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Abstract

We investigate a bracketing property that purports to yield upper- and lower bounds on the treatment
effects obtained from a fixed effects (FE) and lagged dependent variable (LDV) model. Referencing both
analytical results and a Monte Carlo simulation, we explore the conditions under which the bracketing
property holds, confirming this to be the case when the data generating process (DGP) is characterized by
either unobserved heterogeneity or feedback effects from a lagged dependent variable. However, when the
DGP is characterized by both features simultaneously, we find that bracketing of the treatment effect only
holds under certain conditions—but not in general. Practitioners can nevertheless obtain the lower bound
estimate by referencing a model that includes both FE and an LDV.While the Nickell bias in the coefficient
of the LDV is known to be of order 1/T, we show that the Nickell-type bias in the estimator of the treatment
effect is of order 1/T2.
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1. Introduction

“So what’s an applied guy to do?” Angrist and Pischke (2009, 245) pose this question in their dis-
cussion of the choice between the fixed-effects (FE) and the lagged-dependent-variable (LDV) model,
addressing a dilemma that often confronts analysts of panel data.The dilemma comes down to this:The
FE estimator, while controlling for unobserved, time-invariant heterogeneity that may be correlated
with the regressors, relies on strict exogeneity.1 One violation of this assumption is given by so-called
feedback effects, wherein the past realization of the dependent variable affects the contemporaneous
value of an explanatory or treatment variable. At the same time, while accommodating such feedback
effects, the LDV estimator assumes that the unobserved heterogeneity is uncorrelated with the explana-
tory variables. For many causal questions, the assumptions underpinning either of the procedures are
unlikely to be plausible (Angrist and Pischke 2009, 245).

Drawing on the discussion in Guryan (2001), Angrist and Pischke (2009) suggest a way out of the
dilemma by exploiting a bracketing property that is based on both the FE and the LDV estimates and

1Strict exogeneity is summarized by Wooldridge (2010) as E(x‘isεit ∣αi) = 0, s,t = 1,...,T, that is, the explanatory variable
(x) is uncorrelated with all past and future disturbances (ε), conditional on FE (α).
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allows practitioners to gauge the robustness of any estimate. The bracketing property is summarized
by Guryan (2001, 55–56) as follows: If treatment is selected positively either on fixed characteristics or
on a LDV, then the FE estimator will yield a lower bound estimate while the LDV estimator will yield
an upper bound estimate. Conversely, if treatment is selected negatively either on fixed characteristics
or on an LDV, then the FE estimator will yield an upper bound estimate while the LDV estimator
will yield a lower bound estimate. The bracketing property thus suggests that by estimating both FE
and LDV models, practitioners can bracket the causal effect of interest. Ding and Li (2019) have
shown that this bracketing property of FE and LDV models also extends to general nonparametric
settings.

The bracketing property has been increasingly applied in empirical papers in political science.
For example, it is used by Keele, Cubbison, and White (2021), Tomberg, Smith Stegen, and Vance
(2021), and Marsh (2023) to analyze voter behavior and by Keele, Malhotra, and McCubbins (2013)
to analyze public spending. Yet it has also been used in other disciplines, for example in economics to
analyze labor markets (Beckmann and Kräkel 2022; Falk et al. 2018; Kampkötter and Sliwka 2018), in
biology to analyze the effect of biodiversity on the functioning of ecosystems (Dee et al. 2023), and in
psychology by von Hippel (2022) to analyze the effect of replications on citations.2 In addition, Angrist
and Pischke’s (2009) as well as Ding and Li’s (2019) discussion of the properties of FE and LDVmodels
is also referred to in the recent methodological syntheses of Roth et al. (2023) and Arkhangelsky and
Imbens (2024).

The purpose of this article is to take a closer look at the conditions under which the bracketing
property holds, both analytically and using a Monte Carlo simulation. Specifically, we demonstrate
that the treatment effect cannot be bracketed when the unobserved heterogeneity is correlated with the
regressors and the data generation process is characterized by feedback effects. We therefore conclude
that the bracketing property may afford an unfounded picture of the true bounds and should be used
with caution, particularly when the assumptions underpinning both models are questionable. In this
instance, we advocate estimating an additional model that includes both FE and an LDV (FE-LDV).
Although this model does not allow for bracketing, the analytical results as well as the Monte Carlo
evidence suggest that it can serve to identify the lower bound estimate of the treatment effect. Moreover,
while the Nickell bias in the coefficient of the LDV is known to be of order 1/T, we derive an expression
for the “secondary” Nickell bias in the estimator of the treatment effect that is shown to be of order 1/T2

in our setup.

2. Background and Research Question

Our analysis picks up on the suggestion of Ding and Li (2019), who conclude with the open question of
how the bracketing property would extend to a model that incorporates both FE and a LDV (we refer to
this as the “FE-LDVmodel”).3 Although the FE-LDVmodel simultaneously controls for time-invariant
unobserved heterogeneity and the feedback effect, its estimation requires stronger assumptions than
either the FE or LDV models individually, a point recognized by Ding and Li (2019).

Indeed, the appeal of the bracketing property lies in its inherent promise to be an alternative to
estimating the FE-LDV model, for which estimation will suffer from “Nickell bias” if the number of
time periods is fixed (Nickell 1981).4 Under these circumstances, a Generalized Method of Moments

2We note that many of these studies do not rely exclusively on bracketing, but employ it as one of several identification
strategies.

3While Ding and Li (2019) employ a binary treatment and a two-period difference-in-differences estimator, we use a
continuous treatment variable xit and, similar toAngrist and Pischke (2009), an FE estimatorwithmultiple time periods.While
this difference does not matter for the bracketing property in general, we discuss in Section 7 a difference in the testability of
the underlying assumptions between Ding and Li’s (2019) and our setting.

4Nickell (1981) bias describes the bias that arises when an LDV is included in an FEmodel. In this case, the demeaned error
term will be correlated with the LDV, which leads to a bias.
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approach in the style of the Arellano and Bond (1991) estimator (AB estimator) is a common way to
obtain a consistent estimate of the treatment effect, τ .5 However, as the AB estimator instruments the
lagged dependent variable, yi,t−1, with deeper lags of yit , themethod requires the availability of sufficient
time periods. Additionally, the deeper lags of yit need to be strong instruments for yi,t−1, which may
render the AB estimator inapplicable in many cases. Leszczensky and Wolbring (2022) discuss several
of the challenges in applying the AB estimator, including downward bias in the face of a large number of
moment conditions (Hsiao 2022), weak instruments problems (Bun and Windmeijer 2010), and poor
finite-sample performance (Moral-Benito et al. 2019).

The bracketing property afforded by separate estimation of FE and LDV models avoids these com-
plexities, and covers the circumstance when unobserved heterogeneity or feedback effects of the lagged
outcome on the treatment are deemed threats to identification.This cuts to the issue raised by Ding and
Li (2019): Their analysis, along with that of Guryan (2001) and Angrist and Pischke (2009), applies to
the situation in which either the assumption underlying the FEmodel or the assumption underlying the
LDVmodel is fulfilled. But given a concern for the validity of each assumption individually, the question
arises as to the consequences for bracketing when the assumptions are simultaneously violated.

3. Biases in Case of Feedback and Endogeneity

An insightful case in which the assumptions of the FE model and the LDV model are violated is given
by a DGP in which both the outcome variable y and the explanatory variable of interest x are functions
of individual time-invariant factors αi, that is, FE:

yit = δYαi+τxit +εit, (1)

where xit depends on the past realization yi,t−1 of the outcome y, thereby constituting a violation of the
strict exogeneity assumption due to a correlation between xit and εi,t−1:

xit = δXαi+ρyi,t−1+uit, (2)

for i = 1, . . . ,N and t = 1, . . . ,T. The effect of x on y, captured by τ , is the main parameter of interest.
The coefficient ρ captures what we term the “feedback effect,” and the condition ∣τρ∣ < 1, together with
suitable choice of the initial conditions yi0, ensures stationarity, which we assume throughout most of
our analysis. We investigate the implications of nonstationarity in Section 6.

Assumption 1. Let yit and xit,i = 1, . . . ,N,t = 1, . . . ,T, be generated as in (1) and (2), where ∣τρ∣ < 1 and
the initial condition is given as

yi0 = (δY +τδX)αi

1−τρ + τui0+εi0√
1−(τρ)2 .

To focus on the essential aspects, the individual units are sampled independently but are distributed
heterogeneously as implied by the following assumption.6

5The cross-lagged panelmodel with FE (Moral-Benito 2013;Moral-Benito, Allison, andWilliams 2019) is another approach
for obtaining consistent estimates. Leszczensky andWolbring (2022) provide a comprehensive overview of alternativemethods
for addressing causal questions with panel data.

6The assumption is fairly general considering the type of data we model. Like the usual i.i.d assumption, it implies
independent units—while allowing for different, unit-specific as well as time-specific specific distribution shapes. Moreover, it
allows for different error variances across the panel. In exchange, we require a moment condition somewhat less general than
finite variances: the imposed uniform (in i) moment boundedness allows for the application of suitable laws of large numbers
(see the Technical Appendix C.1 of the Supplementary Material), and can best be interpreted in terms of an overall controlled
propensity of the error distributions to generate only few large outliers.
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Assumption 2. The disturbances εit ∼ (0,σ2
εi) and uit ∼ (0,σ2

ui), as well as the unobserved effects
αi ∼ (μα,σ

2
α), are mutually independent sequences of heterogeneous independent random variables with

uniformly bounded moments of order 2+δ for some δ > 0, where 1
N ∑N

i=1σ
2
ui→ σ̄2

u and 1
N ∑N

i=1σ
2
εi→ σ̄2

ε as
N →∞.

It seems plausible that the simultaneous presence of FE and a feedback effect as described in
Equations (1) and (2) would emerge frequently. One example of this is the analysis of electoral
outcomes: Much research is concerned with the question of how the regional variation of a factor xit
affects regional electoral outcomes (yit), where the DGP may be subject to both feedback effects and
unobserved heterogeneity. A feedback effect occurs when xit—say, for example, regional unemployment
or demographic composition—depends on past electoral outcomes (yi,t−1) and thus on the existing
political majorities in the time period between t−1 and t. Unobserved heterogeneity may bemanifested
in the form of unobservable time-constant factors, such as cultural or geographical features. In fact,
three of the research papers mentioned in the introduction, in which FE and LDVmodels are estimated
and reference is made to the bracketing property, are directly concerned with the analysis of electoral
outcomes: Marsh (2023) analyzes the effects of traumatic events such as arson, mass shootings or
natural disasters on voter turnout, Keele et al. (2021) analyze the impact of voting restrictions on
voter registration, and Tomberg et al. (2021) analyze the impact of the presence of refugees on election
outcomes.

If FE and a feedback effect are simultaneously present, the estimate of τ from fitting either an FE
model (

...y it = τ ...x it+errorwith ...⋅ indicatingwithin-transformation of the respective variable, for example,...y it = yit − 1
T ∑T

t=1 yit) or a LDV model (yit = intercept+ωyi,t−1 + τxit + error) will be biased. As derived
for our setup in Section A.2 of the Supplementary Material, these biases (denoted by BFE

τ and BLDV
τ ) are

analytically tractable and can be simplified as summarized in the following.

Proposition 1. Under Assumptions 1 and 2, as N →∞, we have

BFE
τ = −ρ1+ρτT

σ̄2
ε

σ̄2
u+ρ2σ̄2

ε
+O( 1

T
), (3)

and

BLDV
τ = δXδYσ

2
α(τ 2σ̄2

u+ σ̄2
ε)

(σ̄2
u+δ2Xσ2

α)(ρ2σ̄2
u+ σ̄2

ε)+ σ̄2
uσ

2
α

1+τρ
1−τρ(δY +τδX)2 , (4)

where O(⋅) denotes the order of magnitude.7

Proof . See Sections A.2.3 and A.2.4 in the Supplementary Material. ◻

Let us take the approximation in Equation (3) at face value. For the bracketing property to hold in
this case, it is necessary that sign(BFE

τ ) ≠ sign(BLDV
τ ), that is, the signs of BFE

τ and BLDV
τ must always be in

opposite directions for all combinations of different values for ρ,τ,σ̄2
ε,σ̄

2
u,σα,δX , and δY in the DGP. Yet,

it is clearly visible that the sign of BFE
τ depends on the sign of ρ, while the sign of BLDV

τ depends on the
sign of δX ×δY . Thus, as illustrated in Table 1, the bracketing property only holds if ρ and δX ×δY have
the same signs. As discussed in Section 7, whether this is the case is likely to be difficult to determine in
most practical applications.

If the signs are the opposite, then the bracketing property does not hold, that is, both the FE and the
LDV estimates of τ lie above or below the true value of τ . This means that the bracketing property fails
given a DGP in which y and x are positively selected on the FE αi while the feedback effect is negative,
that is, the treatment is negatively selected on past realizations of the outcome.Moreover, the bracketing

7Therefore, O(1/T) stands for a vanishing quantity as T increases, and the approximation using just the leading term
increases in precision as T increases.
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Table 1. Illustration of the conditions under which

the bracketing property holds, that is, sign(BFE
τ ) ≠

sign(BLDV
τ ).

ρ δX ×δY sign(BFEτ ) ≠ sign(B
LDV
τ )

+ + Yes

− − Yes

− + No

+ − No

property fails given a DGP in which y is positively selected on the FE, while x is negatively selected on
the FE and the feedback effect is positive.

The following section confirms the predictions of Table 1 using Monte Carlo simulations.

4. Simulation Evidence

To illustrate these theoretical results, we conduct a Monte Carlo simulation that demonstrates the
performance of the FE and LDV estimators given a DGP containing FE as well as feedback effects.
As a comparison, we also investigate the performance of an OLS estimator (yit = intercept+τxit +error)
as well as an FE-LDV estimator that includes both FE and an LDV (ÿit = ωÿi,t−1+τ ẍit + error)8, which
is known to suffer from Nickell bias.

As a starting point, we parameterize the DGP described by Equations (1) and (2) as follows: The FE
αi is generated as a random variable drawn from a normal distribution with mean = 0 and standard
deviation = 1 [N(0,1)] once for each individual and remains constant over time.Then, ε, the error term
affecting y, and u, the error term affecting x, are both i.i.d. and drawn from a N(0,1) distribution. The
starting values for the dynamic process are i.i.d. draws from a N(0,1) distribution. Following Chudik
and Pesaran (2019), we discard the first 50 simulated periods to avoid an influence of the starting values
on the simulation results, such that y0i may be seen as being drawn from the stationary distribution.

Our parameterization of the DGP is intentionally very simplified to make the simulation results as
comprehensible as possible. Therefore, the simulation results can only be interpreted in terms of the
presence and direction of the bias. The reader should not over-interpret the magnitude of the bias in
the simulated estimators, as the magnitude depends strongly on the underlying parameterization, for
which there is an infinite number of different possible combinations.

4.1. Evidence for Bracketing
To illustrate the bracketing relationship, we simulate scenarios in which either the assumptions under-
lying the LDVmodel or those underlying the FEmodel are fulfilled, with the results of these simulations
being reported in Tables 2 and 3. Scenarios A to D in Table 2 are based on DGPs that contain a feedback
effect of lagged outcomes yi,t−1 on contemporaneous xit , but there are no FE. In this case, the LDV and
OLS estimators are unbiased, as they only require contemporaneous exogeneity of x, which holds here.
In contrast, the estimate of the FE model is biased owing to the violation of strict exogeneity due to
the feedback effect. The estimate of the FE-LDVmodel is also biased due to two channels: the standard
Nickell bias of order 1/T that applies to the estimator of the autoregressive (AR) coefficient, and, as
we show below, a secondary Nickell bias of order 1/T2 that applies to the coefficients of the remaining
explanatory variables.

8As with the FE estimator, ⋅̈ symbolizes a within-transformation here; unlike the FE estimator, the mean values required for
the transformation are formed here starting from period t=2 instead of t=1, since in common empirical applications there is
no observation for the LDV in the first period.
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Table 2. Monte Carlo simulation results if the LDVmodel is correct, that is, ρ ≠ 0 and there are no fixed effects: δX = 0 = δY .

Data generating process Estimates of τ

Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

A 1.00 0.00 0.50 0.00 1.00 0.89 1.00 0.94 Yes

B 1.00 0.00 −0.50 0.00 1.00 1.03 1.00 0.99 Yes

C −1.00 0.00 0.50 0.00 −1.00 −1.03 −1.00 −0.99 Yes

D −1.00 0.00 −0.50 0.00 −1.00 −0.89 −1.00 −0.95 Yes

Note: Results based onMonte Carlo Simulationswith 500 repetitions, 300 individuals and 6 timeperiods. The data generating process is defined
by Equations (1) and (2). The variablesαi,εit,uit and yi1 are all i.i.d. draws fromanormal distributionwithmean = 0 and standarddeviation = 1.
To mitigate the potential influence of the starting value yi1 on the simulation results, we simulate 50 additional time periods and discard the
first simulated 50 periods prior to estimating τ .

Table 3. Monte Carlo simulation results if the fixed effects model is correct, that is, δX ≠ 0 ≠ δY and there is no feedback
effect: ρ = 0.

Data generating process Estimates of τ

Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

E 1.00 0.50 0.00 0.50 1.20 1.00 1.14 0.98 Yes

F 1.00 −0.50 0.00 0.50 0.80 1.00 0.80 0.98 Yes

G −1.00 0.50 0.00 0.50 −0.80 −1.00 −0.80 −0.98 Yes

H −1.00 −0.50 0.00 0.50 −1.20 −1.00 −1.14 −0.98 Yes

Note: See notes to Table 2.

Table 4. Illustration of the direction of biases that lead to the bracketing

property as described by Angrist and Pischke (2009).

LDVmodel FE model Estimatedmodel Bias if τ > 0

Correct Incorrect FE model +

Incorrect Correct LDVmodel −

Next, the data underlying Scenarios E to H is generated by a DGP that includes an FE that
simultaneously influences y and x. As expected, the OLS estimator is biased in all cases, as ignoring
FE leads to omitted variable bias (Table 3). The LDV model suffers from the same bias. Conversely, the
FE model eliminates this bias and yields correct estimates of the treatment effect. The FE-LDV model
again suffers from Nickell bias.

To exemplify the validity of the bracketing relationship, we employ the definition given by Angrist
and Pischke (2009, 246) and focus on the results of Scenario B presented in Table 2 and the results on
Scenario F reported in Table 3. According to Angrist and Pischke (2009), for positive treatment effects,
τ > 0, the bracketing property reads as follows: If the LDV-model “is correct, but you mistakenly use
FE, estimates of a positive treatment effect will tend to be too big. On the other hand, if [the fixed
effects model] is correct and you mistakenly estimate an equation with lagged outcomes, [...] estimates
of a positive treatment effect will tend to be too small.” This definition is summarized in the following
Table 4.

Given the treatment effect estimate τ̂LDV = 0.80 resulting frommistakenly estimating an LDVmodel
while the FE model is correct (Scenario F in Table 3), and the alternative estimate τ̂FE = 1.03 resulting
from mistakenly estimating an FE model while the LDV model is correct (Scenario B in Table 2), the
bracketing property holds, as claimed by Angrist and Pischke (2009):

τ̂LDV = 0.80 < τ = 1 < τ̂FE = 1.03.
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Table 5. Illustration of how the bracketing property manifests itself in our simulation results.

Scenario (parameters) Lower bound τ Upper bound Scenario (parameters)

τ > 0 ∶ A (ρ > 0,δX = 0) τ̂FE = 0.89 τ = 1 τ̂LDV = 1.14 E (ρ = 0,δX > 0)

F (ρ = 0,δX < 0) τ̂LDV = 0.80 τ = 1 τ̂FE = 1.03 B (ρ < 0,δX = 0)

τ < 0 ∶ C (ρ > 0,δX = 0) τ̂FE = -1.03 τ = −1 τ̂LDV = −0.80 G (ρ = 0,δX > 0)

H (ρ = 0,δX < 0) τ̂LDV = -1.14 τ = −1 τ̂FE = −0.89 D (ρ < 0,δX = 0)

Table 6. Monte Carlo simulation results when there is a feedback effect of yi,t−1 on xit and a fixed effect simultaneously
influences yit and xit .

Data generating process Estimates of τ

Scenario τ δX ρ δY OLS FE LDV FE-LDV Bracketing

A 1.00 0.50 0.50 0.50 1.19 0.89 1.09 0.95 Yes

B 1.00 −0.50 0.50 0.50 0.87 0.89 0.80 0.95 No

C 1.00 0.50 −0.50 0.50 1.05 1.03 1.18 0.99 No

D 1.00 −0.50 −0.50 0.50 0.87 1.03 0.80 0.99 Yes

E −1.00 0.50 0.50 0.50 −0.87 −1.03 −0.80 −0.99 Yes

F −1.00 −0.50 0.50 0.50 −1.05 −1.03 −1.17 −0.99 No

G −1.00 0.50 −0.50 0.50 −0.87 −0.89 −0.80 −0.94 No

H −1.00 −0.50 −0.50 0.50 −1.19 −0.89 −1.09 −0.95 Yes

Note: See notes to Table 2.

We focused in this exemplary illustration of the bracketing property on scenarios in which the feed-
back effect is negative (Scenario B) or treatment is negatively selected on the FE (Scenario F), because
Angrist and Pischke (2009) use an example in which the treatment is a government-sponsored training
program that targets individuals with poor labor market outcomes in the past. If contemporaneous
labor market outcomes are the outcome variable of interest, such a selection process is represented by a
negative feedback effect (ρ< 0, Scenario B) or a negative selection of treatment on unobservable “ability”
(δX < 0, Scenario F), which may subsume factors such as intelligence that are largely constant across
reasonable observation windows.

A more general definition of the bracketing property is provided in Guryan (2001, p. 55), who
explicitly specifies how the bracketing property depends on the signs of ρ and δX : “if treatment
is positively (negatively) selected on lagged outcomes, [that is, if ρ > 0 (ρ < 0),] the difference in-
differences [or the FE] estimator produces negatively (positively) biased estimates of the treatment
effect.” Moreover, “if treatment is positively (negatively) selected on fixed characteristics, [that is, if
δX > 0 (δX < 0),] the estimator that controls for lagged outcomes produces positively (negatively) biased
estimates of the treatment effect.”

Based on this summary in Guryan (2001), the bracketing property is entirely confirmed by our
simulation results, as presented in the following Table 5.

4.2. Evidence against Bracketing if the FE-LDV Model Holds True
Having established that our DGP is in line with the bracketing property of LDV and FE models,
we now allow for both an FE that influences y and x and a feedback of lagged outcomes yi,t−1 on
contemporaneous xit . As predicted by the analytical results in Section 3, the figures in Table 6 illustrate
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that all estimates are biased and that the bracketing property no longer holds generally, although in
Scenarios A, D, E, and H, the true effect lies within the FE and the LDV estimates.

However, in Scenarios B, C, F, and G, the true effect is not bracketed by the estimates of the FE and
the LDVmodels, as these estimates are both either above or below the true value of τ . When examining
the parameters entered into the DGP for these models, it becomes apparent that these are precisely the
situations for which we predict the bracketing property not to hold based on the analytical expressions
of the biases (see Table 1).

5. Deriving a Lower Bound from the FE-LDV Model

Our results so far show that the bracketing property afforded by the FE and the LDV models does not
generally hold in the presence of unobserved heterogeneity and feedback effects. Hence, when there is
a concern that the DGP is characterized by both these features simultaneously, relying on bracketing
to identify the upper and lower bounds of the estimated treatment effect is ill-advised. Nevertheless,
the results from the simulations suggest that it is at least possible to identify a lower bound estimate:
Regardless of the DGP, the FE-LDVmodel always yields an estimate that is in absolute terms lower than
the true coefficient, thus providing a lower bound of the true causal effect of x on y.

To confirm this pattern, we explored several DGPs with different parametrizations and found no
instances in which the FE-LDV estimate is either larger than the true causal effect in absolute terms or in
which it has a different sign than the true causal effect.These robustness tests are documented in Section
B.1 of the Supplementary Material and include variations in the intensity of the feedback effects (Table
A3 in the Supplementary Material), the introduction of a dependence between the magnitude of the FE
(αi) and the feedback effect (Table A4 in the SupplementaryMaterial), and variations in the noise levels,
that is, the standard deviations of εit,αt,uit (Table A5 in the SupplementaryMaterial). Apart fromnoting
that none of these changes to the DGP alter the key findings from our main simulation specification,
the potential to draw generalizable conclusions from our robustness tests is limited, as the behavior of
the estimates is highly dependent on the particular parametrization. Nonetheless, in the cases where a
direct comparison is possible, the response of our simulation results to changes in DGP proves to be
consistent with the theoretical predictions from Equations (3) and (4) as well as Equation (6) derived
below. For example, stronger feedback effects seem to be associated with a stronger downward bias in
the FE-LDV estimate, but only when sign(τ) = sign(ρ), otherwise it is the other way around (Table A3
in the SupplementaryMaterial), andwe find that a relative increase in the standard deviation of uit tends
to reduce the bias of all estimators (Table A5 in the Supplementary Material).

In the following, we analytically derive the bias of the FE-LDV estimator of τ (denoted by BFE−LDV
T )

for any T. Starting with T = 3, the bias is given by the following expression.9

Proposition 2. Under the Assumptions of Proposition 1 it holds as N →∞ that

BFE−LDV
3 = − 1

4τ σ̄
2
uσ̄

2
ε

σ̄2
u
τ 2σ̄2

u+σ̄
2
ε

1−τ 2ρ2 − 1
4τ

2σ̄4
u
= −τ 1

τ 2
σ̄2
u

σ̄2
ε
( 4
1−τ 2ρ2 −1)+ 4

1−τ 2ρ2

.

Proof . See Section A.2.2 in the Supplementary Material. ◻

This expression highlights that the bias of the FE-LDV estimator is negative for positive τ and
positive for negative τ , respectively. In turn, this hinges on the condition that ∣BFE-LDV

τ ∣ ≤ ∣τ ∣. Should
this not be met, the FE-LDV estimator would provide an estimate of τ that has the wrong sign, which

9Note that T = 3 is the smallest possible number of time periods given our notation. This is because the first period (t = 1)
is the initial period for which we have an observation for y but not for the LDV, and one further needs at least two periods to
apply the within transformation.
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would critically limit the applicability of the FE-LDV estimator to provide a lower bound estimate. The
condition ∣BFE-LDV

τ ∣ ≤ ∣τ ∣ translates into:
τ 2

σ̄2
u

σ̄2
ε
( 4
1−τ 2ρ2 −1)+

4
1−τ 2ρ2 > 1, (5)

which holds true generally, since τ 2 σ̄2
u

σ̄2
ε
> 0 and 4

1−τ 2ρ2 > 4 ∀∣τρ∣ < 1.
While these considerations may be repeated for any T, the corresponding expressions become less

tractable as T increases, and we consider an approximation following the lines of Nickell (1981). The
result takes the following form.

Proposition 3. Under the Assumptions of Proposition 1 it holds as N →∞ that

BFE-LDV
τ = − τ

(T−1)2
σ̄2
ε

τ 2σ̄2
u+ σ̄2

ε

1+τρ
1−τρ +O(

1
T2 ) . (6)

Proof . See Section A.2.2 in the Supplementary Material. ◻

Interestingly, this bias in the estimator of the effect τ vanishes at rate 1/(T −1)2, which is an order
of magnitude faster than the Nickell bias in the FE-LDV estimator of the AR coefficient, which is itself
inversely proportional to T.This somewhat surprising finding is, to the best of our knowledge, new, and
it is of immediate relevance to practitioners interested in identifying the causal effect of a treatment.
The standard expression for Nickell bias, which is of order 1/T, applies only to the AR coefficient, and
does not in general carry over to other explanatory variables, a point often neglected in the applied
literature.10 Equation (6) provides an approximate expression for a secondary Nickell bias that applies
to the remaining explanatory variables.We provide a discussion of its relation to Nickell’s original result
in Section A.2.2 of the Supplementary Material.

Notwithstanding its speed of convergence, the bias of the FE-LDV estimator is negative for positive
τ and positive for negative τ , respectively, and thus suggests that the FE-LDV estimator may indeed
provide a lower bound estimate for T > 3 as well. The condition ∣BFE-LDV

τ ∣ ≤ ∣τ ∣ simplifies to:

τρ ≤ 1− 2
1+(T−1)2 τ 2σ̄2

u+σ̄
2
ε

σ̄2
ε

, (7)

which almost certainly holds as long asT is large and the time series of y is stationary, that is,−1< τρ< 1.
What about if T is small? We have seen that the condition ∣BFE-LDV

τ ∣ ≤ ∣τ ∣ holds for T = 3 irrespective
of the actual persistence. Moreover, we simulate scenarios with low T and τρ close to unity in Table A1
in the Supplementary Material. In these simulations the bias of the FE-LDV model does not even get
close to the size of τ , supporting the analytical results.

To illustrate the behavior of the estimators at different T and in the presence of FE and feedback
effects, we present our simulation results using the parametrization from Table 6 over different values
of T in Section B.5 of the Supplementary Material (Figure A2). It can be seen that the biases of the
OLS and LDV models are not affected by increasing T, so these estimators do not approach the true
effect as T increases. In contrast, both the FE and FE-LDV estimators converge toward the true effect.
While they are approximately equidistant from the true value of τ at T = 3, the bias of the FE-LDV
estimator vanishes quickly and is relatively close to the true effect from T = 20 in our simulated case,
while this convergence takes longer for the FE model. In line with our theoretical results, the FE-LDV
model converges to the correct value from below in all simulated cases, while the FE model sometimes
converges from below (Scenarios A and B) and sometimes from above (Scenarios C and D).

10For example, Acemoglu et al. (2019) (p. 59) conclude that the bias emerging from an FE-LDV model of the effect of
democratization on GDP growth is 1/T.
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Concluding, when suspecting the simultaneous presence of FE and a violation of strict exogeneity
due to a feedback effect, referencing the FE-LDV model avails the practitioner with a conservative
estimate of the treatment effect, including when T is small—although in this case a substantial
underestimation of the treatment effect is to be expected. Indeed, we would caution against trying
to discern an upper bound, even in cases where one seems apparent. In Scenario A from Table 6,
for example, where the FE-LDV estimate is above the FE and below the LDV estimates, the LDV
model cannot be interpreted unambiguously as an upper bound. This is because all estimates could
be downward biased while the FE-LDV estimate lies coincidentally between the FE and LDV estimates,
a particular case that is presented in Scenario A in Table A2 of the Supplementary Material. Similarly,
if the FE-LDV estimate is below both the FE and the LDV estimate, as in Scenario C from Table 6,
it again cannot be guaranteed that the LDV estimate is an upper bound estimate, as all estimates
may be downward biased, a case presented in Scenario B from Table A2 in the Supplementary
Material.

6. The Implications of State Dependence and Nonstationarity

One natural extension of our DGP is to include state dependence in yit , that is, to allow yit to be directly
influenced by yi,t−1. This changes Equation (1) to:

yit = δYαi+πyi,t−1+τxit +εit. (8)

This DGP requires the stationarity condition ∣π+τρ∣ < 1, reflecting that yit now depends on yi,t−1 both
directly (via πyi,t−1 in Equation (8)) and indirectly (via the feedback to τxit).

The simulations based on this DGP (setting π to 0.2), are presented in Tables A3, A4, and A5 in the
Supplementary Material. Note that the OLS and FE models are still estimated as static models, that is,
not including yi,t−1 among the regressors.There are several important takeaways from this extension of
the DGP: First, in the case where there are no FE but a feedback effect of yi,t−1 on xit , the inclusion of a
direct effect of yi,t−1 on yit in the DGP leads to bias in the OLS estimates (Table A3 in the Supplementary
Material), which were unbiased before (Table 2).This is intuitive, as the omission of yi,t−1, which is now
correlated with yit as well as xit , leads to omitted variable bias due to the correlation between the error
term and xit .

Second, somewhat surprisingly, given state dependence, the static FE estimator is also biased if there
are FE but no feedback effect of yi,t−1 on xit (compare Table A4 in the Supplementary Material with
Table 3). The intuition for this bias was recently laid out by Klosin (2024): Omitting the LDV in the
estimating equation leads to εi,t+1 being a function of yit and thus of xit . This violates the assumption of
strict exogeneity required by the FEmodel.The upshot, demonstrated in Scenarios F and G in Table A4
in the Supplementary Material, shows that it is not even necessary for both FE and a feedback effect to
be present for the bracketing property to be violated. Even with a completely random xit , the bracketing
property of FE and LDV can fail if the DGP contains state dependence.

A further result that calls for caution, especially when interpreting the FE model, can be found
in Figure A3. There we show the behavior of the different estimators in the face of feedback effects,
FE, and state dependence over different observation periods T. Scenarios A - in which FE and LDV
would actually bracket the true effect in the absence of state dependence - and B show that the FE
estimator changes its sign with increasing T. This means that while the FE and LDV models bracket
the true effect in Scenario A at low T, they fail to do so at higher T. Analogously, in Scenario
B the two estimators do not bracket the true effect at low T, while they do so at higher T. This
supports our conclusion that the presence of state dependencemakes a bracketing approach profoundly
unreliable.

As in the case without state dependence, the estimates of the FE-LDV model are consistently below
the true effect in absolute values. We corroborate these with theoretical results established in the
Technical Appendix of the Supplementary Material and summarized below.
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Proposition 4. Let yit be generated as in (8) with xit given by (2), where

yi0 = (δY +τδX)αi

1−(π+τρ) +
τui0+εi0√
1−(π+τρ)2

s.t. ∣π+τρ∣ < 1 and uit,εit and αi obey Assumption 2. Then, it holds as N →∞ that

BFE
T = ρ σ̄2

ε (− 1
T

1
1−(π+τρ))

(ρ2 τ 2σ̄2
u+σ̄

2
ε

1−(π+τρ)2 + σ̄2
u) +π

⎛⎜⎝ρ
τ 2σ̄2

u+σ̄
2
ε

1−(π+τρ)2 (1− 1
T

1+(π+τρ)
1−(π+τρ))

(ρ2 τ 2σ̄2
u+σ̄

2
ε

1−(π+τρ)2 + σ̄2
u) +τ σ̄2

u(− 1
T

1
1−(π+τρ))

(ρ2 τ 2σ̄2
u+σ̄

2
ε

1−(π+τρ)2 + σ̄2
u)
⎞⎟⎠+O(

1
T
),

BLDV
T = δXδYσ

2
α (τ 2σ̄2

u+ σ̄2
ε)

(σ̄2
u+δ2Xσ2

α)(τ 2σ̄2
u+ σ̄2

ε)+ σ̄2
uσ

2
α

1+(π+τρ)
1−(π+τρ) (δY +τδX)2

,

and

BFE−LDV
T = − τ

(T−1)2
σ̄2
ε(τ 2σ̄2

u+ σ̄2
ε)

1+(π+τρ)
1−(π+τρ) +O(

1
T2 ) .

Proof . See Section A.3 in the Supplementary Material. ◻

Compared to the baseline case without explicit state dependence, the expressions for BLDV
T and

BFE−LDV
T do not change significantly, in fact the only difference is that now π + τρ is the relevant

persistence parameter. Only the expression of BFE
T changes compared to Proposition 1, given that the FE

model is misspecified when there is direct state dependence and the bias now has two sources, namely
the omission of yi,t−1 as well as the lack of strict exogeneity of xit . Notwithstanding this change, the
conclusions about the validity of the bounding behavior do not change.

A further relevant extension consists in relaxing the stationarity assumption. In particular, we
consider nonstationarity in form of a unit root, π+τρ = 1. Detailed derivations pertaining to this case
are provided in the Technical Appendix of the Supplementary Material, and the following proposition
shows that the bias of the FE-LDV estimator behaves qualitatively the same even under nonstationarity.

Proposition 5. Let yit be generated as in (8) with xit given by (2), π + τρ = 1, and uit,εit and αi obey
Assumption 2. Then, it holds as N →∞ that

BFE−LDV
T = −τ σ̄2

ε
1
3 ((δY +τδX)2σ2

α(T−1)T+(τ 2σ̄2
u+ σ̄2

ε)(4T−3))−τ 2σ̄2
u
.

Proof . See Section A.4 of the Supplementary Material. ◻

Like above, the direction of the bias is opposite to that of the effect τ .The exact expression of the bias
does differ from the stationary case. One interesting difference is that the unobserved heterogeneity αi
does play a role in the limit. In fact, the rate at which the bias vanishes as T →∞ depends on whether
unobserved heterogeneity is present in the model. If this is not the case (i.e., δY = 0 and δX = 0), the rate
of convergence is 1/T as opposed to the rate of convergence of 1/T2 that we found for all other settings.
On the other hand, the initial conditions yi0 need not be restricted in any way, as they are eliminated by
the FE transformation. Nevertheless, it is evident that the bias is smaller in magnitude than the effect
for any T ≥ 3 and the overall conclusion does not change.

Section B.3 of the Supplementary Material contains simulation results for the case of a unit root
(ρ = 1, τ = 1, π = 0) and confirms the theoretical results: The FE-LDV model continues to provide an
estimate that is consistently lower in absolute terms than the true effect. In addition, when comparing,
for example, Scenario A in Table A9 in the Supplementary Material to Scenario A in Table A10 in the
SupplementaryMaterial, that is, once without and once with an effect of unobserved heterogeneity onX
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and Y at constant T, the simulation results confirm that the bias of the FE-LDVmodel is actually larger
if there is no effect of unobserved heterogeneity.

7. Practical Implications

Returning to the initial question “so what’s an applied guy to do?” (Angrist and Pischke 2009, 245),
the key implication of our results is that the bracketing property is not a panacea in situations where
empirical researchers are concerned with confounding by unobserved time-constant heterogeneity as
well as violations of the assumption of strict exogeneity, for example because of feedback effects or state
dependence. This is because the bracketing property is only reliable if either strict exogeneity holds
or there is no confounding by unobserved time-constant heterogeneity. Given the likely uncertainty
surrounding this issue, it may be possible to avail diagnostics tests that allow the researcher to rule out
one source of bias or the other. For example, unobserved time-constant heterogeneity can be explored
using tests in the spirit of Hausman’s (1978) specification test (Frondel and Vance 2010), while statistical
tests for the strict exogeneity assumption are proposed by Wooldridge (2010, p. 285). The outcome of
such an exercise may clearly point to the preferability of the FE or LDV model, as would be the case if
either the strict exogeneity assumption is violated or an FE model is required. Bracketing in this case is
unnecessary.

Another case in which there is clarity about the path forward is the two-period setting with a
binary treatment covered by Ding and Li (2019). The authors propose a test in which the cumulative
distribution function (CDF) of the pre-treatment outcome variable for the treatment and the control
group are plotted against each other (see Keele et al. (2021) for an application). If one CDF is
monotonically above/below the other (stochastic monotonicity), Ding and Li’s (2019) results imply that
the bracketing property is likely to hold.

However, if one moves away from the two-period difference-in-differences setting with binary
treatment, this approach reaches its limits. As our analysis has shown, with multiple periods, bracketing
only works if the selection of the independent variable of interest x depends in the same direction,
that is, positively or negatively, on lagged outcomes and the relevant omitted time constant variables
(sign(ρ) = sign(δX ×δY), see Table 1), and if there is no state dependence. One example in which these
conditions might be met is the study of Beckmann and Kräkel (2022), who, among other identification
strategies, estimate FE andLDVmodels to bracket the effects ofwork autonomy (x) onwork engagement
(y). In this case, we might tell a story about an unobservable fixed factor such as ability that makes the
sign of δX × δY positive, coupled with the expectation that past engagement positively affects today’s
autonomy, making ρ positive as well. Under this circumstance, the potential selection of x on FE should
go in the same direction as the potential selection of x on past outcomes, supporting bracketing.

Whether such a story is convincing is, of course, open to interpretation. In our view, an analyst
will typically be hard-pressed to make an airtight case for bracketing.11 We therefore recommend that
authors transparently discuss their theoretical considerations on the possible selection process, taking
into account our insights from Section 3, and indicate in which of the cases listed in Table 1 they see
their setting. If these theoretical considerations lead to an ambiguous result, as we believe will often
be the case, authors should not rely on the validity of a bracketing approach. Instead, authors should
pay particular attention to the FE-LDV model, which provides a conservative reference point, yielding
a lower bound of the true effect, even if the nature of the selection process is unclear. Moreover, we
show that the bias of the FE-LDV estimator of the explanatory variables decreases at rate 1/T2 (see
Proposition 3), so that the results of the FE-LDV model converge relatively fast toward the true effect
as T increases.

11The relationship between traumatic events and voter turnout analyzed by Marsh (2023), or the effect of biodiversity on
productivity analyzed by Dee et al. (2023), are examples in which various confounders can influence the selection mechanism
in very complex ways.
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An empirical example in which the presence of FE, state dependence, and feedback effects would
hypothetically render the result of a bracketing approach misleading can be found in Acemoglu et al.
(2019). The authors estimate the effect of democratization on economic growth using a panel of 175
countries from 1960 to 2010. The authors implement several specifications but do not reference brack-
eting. A key observation, demonstrated descriptively in their Figure 1, is that democratization is often
preceded by a decline in GDP, which suggests the presence of a feedback effect with ρ < 0. Moreover,
they argue persuasively that “democracies differ from nondemocracies in unobserved characteristics,
such as institutional, historical, and cultural aspects” (p. 49). Together, these considerations lead the
authors to estimate dynamic panel data models, including an FE-LDV model, throughout the paper.
Using the replication files of Acemoglu et al. (2019), we estimate the results if the authors had tried to
bracket the true effect with FE and LDV models, focusing on the simplest specification in column 1
of their Table 2. The estimate of the effect of democratization on log GDP per capita would be 0.457
(0.296) in the LDV model and −10.112 (4.316) in the FE model (standard errors in parentheses).12 In
contrast, their reported and replicable result of the FE-LDV model is 0.973 (0.294), while the result of
their preferred specification in column 3, which includes four lags of the dependent variable, is 0.787
(0.226), both falling outside the range of the bracket.

Throughout most of this article, we have assumed contemporaneous exogeneity, that is, zero
correlation between xit and εit for all t and conditional on accounting for FE. If this condition is notmet,
conventional approaches to causal inference (e.g., instrumental variables), possibly also in combination
with a bracketing approach, should be considered. Furthermore, the dynamic structure that we have
adopted in our DGPs is relatively simple, but should cover a wide range of applications. Nevertheless,
there may be cases in which deeper lags of the dependent or explanatory variables may be part of the
DGP (e.g., Acemoglu et al. 2019). A generalization of our results to these cases and a discussion of the
implications for the interpretability of the estimated coefficients, for example, with respect to short-run
and long-run effects (Beck and Katz 2011; Keele and Kelly 2006), is beyond the scope of this article.

8. Conclusion

This article has explored the conditions under which an FE-LDVmodel can be used to bracket a causal
effect of interest. We draw two conclusions. First, bracketing works in the presence of either unobserved
heterogeneity or violations of strict exogeneity, but not both simultaneously. Second, even when it is
unclear whether the data generation process is determined by FE and/or an LDV, our results indicate
that the analyst can at least identify a conservative lower bound estimate of the treatment effect with
a model that includes both features. Of particular relevance to the case of short panels, we provide
an approximate expression for a secondary Nickell bias of this treatment effect and the remaining
explanatory variables, which is of order 1/T2.

We recommend that before employing a bracketing approach, practitioners should first use diagnos-
tic tests to investigate whether selection based on time-constant unobservable variables and violations
of strict exogeneity are present simultaneously. If only one or the other is present, a researcher should
be able to obtain an unbiased estimate from either an FE or LDV model. If there is reason to
expect simultaneous selection based on time-constant unobservable variables and violations of strict
exogeneity, for example, due to a feedback effect, researchers should form a theoretical expectation
about the direction of these two selection effects. If they are in the same direction, for example,
positive selection based on a time-constant confounder and positive selection based on past outcomes,
a bracketing approach may be valid. However, as there exists no test for this, such a consideration is
always associated with uncertainty, and sometimes the conceivable selection effects can be so complex
that no meaningful theoretical expectation is possible. Furthermore, the presence of state dependence,
that is, a direct effect of past outcomes on current outcomes, can jeopardize the validity of a bracketing
approach by introducing an additional source of bias in the FE model.

12See Table A11 in the Supplementary Material for details.
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These considerations lead us to regard the bracketing approach with FE and LDV models to be a
risky strategy inmost cases.When used, we recommend complementing the approach with an FE-LDV
model. This model provides an estimate that converges reliably from below (i.e., from 0) to the true
effect in the scenarios considered at a rate of 1/T2. One exception is the case in which there is no
selection on time-constant unobservables and at the same time there is a unit root. In this case, the
estimator continues to converge from below toward the true value, but with the convergence rate 1/T.
Furthermore, we recommend that the estimation of an FE-LDV model should completely replace a
bracketing approach when the number of observed periods is sufficiently large. Our simulations show
that the number of periods should be at least 20 for the FE-LDVmodel to provide a good approximation
of the true effect.
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