R or a long monotonic
sequence. Very roughly, we seek a large ‘blow-up’ of either 132 or 231, where a blow-up of 231 is a
subsequence on 𝐼 ∪ 𝐽∪𝐾 such that (𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 ) is a max-induced 231 pattern for any 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 .
Supposing we have such a blow-up of 231 with I and K large, we may apply the inductive hypothesis
in I with the permutation patterns 𝐿left and R and on K with the permutation patterns 𝐿right and R,
where 𝐿left and 𝐿right are the permutation patterns to the left and right of the maximum element in any
representative of the pattern L. If we find a max-induced R or long monotonic sequence, we are done, so
we may assume I contains the pattern 𝐿left and K the pattern 𝐿right, which can be joined together using
the 231 blow-up structure to find the pattern L in 𝐼 ∪ 𝐽 ∪ 𝐾 . We are not able to find a true blow-up of
either 132 or 231, so first some care is needed to find a suitable replacement.

Let 𝐼left = {𝑖 ∈ 𝐼 : 𝑖 < 𝑗𝑘 } and 𝐼right = {𝑖 ∈ 𝐼 : 𝑖 > 𝑗𝑘 }. Let 𝑀 (⊃ 𝐹max) be the indices of the largest
𝑛(1−𝜀)/2 elements in (𝑎𝑖)𝑖∈𝐼 , breaking ties arbitrarily. Either 𝑀left := 𝑀 ∩ 𝐼left or 𝑀right := 𝑀 \𝑀left has
at least 1

2𝑛
(1−𝜀)/2 elements. Suppose the former (the argument for the latter is similar).

◦ Since |𝐼right | ≥ 𝑛1−𝜀 , there must be an interval 𝐼 ′ ⊂ 𝐼right of length at least 1
2𝑛

(1−𝜀)/2 such that
𝐼 ′ ∩ 𝑀right = ∅.

◦ Since |𝑀left | ≥
1
2𝑛

(1−𝜀)/2 and |𝐹max | < 𝑛𝜀/2, there is an interval 𝐽 ⊂ 𝐼left such that |𝐽 ∩ 𝑀left | ≥

𝑛(1−3𝜀)/2 and 𝐽 ∩ 𝐹max = ∅.
We are not quite done: observe that there may be an element indexed by 𝐼 ′ equal to an element indexed

by J. To break ties, we restrict 𝐼 ′ further. As before, we define 𝐼 ′max := {𝑖 ∈ 𝐼 ′ : 𝑎𝑖 = max 𝑗∈𝐼 ′ 𝑎 𝑗 }. The
constant sequence (𝑎𝑖)𝑖∈𝐼 ′max is a max-induced monotonic sequence in S, so we may assume |𝐼 ′max | < 𝑛𝜀/2.
Then,
◦ There is an interval 𝐼 ′′ ⊆ 𝐼 ′ of length at least 1

2𝑛
(1−3𝜀)/2 such that |𝐼 ′′ ∩ 𝐼 ′max | = ∅.

Now, let 𝐴 = 𝐽 ∩ 𝑀left and 𝐵 = 𝐼 ′′. By construction, any max-induced subsequence in A or B is a max-
induced subsequence of S. Also if 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 then 𝑎 𝑗 < 𝑎𝑖 < 𝑎 𝑗𝑘 . Recall that the permutation L is
132-avoiding. Define 𝐿left to be the subpermutation preceding max 𝐿 and 𝐿right to be the subpermutation
following max 𝐿. Observe that 𝐿left and 𝐿right are both 132-avoiding.

We finally apply the inductive hypothesis to 𝑆𝐴 := (𝑎𝑖)𝑖∈𝐴 with the permutations 𝐿left and R, and to
𝑆𝐵 := (𝑎𝑖)𝑖∈𝐵 with the permutations 𝐿right and R. If we find a max-induced copy of R in 𝑆𝐴 or 𝑆𝐵, we
are done. If 𝑆𝐴 contains a max-induced monotonic subsequence of length at least

1
2
|𝐴|4

−(|𝐿left |+|𝑅 |)

≥
1
2
(𝑛(1−3𝜀)/2)4−(𝑡−1)

=
1
2
(𝑛(1−3𝜀)/2)4𝜀 ≥

𝑛𝜀

2

or 𝑆𝐵 contains a max-induced monotonic subsequence of length at least

1
2
|𝐵 |4

−(|𝐿𝑟 |+|𝑅 |)

≥
1
2
(𝑛(1−3𝜀)/2)4−(𝑡−1)

=
1
2
(𝑛(1−3𝜀)/2)4𝜀 ≥

𝑛𝜀

2
,
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we are finished. Otherwise, there is a max-induced copy of 𝐿left in 𝑆𝐴 and 𝐿𝑟 in 𝑆𝐵, which along with
𝑎 𝑗𝑘 forms a max-induced copy of L in S. �

Given 𝑛, 𝑘 ∈ N, recall 𝑓 (𝑘) is the largest integer for which there exists some 𝜀 > 0 such that every
sequence of length n contains either at least 𝑓 (𝑘) distinct max-induced patterns on k elements or a
monotonic subsequence of length 𝑛𝜀.

2.2. Separated subsequences

Up to this point, our sequence results do not use a useful fact about the 𝛿-sequences which features
often in stepping-up. A sequence (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) has the unique maximum property if for any interval
I, |{𝑖 ∈ 𝐼 : 𝑎𝑖 = max(𝑎𝑖)𝑖∈𝐼 }| = 1. We capitalize on this useful property in Lemma 2.6, which studies a
second notion of subsequence that is used in our proof of Theorem 1.3(c). Call (𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑡 ) with
0 < 𝑖1 < · · · < 𝑖𝑡 ≤ 𝑚 a separated subsequence of (𝑎1, 𝑎2, . . . , 𝑎𝑚) if 𝑖 𝑗+1 > 𝑖 𝑗 +1 for all 𝑗 ∈ [𝑡]. Similar
to max-inducedness, the following simple fact captures the usefulness of this definition for stepping
up: suppose 𝑣1 < 𝑣2 < · · · < 𝑣ℓ+1 are vectors in {0, 1}𝑚 and let 𝛿𝑖 = 𝛿(𝑣𝑖 , 𝑣𝑖+1). If (𝛿𝑖1 , . . . , 𝛿𝑖𝑘 ) is
a separated subsequence of (𝛿1, . . . , 𝛿ℓ), then there are 𝑣 𝑗1 , . . . , 𝑣 𝑗2𝑘 such that 𝛿(𝑣 𝑗2𝑠−1 , 𝑣 𝑗2𝑠 ) = 𝛿𝑖𝑠 for
each 𝑠 ∈ [𝑘]. Given a sequence 𝑆 = (𝑠1, . . . , 𝑠𝑛), define ‖𝑆‖ := |{𝑠1, . . . , 𝑠𝑛}| – that is, the number of
distinct values in the sequence. We can now state our key result on separated subsequences.

Lemma 2.6. Let 𝐴 = (𝑎𝑖)
𝑛
𝑖=1 be a sequence with the unique maximum property and 𝑘 ∈ N. If ‖𝐴‖ <

𝑛1/(𝑘+1) and n is large enough, A contains every permutation pattern on [𝑘] as a separated subsequence.

The proof relies on a simple density argument to find a very rich substructure that contains within it
all possible small structures.

Proof of Lemma 2.6. We first find constant subsequences 𝐴1, . . . , 𝐴𝑘 such that

(i) |𝐴𝑖 | ≥ 𝑛1−𝑖/(𝑘+1) for each 𝑖 ∈ [𝑘],
(ii) if 𝑎 ∈ 𝐴𝑖 (meaning a is equal to some element of 𝐴𝑖) and 𝑎′ ∈ 𝐴 𝑗 with 𝑖 < 𝑗 , then 𝑎 < 𝑎′, and

(iii) (interlacing property) if 𝑎 𝑗 , 𝑎ℓ ∈ 𝐴𝑖 such that 𝑗 < ℓ, then there is some 𝑎𝑚 ∈ 𝐴𝑖−1 such that
𝑗 < 𝑚 < ℓ.

Given such subsequences, embedding an arbitrary permutation (𝜎(1), . . . , 𝜎(𝑘)) is straightforward:
index the elements of 𝐴𝑘 by (𝑎ℓ1 , . . . , 𝑎ℓ𝑠 ). For each 𝑗 ∈ [𝑘], use the interlacing property (and the fact
𝑠 ≥ 𝑛1/(𝑘+1) ) to find a subsequence (𝑎 𝑗1 , . . . , 𝑎 𝑗𝑘 ) of 𝐴 𝑗 with ℓ𝑚2𝑘+1 < 𝑗𝑚 < ℓ(𝑚+1)2𝑘+1 . The (separated)
subsequence (𝑎𝜎 (1)1 , . . . , 𝑎𝜎 (𝑘)𝑘 ) has the same pattern as (𝜎(1), . . . , 𝜎(𝑘)) by property (ii).

We construct the desired subsequences by induction. Since ‖𝐴‖ < 𝑛
1

𝑘+1 , there is a constant sub-
sequence 𝐴1 such that |𝐴1 | ≥ 𝑛1−1/(𝑘+1) . Note that by the unique maximum property, 𝐴1 must be a
separated subsequence. For 𝑖 ≥ 1, given a constant separated subsequence 𝐴𝑖 = (𝑎𝑖 𝑗 ) 𝑗 satisfying the
above properties, we construct 𝐴𝑖+1 as follows:

Let 𝐴′
𝑖 = (𝑎′𝑖 𝑗 ) 𝑗 be the subsequence of A consisting of the maximum values between the elements of

𝐴𝑖 , meaning if 𝑎𝑖 𝑗 , 𝑎𝑖 𝑗+1 ∈ 𝐴𝑖 , then 𝑎′𝑖 𝑗 = max{𝑎ℓ : 𝑖 𝑗 ≤ ℓ ≤ 𝑖 𝑗+1}. By the unique maximum property of
A, 𝑎′𝑖 𝑗 is well-defined and is strictly greater than 𝑎𝑖 𝑗 and 𝑎𝑖 𝑗+1 . Then |𝐴′

𝑖 | = |𝐴𝑖 | − 1 ≥ 𝑛1−𝑖/(𝑘+1) − 1, and
‖𝐴′

𝑖 ‖ ≤ 𝑛1/(𝑘+1) − 1 from the assumption that ‖𝐴‖ ≤ 𝑛1/(𝑘+1) . Thus, there is a constant subsequence of
𝐴′
𝑖 with length at least

|𝐴′
𝑖 |

‖𝐴′
𝑖 ‖

≥ 𝑛1−(𝑖+1)/(𝑘+1) ,

and we define 𝐴𝑖+1 as this subsequence. It is clear from the construction that properties (i), (ii) and (iii)
are satisfied. �

We are now ready to employ these results in our stepping-up constructions.
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3. Stepping up with many colours

In this section, we explain how the results on max-induced and separated patterns in sequences allow
us to step up colourings in which all large sets of vertices span many colours. We prove Theorem
1.3 as well as Corollary 1.4. Throughout, all colourings discussed will be (hyper)edge-colourings. We
say a colouring of a complete hypergraph with q colours is (𝑡; 𝑞, 𝑝)-rainbow if every set of t vertices
spans at least p colours. In this language, 𝑟𝑘 (𝑡; 𝑞, 𝑝) − 1 is the largest integer n for which there exists a
(𝑡; 𝑞, 𝑝)-rainbow colouring of 𝐾 (𝑘)

𝑛 . Let 𝑉 (𝐾 (𝑟+1)
𝑛 ) = {0, 1}𝑛 and given 𝑣, 𝑤 ∈ 𝑉 , recall that

𝛿(𝑣, 𝑤) := max{𝑖 : 𝑣𝑖 ≠ 𝑤𝑖},

and that 𝑣 < 𝑤 if and only if 𝑣 𝛿 < 𝑤 𝛿 . To each set of vertices 𝑣1 < 𝑣2 < · · · < 𝑣𝑘+1 in 𝐾 (𝑟+1)
𝑛 corresponds

a sequence (𝛿1, 𝛿2, . . . , 𝛿𝑘 ) given by 𝛿𝑖 = 𝛿(𝑣𝑖 , 𝑣𝑖+1), which we refer to as the corresponding 𝛿-sequence.
The crucial properties for our application of the results of Section 2 to hypergraph Ramsey theory are
the following:

For an interval 𝐼, let 𝛿𝐼 = max(𝛿𝑖)𝑖∈𝐼 . Then |{𝑖 ∈ 𝐼 : 𝛿𝑖 = 𝛿𝐼 }| = 1. (3.1)

For any 𝑣1 < 𝑣2 < · · · < 𝑣𝑘+1, 𝛿(𝑣1, 𝑣𝑘+1) = max{𝛿1, 𝛿2, . . . , 𝛿𝑘 }. (3.2)

For examples, see [12] for proofs. A useful perspective is gained by viewing [2𝑛] as the leaves of a
binary tree of depth n, ordered from left to right as you would draw them. Given two leaves 𝑣, 𝑤 ∈ [2𝑛],
the number 2𝛿(𝑣, 𝑤) is simply the length of the unique path between them.

Recall that Corollary 2.4 shows that a sequence (𝛿1, 𝛿2, . . . , 𝛿ℓ) either contains many distinct max-
induced patterns or a long monotonic max-induced subsequence. In order to make use of this fact, we
recall Claim 2.1, which simply says the following: suppose 𝑣1 < 𝑣2 < · · · < 𝑣ℓ+1 are vectors in {0, 1}𝑚
and let 𝛿𝑖 = 𝛿(𝑣𝑖 , 𝑣𝑖+1). If (𝛿𝑖1 , . . . , 𝛿𝑖𝑘 ) is a max-induced subsequence of (𝛿1, . . . , 𝛿ℓ), then there are
𝑣 𝑗1 , . . . , 𝑣 𝑗𝑘+1 such that 𝛿(𝑣 𝑗𝑠 , 𝑣 𝑗𝑠+1) = 𝛿𝑖𝑠 .

Proof of Claim 2.1. Let 𝑣 𝑗1 = 𝑣𝑖1 and 𝑣 𝑗𝑘+1 = 𝑣𝑖𝑘+1. Then for 𝑠 > 1, define 𝑣 𝑗𝑠 = 𝑣𝑖𝑠−1+1 if 𝛿𝑖𝑠−1 < 𝛿𝑖𝑠
and 𝑣 𝑗𝑠 = 𝑣𝑖𝑠 otherwise. It is straightforward to check, using property (3.2), that 𝛿(𝑣 𝑗𝑠 , 𝑣 𝑗𝑠+1 ) = 𝛿𝑖𝑠 for
each s. �

We are ready to use Theorem 2.2 to prove the first two parts of Theorem 1.3.

Proof of Theorem 1.3(a) and (b). Let 𝑘, 𝑝, 𝑞 ≥ 3 be such that 𝑝 ≤ 𝐶𝑘 , the 𝑘 th Catalan number, and let
𝑐 := 16𝑘 + 1. We first prove Part (b) – the inequality 𝑟𝑘+1(𝑡

𝑐; 2𝑞 + 𝑝, 𝑝) > 2𝑟𝑘 (𝑡;𝑞,𝑝)−1 – by showing
such that we can construct a (𝑡𝑐; 2𝑞 + 𝑝, 𝑝)-rainbow colouring 𝜒′ of 𝐾 (𝑘+1)

2𝑛 from any (𝑡; 𝑞, 𝑝)-rainbow
colouring 𝜒 of 𝐾 (𝑘)

𝑛 . Let 𝜒 be such a rainbow colouring.
We identify 𝑉 (𝐾 (𝑘+1)

2𝑛 ) and 𝑉 (𝐾 (𝑘)
𝑛 ) with {0, 1}𝑛 and [𝑛], respectively. Partition the set of patterns

on [𝑘], excluding the two monotonic permutations, into 𝑝 − 2 classes C1, . . . , C𝑝−2 such that each class
contains at least one 132-avoiding permutation pattern and one 231-avoiding permutation pattern. Let
C𝑝−1 be the family of patterns containing only the strictly increasing permutation and C𝑝 the family
containing the strictly decreasing permutation. Observe that such a partition is guaranteed to exist by
Corollary 2.4 and the assumption that 𝐶𝑘 ≥ 𝑝 (note that a permutation may be both 132-avoiding and
231-avoiding). For a sequence S, we say 𝑆 ∈ C𝑖 if the pattern of S is in C𝑖 . Assign to each class C𝑖
a distinct colour 𝑐𝑖 . Then, for an edge 𝑒 = {𝑣1, . . . , 𝑣𝑘+1} of 𝐾 (𝑘+1)

2𝑛 , with corresponding 𝛿-sequence
(𝛿1, . . . , 𝛿𝑘 ), let

𝜒′(𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒({𝛿1, . . . , 𝛿𝑘 }) × 1 if 𝛿1 < 𝛿2 < · · · < 𝛿𝑘 ;
𝜒({𝛿1, . . . , 𝛿𝑘 }) × 2 if 𝛿1 > 𝛿2 > · · · > 𝛿𝑘 ;
𝑐𝑖 if (𝛿1, . . . , 𝛿𝑘 ) ∈ C𝑖 , 𝑖 ≤ 𝑝 − 2.
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We claim 𝜒′ is the desired colouring. Consider a set of 𝑡𝑐 vertices {𝑣1, . . . , 𝑣𝑡𝑐 } ⊂ 𝑉 (𝐾 (𝑘+1)
2𝑛 ) and

its corresponding 𝛿-sequence (𝛿1, . . . , 𝛿𝑡𝑐−1). Since each class C𝑖 contains a 132-avoiding permutation
pattern and a 231-avoiding permutation pattern, Theorem 2.2 tells us that (𝛿1, . . . , 𝛿𝑡𝑐−1) either contains
a max-induced pattern from each of C1, . . . , C𝑝 or a max-induced monotonic sequence of length t
(the value of c was chosen for this purpose). Claim 2.1 shows that for every max-induced sequence
𝑆 ⊂ (𝛿1, . . . , 𝛿𝑡𝑐−1) of length k, we can find {𝑣𝑖1 , . . . , 𝑣𝑖𝑘+1 } ⊂ {𝑣1, . . . , 𝑣𝑡𝑐 } whose corresponding 𝛿-
sequence is S. In other words, we have that 𝜒′({𝑣𝑖1 , . . . , 𝑣𝑖𝑘+1 }) = 𝑐𝑖 if the pattern of S is in C𝑖 . Therefore,
(𝛿1, . . . , 𝛿𝑡𝑐−1) containing a max-induced pattern from each of C1, . . . , C𝑝 implies that {𝑣1, . . . , 𝑣𝑡𝑐 }
spans at least p colours.

If instead, (𝛿1, . . . , 𝛿𝑡𝑐−1) contains a max-induced monotonic subsequence, say (𝛿1, . . . , 𝛿𝑡 ), then
by Claim 2.1, we can find {𝑣𝑖1 , . . . , 𝑣𝑖𝑡+1 } ⊂ {𝑣1, . . . , 𝑣𝑡𝑐 } whose corresponding pattern is (𝛿1, . . . , 𝛿𝑡 ).
We may assume without loss of generality that (𝛿1, . . . , 𝛿𝑡 ) is increasing, and by property (3.1),
𝛿1 < · · · < 𝛿𝑡 . Every subsequence of a strictly increasing max-induced sequence is a strictly increasing
max-induced subsequence. Thus, again by Claim 2.1, for every subsequence 𝑆 ⊂ (𝛿1, . . . , 𝛿𝑡 ) of length
k, we can find a subsequence 𝑆′ ⊂ (𝑣𝑖1 , . . . , 𝑣𝑖𝑡+1) of length 𝑘 + 1 whose corresponding 𝛿-sequence is S.
Observe that 𝜒′(𝑆′) = (𝜒(𝑆), 1), so the set of (𝑘 + 1)-edges on {𝑣𝑖1 , . . . , 𝑣𝑖𝑡+1 } spans at least as many
colours as the set of k-edges on {𝛿1, . . . , 𝛿𝑡 }. By assumption, this is at least p.

All that remains is to count the number of colours used by 𝜒′. This is at most 2 colours for each of
the q colours used by 𝜒 plus an extra 𝑝 − 2 for the 𝑐𝑖’s. Combined with the above arguments, this shows
that 𝜒′ is a (𝑡𝑐; 2𝑞 + 𝑝 − 2, 𝑝)-rainbow colouring and, in particular, a (𝑡𝑐; 2𝑞 + 𝑝, 𝑝)-rainbow colouring.

We now describe the construction of the (𝑡𝑐; 𝑞, 𝑝 − 2)-rainbow colouring, say 𝜒′′, which proves Part
(a) (i.e., that 𝑟𝑘+1(𝑡

𝑐; 𝑞, 𝑝 − 2) > 2𝑟𝑘 (𝑡;𝑞,𝑝−2)−1). Let a (𝑡; 𝑞, 𝑝 − 2)-rainbow colouring 𝜒 of 𝐾 (𝑘)
𝑛 be

given. Partition the set of patterns on [𝑘] as before and assign to each class C𝑖 a distinct colour 𝑐𝑖 for
𝑖 ∈ [𝑝 − 2]; only this time identify these colours with the first [𝑝 − 2] colours used by 𝜒 (trivially we
have 𝑞 ≥ 𝑝 − 2). For an edge 𝑒 = {𝑣1, . . . , 𝑣𝑘+1} with corresponding 𝛿-sequence (𝛿1, . . . , 𝛿𝑘 ), let

𝜒′′(𝑒) =

{
𝜒({𝛿1, . . . , 𝛿𝑘 }) if 𝛿1 < 𝛿2 < · · · < 𝛿𝑘 or 𝛿1 > 𝛿2 > · · · > 𝛿𝑘 ;
𝑐𝑖 if (𝛿1, . . . , 𝛿𝑘 ) ∈ C𝑖 .

We omit the proof that 𝜒′′ is in fact the desired colouring, as it is almost identical to the proof for 𝜒′.
We simply note that now we can only force 𝑝 − 2 colours in any set of 𝑡𝑐 vertices, as an edge with a
monotonic pattern may receive any one of the colours 𝑐𝑖 for 𝑖 ∈ [𝑝 − 2]. �

In applying our stepping-up results, we will need the following result on rainbow colorings which is
proven by a standard use of the first moment method (see, for example, [1]).

Proposition 3.1. For every k and q, there exists 𝜀 > 0 and 𝑡0 so that for 𝑡 > 𝑡0, there is a (𝑡; 𝑞, 𝑞)-
rainbow colouring of 𝐾 (𝑘)

𝑛 with 𝑛 = 2𝜀𝑡𝑘−1 .

Proof. Set 𝜀 = 1/(𝑞𝑘!) and 𝑡0 = 𝑒𝑞. Consider a uniformly random q-colouring of 𝐾 (𝑘)
𝑛 with 𝑛 = 2𝜀𝑡𝑘−1 .

The probability a given t-set contains fewer than q colours is at most 𝑞(1 − 1/𝑞) (
𝑡
𝑘) . Therefore, the

expected number of t sets with fewer than q colours is at most(
𝑛

𝑡

)
𝑞(1 − 1/𝑞) (

𝑡
𝑘) <

(
𝑒𝑛

𝑡

) 𝑡
𝑞𝑒−(

𝑡
𝑘)/𝑞 <

(
𝑞1/𝑡𝑒𝑛

𝑡𝑒−(
𝑡
𝑘)/(𝑡𝑞)

) 𝑡
< 1.

As the expectation is strictly less than one, there must exist some (𝑡; 𝑞, 𝑞)-rainbow colouring. �

Proof of Corollary 1.4. Proposition 3.1 shows that there is an 𝜀 > 0 such that 𝑟3(𝑡; 𝑞, 𝑞) > 2𝜀𝑡 . Since
the Catalan number 𝐶𝑖 ≥ 5 for 𝑖 ≥ 3, we may apply the inequality 𝑟𝑖+1(𝑡

𝑐; 2𝑞 + 5, 5) > 2𝑟𝑖 (𝑡;𝑞,5)−1 from
Theorem 1.3, once for each 𝑖 ∈ {3, . . . , 𝑘 − 1} and with a different 𝑐 ≥ 1 each round. This ultimately
yields a lower bound of 𝑟𝑘 (𝑡𝑐

′; 𝑞′, 5) ≥ 𝑇𝑘−1 (𝑡), where 𝑞′ = 3𝑘𝑞 and 𝑐′ ≥ 1. �
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The proof of Corollary 1.5 follows the exact same procedure as the proof of Corollary 1.4, simply
using the bound 𝑟𝑘+1(𝑡

𝑐; 3, 3) > 2𝑟𝑘 (𝑡;3,3)−1 in place of the bound 𝑟𝑘+1(𝑡
𝑐; 2𝑞 + 5, 3) > 2𝑟𝑘 (𝑡;𝑞,5)−1. We

thus omit it. We now prove the final part of Theorem 1.3, which combines Lemma 2.6 with a slightly
different stepping-up technique.

Proof of Theorem 1.3(c). Let 𝑘, 𝑝, 𝑞 ≥ 3 be such that 𝑝 ≤ 𝑘! and let 𝑐 := 𝑘 +2. We prove the inequality
𝑟2𝑘 (𝑡

𝑐; 𝑝𝑞, 𝑝) > 2𝑟𝑘 (𝑡;𝑞,𝑝)−1 by showing such that we can construct a (𝑡𝑐; 𝑝𝑞, 𝑝)-rainbow colouring 𝜒′

of 𝐾 (2𝑘)
2𝑛 from any (𝑡; 𝑞, 𝑝)-rainbow colouring 𝜒 of 𝐾 (𝑘)

𝑛 . Let such a 𝜒 be given.
We identify 𝑉 (𝐾 (2𝑘)

2𝑛 ) and 𝑉 (𝐾 (𝑘)
𝑛 ) with {0, 1}𝑛 and [𝑛], respectively. Order the 𝑘! permutations of

[𝑘] and let 𝑃𝑖 be the set of sequences whose pattern is the 𝑖th permutation for 𝑖 ∈ [𝑝]. Then, for an edge
𝑒 = {𝑣1, . . . , 𝑣2𝑘 } with corresponding 𝛿-sequence (𝛿1, . . . , 𝛿2𝑘−1), we set

𝜒′(𝑒) = 𝜒({𝛿1, 𝛿3, . . . , 𝛿2𝑘−1}) × 𝑖

if (𝛿1, 𝛿3, . . . , 𝛿2𝑘−1) ∈ 𝑃𝑖 for some 𝑖 ∈ [𝑝] and we let 𝜒′(𝑒) be arbitrary otherwise.
We now check that this is the desired colouring. It is clear that it uses at most 𝑝𝑞 colours. Suppose

𝑣1 < · · · < 𝑣𝑡𝑐 are vertices of 𝐾 (2𝑘)
2𝑛 and let (𝛿1, . . . , 𝛿𝑡𝑐−1) be the corresponding 𝛿-sequence. If

‖(𝛿𝑖)
𝑡𝑐−1
𝑖=1 ‖ ≥ 2𝑡, then we can find an index set 𝐼 ⊂ [𝑡𝑐 − 1] such that (𝛿𝑖)𝑖∈𝐼 is a separated subsequence

with ‖(𝛿𝑖)𝑖∈𝐼 ‖ ≥ 𝑡. Let 𝑓 = {𝛿𝑖1 , . . . , 𝛿𝑖𝑘 } ⊂ (𝛿𝑖)𝑖∈𝐼 , where 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 . Then the edge
𝑒 = {𝑣𝑖1 , 𝑣𝑖1+1, 𝑣𝑖2 , 𝑣𝑖2+1, . . . , 𝑣𝑖𝑘 , 𝑣𝑖𝑘+1} has colour 𝜒′(𝑒) = (𝜒( 𝑓 ), ·). As f was arbitrary, we have that
{𝑣1, . . . , 𝑣𝑡𝑐 } spans at least as many colours as {𝛿𝑖}𝑖∈𝐼 . But ‖(𝛿𝑖)𝑖∈𝐼 ‖ ≥ 𝑡 and so (𝛿𝑖)𝑖∈𝐼 spans at least
p colours by assumption.

Now suppose that ‖(𝛿𝑖)
𝑡𝑐−1
𝑖=1 ‖ < 2𝑡. By (3.1), (𝛿𝑖)

𝑡𝑐−1
𝑖=1 satisfies the unique maximum property.

Therefore, by our choice of c and assumption that t is large, we can apply Lemma 2.6 with 𝐴 = (𝛿𝑖)
𝑡𝑐−1
𝑖=1

to conclude that A contains every permutation of [𝑘] as a separated subsequence. Suppose we have a
separated subsequence 𝑆 ⊂ 𝐴 whose pattern is the 𝑖th permutation for some 𝑖 ∈ [𝑝]. As before, we can
find a (2𝑘)-edge 𝑒 ⊆ {𝑣1, . . . , 𝑣𝑡𝑐 } for whom the corresponding 𝛿-pattern is S. Thus, 𝜒′(𝑒) = (·, 𝑖).
Repeating this for the first p permutations implies that {𝑣1, . . . , 𝑣𝑡𝑐 } spans at least p colours. �

Both of our stepping-up constructions (like the original) rely on breaking the stepping-up into two
parts: a lifted colouring from a lower uniformity graph and a new colouring. The constructions have the
property that every large set of vertices satisfies one of the following: either it spans a colouring that is
lifted from a large clique on the lower graph or it sees many distinct new colours. The number of new
colours one can guarantee using this approach depends strongly on the uniformity of the hypergraphs
in question. We ask a question in the concluding remarks concerning this.

4. Hedgehogs

In this section, we relate our results on many-coloured Ramsey numbers of complete hypergraphs to
a Ramsey problem on a certain class of hypergraphs which we call generalized hedgehogs. We note
our idea is very much inspired by the Conlon-Fox-Rödl construction described in the introduction. The
main result is Theorem 1.2(a), and we also prove Lemma 1.6 for a more general family of hedgehogs.

We define the generalized hedgehog H(𝑘)
𝑡 (𝑠) for 𝑠, 𝑘, 𝑡 ∈ N with 𝑘 > 𝑠 and 𝑡 ≥ 𝑠 to be the following

k-uniform hypergraph: fix a set of t vertices called the body. The edge set of H(𝑘)
𝑡 (𝑠) consists of the

following edges: for every s-subset S of the body, we add a k-edge e containing S along with 𝑘 − 𝑠

additional vertices that are contained in no other edge of H(𝑘)
𝑡 (𝑠).

The k-uniform balanced hedgehog �̂� (𝑘)
𝑡 is H(𝑘)

𝑡 (� 𝑘2 �), and the hedgehog introduced by Conlon, Fox
and Rödl is H(𝑘)

𝑡 (𝑘 − 1). We note that H(𝑘)
𝑡 (𝑠) has

(𝑡
𝑠

)
edges and 𝑡 + (𝑘 − 𝑠)

(𝑡
𝑠

)
vertices.

Lemma 1.6 is a corollary of the following result, which we state in its full generality.
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Lemma 4.1. Given 𝑘, 𝑞, 𝑝′, 𝑡 ∈ N, let 𝑝 =
(𝑘
𝑠

)
and 𝑞′ =

(𝑞
𝑝

)
. Then

𝑟𝑘 (H(𝑘)
𝑡 (𝑠); 𝑞′, 𝑝′ + 1) > 𝑟𝑠 (𝑡; 𝑞, 𝑝′𝑝 + 1) − 1.

Proof of Lemma 1.6. Apply Lemma 4.1 with 2𝑘 + 1, 𝑘 + 1 and 1 playing the roles of 𝑘, 𝑠 and 𝑝′,
respectively. �

Proof of Lemma 4.1. We prove 𝑟𝑘 (H(𝑘)
𝑡 (𝑠); 𝑞′, 𝑝′ + 1) > 𝑟𝑠 (𝑡; 𝑞, 𝑝′𝑝 + 1) − 1 by showing that given a

(𝑡; 𝑞, 𝑝′𝑝 + 1)-rainbow colouring of 𝐾 (𝑠)
𝑛 , we can construct a 𝑞′-colouring 𝜒′ of 𝐾 (𝑘)

𝑛 in which every
copy of H(𝑘)

𝑡 (𝑠) spans at least 𝑝′ + 1 colours. Let such a 𝜒 be given. Identify the vertex sets of 𝐾 (𝑘)
𝑛 and

𝐾 (𝑠)
𝑛 . We colour 𝑒′ ∈ 𝐸 (𝐾 (𝑘)

𝑛 ) by 𝜒′(𝑒′) = {𝜒(𝑒) : 𝑒 ∈ 𝐸 (𝐾 (𝑠)
𝑛 [𝑒′])} – that is, the set of all colours

of the s-edges contained in 𝑒′. The number of s-edges contained in 𝑒′ is exactly 𝑝 =
(𝑘
𝑠

)
, so 𝜒′(𝑒′) will

be a set of at most that many colours. If |𝜒′(𝑒′) | < 𝑝, then we add arbitrary colours to the set until
|𝜒′(𝑒′) | = 𝑝. Thus, the new colouring uses at most 𝑞′ =

(𝑞
𝑝

)
colours.

Now consider a copy 𝐻 ⊂ 𝐾 (𝑘)
𝑛 of H(𝑘)

𝑡 (𝑠). As the body contains t vertices, by assumption, it spans at
least 𝑝′𝑝+1 colours under 𝜒. Each of these colours appears as an element of 𝜒′(𝑒′) for some 𝑒′ ∈ 𝐸 (𝐻)

(i.e., | ∪𝑒′ ∈𝐸 (𝐻 ) 𝜒
′(𝑒′) | ≥ 𝑝′𝑝 +1). However, p colours appear in 𝜒′(𝑒′) for a given 𝑒′, so by pigeonhole

there must be more than 𝑝′ edges 𝑒′ ∈ 𝐸 (𝐻) with distinct colours in 𝜒′(𝐻). �

We now derive Theorem 1.2(b).

Proof of Theorem 1.2(b). Throughout the proof, we assume 𝑡 ∈ N is sufficiently large. Let 𝑚 =
�

𝑒 (𝑘+1)
log2 (𝑘+1) �, which is chosen so that 𝑚! > (𝑚e )

𝑚 > 22𝑘 >
(2𝑘+1
𝑘+1

)
for k sufficiently large. Re-

call that by Proposition 3.1, 𝑟𝑚(𝑡;𝑚!, 𝑚!) ≥ 𝑇2 (𝜀𝑡) for some 𝜀 > 0. We now use the inequality
𝑟2𝑘 (𝑡

𝑐; 𝑝𝑞, 𝑝) ≥ 2𝑟𝑘 (𝑡;𝑞,𝑝) from Theorem 1.3 exactly �log2
𝑘+1
𝑚 � > log2 log2 𝑘 − 3 times, to obtain that

there exists 𝑞′ and 𝑐′ ≥ 1 such that 𝑟𝑘+1(𝑡
𝑐′; 𝑞′, 𝑚!) ≥ 𝑇log2 log2 𝑘−1(𝑡) (if 𝑘+1 > 2 𝑗𝑚 with 𝑗 = �log2

𝑘+1
𝑚 �

we use the simple observation 𝑟𝑖+1(𝑡; 𝑞, 𝑝) > 𝑟𝑖 (𝑡; 𝑞′, 𝑝) for some 𝑞′ > 𝑞). This is possible because the
uniformity increases at each step while the number of colours imposed remains at 𝑚!. Since 𝑚! >

(2𝑘+1
𝑘+1

)
,

we can apply Lemma 1.6 to get that for some 𝑞′′, 𝑟2𝑘+1(�̂�𝑡 ; 𝑞′′, 2) ≥ 𝑇log2 log2 𝑘−2(𝑡), where we re-
moved the exponent 𝑐′ at the cost of a tower height. We choose 𝑐 > 0 such that if 𝑚! ≤

(2𝑘+1
𝑘+1

)
, then

𝑐 log2 log2 𝑘 ≤ 1.
Thus, for all k, 𝑟2𝑘+1(�̂�𝑡 ; 𝑞′′, 2) ≥ 𝑇𝑐 log2 log2 𝑘 (𝑡). Furthermore, it is clear that 𝑞′′ is only a function

of k and of m, which is itself a function of k, as required. �

Conlon, Fox and Rödl showed the following using a similar argument to Theorem 1.2(a):

Theorem 4.2 [5]. For all 𝑘 ≥ 4, there exists 𝑐 > 0 such that

𝑟𝑘 (𝐻
(𝑘)
𝑡 ; 2, 2) ≤ 𝑇𝑘−2 (𝑐𝑡).

For the case 𝑘 = 4, a construction of Kostochka and Rödl [13] shows this is approximately sharp
(i.e., that 𝑟4(H(4)

𝑡 (3); 2, 2) = 𝑇2 (Ω(𝑡))). We cannot prove a matching lower bound for 𝑘 = 5, as when
we attempt to apply Lemma 1.6, we need to impose 6 colours on 4-uniform graphs. When stepping up
to uniformity 4, Theorem 1.3 allows us to impose at most 𝐶3 = 5 colours, so we cannot beat the random
argument here. We do, however, obtain the following:

Lemma 4.3. For 5 ≤ 𝑘 ≤ 13, there exist 𝑐 > 0 and 𝑞 ∈ N such that for all t,

𝑟𝑘 (𝐻
(𝑘)
𝑡 ; 𝑞, 2) ≥ 𝑇𝑘−3 (𝑡

𝑐).

Proof. The proof mimics that of Theorem 1.2(b), but now we start from the fact that 𝑟4 (𝑡; 14, 14) ≥

𝑇2 (𝑐𝑡) (using Proposition 3.1) and leverage that 𝐶4 = 14. Starting from ℓ = 4, we apply the relation
𝑟ℓ+1 (𝑡

𝐶 ; 2𝑞 + 𝑝, 𝑝) ≥ 2𝑟ℓ (𝑡;𝑞,𝑝) from Theorem 1.3 𝑘 − 5 times. This gives us 𝑟𝑘−1(𝑡; 𝑞′, 14) ≥ 𝑇𝑘−3 (𝑡
𝑐′ )
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for some 𝑞′ ∈ N and 𝑐′ ≥ 1. Applying Lemma 1.6 then gives the result using 𝑞′′ colours and with 𝑐′ as
c. �

We now prepare to prove our upper bounds on the Ramsey numbers of balanced hedgehogs, Theorem
1.2(a). Let H be an r-uniform hypergraph and 𝐴 ⊂ 𝑉 (𝐻) with |𝐴| < 𝑟 . The piercing number of A
(denoted 𝜏𝐻 (𝐴)) is the size of the smallest set of vertices from 𝑉 (𝐻)\𝐴 that intersects every edge of H
containing A. Equivalently, it is the minimum number of vertices that must be deleted from 𝑉 (𝐻)\𝐴 to
delete all edges containing A.

Proposition 4.4. Suppose H is an r-uniform hypergraph and 𝑣 ∈ 𝑉 (𝐻) has 𝜏(𝑣) ≥ (𝑟 − 1)𝑚. Then
there exist m edges whose pairwise intersections are all precisely v.

Proof of Proposition 4.4. Let 𝑋 ⊂ 𝑉 (𝐻) be a witness to 𝜏(𝑣). It is clear the set of edges incident to v
has order at least (𝑟 − 1)𝑚. As each such edge e contains at most 𝑟 − 1 elements of X, and |𝑋 | is minimal
with respect to intersecting all edges incident to v, we can greedily find the desired m edges. �

Proof of Theorem 1.2(a). Let 𝐺 = 𝐾 (2𝑘+1)
𝑛 , where 𝑛 ≥ 𝑡𝑘+3, and let 𝜒 be an arbitrary red/blue colouring

of the edges of G. We will show that there exists a monochromatic copy of 𝐻 (2𝑘+1)
𝑡 (𝑘 + 1) in G, and

thus that r2𝑘+1(H(2𝑘+1)
𝑡 (𝑘 + 1); 2, 2) ≤ 𝑛. We will do so by using 𝜒 to define a partial edge 2-colouring

𝜒′ of 𝐺 ′ := 𝐾 (𝑘+1)
𝑛 and, in turn, using 𝜒′ to define a 2-colouring 𝜒′′ of 𝑉 (𝐺). We will then find a large

monochromatic set of vertices in 𝜒′′, use this to find a large (red or blue) independent set in 𝐺 ′ and
finally use this to find our monochromatic H(2𝑘+1)

𝑡 (𝑘 + 1) in G.
Throughout the proof, let 𝐻𝑡 := H(2𝑘+1)

𝑡 (𝑘 + 1). We say a set of vertices is in red danger if its red
piercing number (its piercing number in the subgraph of red edges) is less than 𝑡𝑘+1 and similarly define
blue danger. Then for 𝑒 ∈ 𝐺 ′ := 𝐾 (𝑘+1)

𝑛 , let 𝜒′(𝑒) be red if e is in red danger and blue if e is in blue
danger. As 𝜏𝐺 (𝑒) > 2𝑡𝑘+1, we have that this partial colouring 𝜒′ is well-defined.

Now say a vertex v is in red peril if its red piercing number in 𝐺 ′ (under 𝜒′) is at most 2𝑘𝑡𝑘+1 and
similarly define blue peril. Let 𝜒′′(𝑣) be red if v is in red peril and blue if v is in blue peril, with ties
broken arbitrarily. We claim that 𝜒′′ assigns a colour to every vertex. Indeed, suppose that some vertex
v has red piercing number and blue piercing number at least 2𝑘𝑡𝑘+1 under 𝜒′.

By Proposition 4.4, there exist (𝑘 + 1)-edges 𝑒1, . . . , 𝑒𝑠 , 𝑓1, . . . , 𝑓𝑠 ∈ 𝐺 ′, where 𝑠 = 2𝑡𝑘+1 such that

◦ 𝑒𝑖 ∩ 𝑒 𝑗 = 𝑓𝑖 ∩ 𝑓 𝑗 = {𝑣} for all 𝑖 ≠ 𝑗 ,
◦ 𝜒′(𝑒𝑖) is red for all 𝑖 ∈ [𝑠] and
◦ 𝜒′( 𝑓 𝑗 ) is blue for all 𝑗 ∈ [𝑠]

Let 𝐴1, 𝐴2, . . . , 𝐴𝑠 be disjoint subsets each of size 𝑘 − 1 in 𝑉 (𝐺) \ (
⋃𝑠

𝑖=1(𝑒𝑖 ∪ 𝑓𝑖)). For each 𝑖, 𝑗 ∈ [𝑠],
define a (2𝑘 + 1)-edge 𝑔𝑖 𝑗 to be 𝑒𝑖 ∪ 𝑓 𝑗 along with an arbitrary choice of (2𝑘 + 1) − |𝑒𝑖 ∪ 𝑓 𝑗 | vertices
from 𝐴(𝑖+ 𝑗−1)mod 𝑠. Observe that 𝑒𝑖 ∪ 𝑓 𝑗 ≠ 𝑒𝑖′ ∪ 𝑓 𝑗′ for (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′), so in particular, these edges are
all distinct.

At least half of these edges must have been, without loss of generality, red under the colouring 𝜒 of
G. Therefore, there is some 𝑖 ∈ [𝑠] such that 𝑒𝑖 is contained in at least 𝑠2

2𝑠 = 𝑠
2 > 𝑡𝑘+1 red (2𝑘 + 1)-edges

under 𝜒. But since 𝑔𝑖 𝑗 ∩ 𝑔𝑖 𝑗′ = 𝑒𝑖 for 𝑗 ≠ 𝑗 ′, this contradicts the fact that 𝑒𝑖 was a red-danger edge of
𝐺 ′. Thus, the colouring 𝜒′′ of 𝑉 (𝐺) colours every vertex.

We now choose a set X of red vertices (without loss of generality) which has order 𝑛
2 . By the definition

of 𝜒′′, we have that the red piercing number under 𝜒′ of each 𝑣 ∈ 𝑋 is at most 2𝑘𝑡𝑘+1. Therefore, we
can greedily find a set Y of order 𝑛

2·2𝑘𝑡𝑘+1 ≥ 𝑡 which contains no red edges of 𝐺 ′ (here we use that t is
large relative to k).

All edges of 𝐺 ′ in Y are not in red danger and thus have red piercing number at least 𝑡𝑘+1 under 𝜒.
By the definition of piercing number and as 𝑡𝑘+1 > 𝑡 + 𝑘

( 𝑡
𝑘+1

)
= |𝑉 (H(2𝑘+1)

𝑡 (𝑘 + 1)) |, we can build the
hedgehog greedily using Y as the body. �
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4.1. The Burr-Erdős Conjecture in hypergraphs

The degeneracy of a hypergraph is the minimum d such that every induced subgraph contains a vertex
incident to at most d edges; such a hypergraph is called d-degenerate. Burr and Erdős conjectured that
for every d, there exists a constant 𝑐𝑑 ≥ 1 such that every d-degenerate graph G on n vertices satisfies
𝑟2 (𝐺) < 𝑐𝑑𝑛 [3]. This was finally proven by Lee in [15], building on the previous work of several authors
[(11),(14)]. In the case of hypergraphs, however, the conjecture fails: Kostochka and Rödl [13] showed
𝑟4 (𝐻

(4)
𝑡 ) ≥ 2𝑐𝑡 and were able to construct for every large enough d, d-degenerate 3-uniform hypergraphs

on n vertices whose ramsey number is at least 𝑛𝑑1/4 . If one allows 3 or more colours, Conlon, Fox and
Rödl [5] proved 𝑟3 (𝐻

(3)
𝑡 ; 3) ≥ Ω(𝑡3/log6 𝑡). Note that the degeneracy of hedgehogs is 1.

This shows that the Burr-Erdős Conjecture fails for k-uniform hypergraphs where 𝑘 ≥ 4 and for 3-
uniform hypergraphs provided the number of colours is at least 3 or the degeneracy is large enough. For
the sake of completeness, we give a simple construction of 8-degenerate 3-uniform hypergraphs whose
Ramsey number is not linear in the number of vertices.

Proposition 4.5. There exists a 3-uniform hypergraph on 𝐶𝑛2 vertices which is 8-degenerate and for
which the 2-colour Ramsey number is at least 𝐶𝑛3.

Proof. Let V be a set of n vertices, and with 𝑚 =
(𝑛
2
)
, let B be a set of 𝑚 + 1 vertices disjoint from V

with a total ordering 𝑥1, 𝑥2, . . . 𝑥𝑚, 𝑥𝑚+1. Consider an ordering on the edges E of the complete graph
on V, say 𝑒1, 𝑒2, ..., 𝑒𝑚. Let H be a 3-uniform hypergraph consisting of the following: for each edge
𝑒𝑖 = (𝑥, 𝑦) ∈ 𝐸 , add the two triples {𝑥, 𝑦, 𝑥𝑖} and {𝑥, 𝑦, 𝑥𝑖+1}, and for every 𝑖 ∈ [𝑚 − 3], add all triples
within {𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3, 𝑥𝑖+4}. By considering the smallest element of B in each subset of vertices, we
see that H is 8-degenerate.

We claim 𝑟3 (𝐻) ≥ 𝑛3/8. Indeed, given 𝐾 (3)
𝑛3/8, let𝑊1, . . .𝑊𝑛/4 be an arbitrary partition of the vertices

where |𝑊𝑖 | = 𝑛2/2 for all 𝑖 ∈ [𝑛/4]. We colour blue all edges inside any 𝑊𝑖 and all edges with vertices
in distinct sets 𝑊𝑖1 ,𝑊𝑖2 ,𝑊𝑖3 . We colour red all edges with exactly two vertices in a set 𝑊𝑖 , for some
𝑖 ∈ [𝑛/4].

Suppose there is a red copy of H. In particular, the edges induced by 𝑆 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} are
all red. If S intersects distinct parts 𝑊𝑖 ,𝑊 𝑗 and 𝑊𝑘 for some 𝑖, 𝑗 , 𝑘 ∈ [𝑛/4], then the vertices in the
intersections form a blue edge. However, if 𝑆 ⊆ 𝑊𝑖 ∪𝑊 𝑗 , then |𝑆 ∩𝑊𝑖 | ≥ 3 or |𝑆 ∩𝑊 𝑗 | ≥ 3, which
again forms a blue edge. So we have a contradiction.

Suppose instead there is a blue copy of H. By pigeonhole, there are two vertices 𝑣, 𝑤 ∈ 𝑉 which
both lie in the same 𝑊𝑖 . Let 𝑒 𝑗 = {𝑣, 𝑤}. The edges {𝑣, 𝑤, 𝑥 𝑗 } and {𝑣, 𝑤, 𝑥 𝑗+1} are both blue, so
𝑥 𝑗 , 𝑥 𝑗+1 ∈ 𝑊𝑖 . But {𝑥 𝑗 , 𝑥 𝑗+1, 𝑥 𝑗+2} and {𝑥 𝑗−1, 𝑥 𝑗 , 𝑥 𝑗+1} are also blue, so this implies 𝑥 𝑗−1, 𝑥 𝑗+2 ∈ 𝑊𝑖 .
Proceeding inductively, we conclude that all of B must lie in 𝑊𝑖 .

However, |𝑊𝑖 | = 𝑛2/2 and |𝐵 | =
(𝑛
2
)
, so there are 𝑛/2 vertices of V outside of 𝑊𝑖 . Two of these

vertices z and u must lie in the same 𝑊 𝑗 with 𝑗 ≠ 𝑖. Letting 𝑒𝑘 = {𝑧, 𝑢}, we get that the edge {𝑧, 𝑢, 𝑥𝑘 }
is coloured red, a contradiction which finishes the proof. �

5. Concluding remarks

We have proved that for every positive integer h, there exist q, k and an infinite family of k-uniform
hypergraphs whose 2-colour Ramsey numbers differ by a tower of height h from the q-colour Ramsey
numbers. This reinforces the fact that the number of colours plays an important role in the behaviour
of Ramsey numbers of hypergraphs and casts a shadow on Erdős’s conjecture on the 2-colour Ramsey
number of a 3-uniform clique.

Observe that both of our new stepping-up constructions rely on a dichotomy: either we can find many
suitable substructures within the 𝛿-sequences (which give rise to many colours) or we must have a long
monotonic sequence (which allows us to use induction). Since for every k-edge there are at most 𝑘!
distinct permutations, our methods fail to give good lower bounds for 𝑟𝑘 (𝑡; 𝑞, 𝑝) whenever 𝑘 
 𝑝. Even
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in the simplest case 𝑟3 (𝑡; 𝑞, 3), we were not able to prove a double exponential lower bound, leaving
open the following question of Conlon, Fox and Rödl on 𝑟3 (𝑡; 𝑞, 3).

Problem 5.1. [5, Problem 1] Is there an integer q, a positive constant c and a q-colouring of the 3-
uniform hypergraph on 22𝑐𝑡 vertices such that every subset of order t receives at least 3 colours?

We propose here a much weaker problem than Problem 5.1, which we were not able to resolve.
We note that a negative answer would uncover a radical new phenomenon in the Ramsey numbers of
hypergraphs.

Problem 5.2. Does there exist 𝑘 ∈ N such that the following holds? For all 𝑝 ∈ N, there exist 𝑞 ∈ N

and 𝑐 > 0 such that 𝑟𝑘 (𝑡; 𝑞, 𝑝) ≥ 22𝑡𝑐 for all t sufficiently large.

A similar but much more ambitious problem was posed in [4].

Problem 5.3. [4, Problem 6.3] Determine the tower height of 𝑅𝑘 (𝑛; 𝑟, 𝑟 − 1) = 𝑟𝑘 (𝑛; 𝑟, 𝑟) for all 𝑘 ≥ 3
and 𝑟 ≥ 2.

The authors of [4] note the apparent difficulty of Problem 5.3 and ask the following weaker question.
Is there a fixed integer c such that 𝑅𝑘 (𝑛; 𝑟, 𝑟 − 1) ≥ 𝑇𝑘−𝑐 (𝑛) for every 𝑘 ≥ 3 and 𝑟 ≥ 2? We cannot
answer this question, but using Theorem 1.3(a), we can prove 𝑅𝑘 (𝑛; 𝑟, 𝑟 − 1) is at least a tower of height
roughly 𝑘 − 0.5 log2 𝑟 . Any improvement beyond this bound would likely be very interesting.

We make the following conjecture regarding the Ramsey numbers of k-uniform hedgehogs. This
would, in particular, demonstrate that the 2-colour and q-colour Ramsey numbers of these hedgehogs,
unlike those of balanced hedgehogs, do not differ by arbitrarily large tower heights.

Conjecture 5.4. There is ℓ ∈ N such that for every positive integer k, for every sufficiently large t,

𝑟𝑘 (𝐻
(𝑘)
𝑡 ) ≥ 𝑇𝑘−ℓ (𝑡).

Finally, recall Proposition 4.5 shows there is an infinite family of 3-uniform hypergraphs which are
8-degenerate and for which the the 2-colour Ramsey numbers grow faster than linear in the order of the
hypergraphs. It would be interesting to improve the quantitative aspects of this result.

Problem 5.5. Give an infinite family of 1-degenerate 3-uniform hypergraphs whose 2-colour Ramsey
number is not polynomial in the order of the hypergraph.

Kostochka and Rödl [13] indicate that this may not be possible. We share this suspicion, noting that
the following could be true: for any d, there is 𝑓 (𝑑) such that the Ramsey number of any d-degenerate
3-uniform hypergraph (on n vertices) is at most 𝑛 𝑓 (𝑑) .
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