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Summary. A rigid spherical punch vibrates normally on the surface of a
semi-infinite isotropic elastic half-space. The essential novelty of this problem,
which is treated within the context of classical elasticity, is that of a changing
boundary; the radius of the circle of contact on the free surface varies with
time. The geometrical co-ordinates are modified to yield a boundary value
problem with fixed boundaries. However the governing differential equations
become more complicated. These equations are solved by a perturbation
procedure for the case where the contact radius a(f) is of the form

where a0 is constant and | r\{i)\4>\. Finally the normal stress and the total
load under the punch are evaluated in the form of series which are valid for
sufficiently slowly varying rj(t).

1. Introduction

There seem to be few examples in the literature of elastodynamic problems
involving mixed boundary conditions where the boundaries themselves are
time dependent. The present paper is concerned with one of the simplest
problems of this type; the problem is that of a rigid spherical punch oscillating
normally on the surface of an isotropic elastic half-space. Here the contact
radius a(t) divides the surface Z = 0 into two regions in one of which the
normal displacement is specified, while for the second region the normal
component of stress vanishes.

For problems of this type the boundary conditions specify a partial stress
history and a partial displacement history for some regions of the bounding
surface. In the circumstances it is not possible to construct integral transforms
of the boundary conditions so that direct application of the principal tool of
elastodynamics is no longer possible. Similar difficulties occur in quasistatic
viscoelastic problems (e.g., see (1), (2)) and to date there is no systematic
method of attacking such problems.

The method of solution adopted in the present paper entails changing the
E.M.S.—u
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independent space variables from the axisymmetric coordinates, R and Z, to
co-ordinates

r = R/a(t), z = Z/a(t) (1.1)

so that boundary conditions imposed on Z = 0 (i.e., z = 0) now relate to
fixed regions 0 ^ r ^ 1 and r>\. Thus the boundary conditions are simplified
at the expense of complicating the governing differential equations. In the
present paper, the resulting differential equations are solved by a perturbation
procedure for the problem where a(t) is of the form

a(t)=ao(l+r,(t)) (1.2)

where | r\ \ <g1 and where a0 is a constant.
The derivation of the basic equations and perturbation procedure follow

immediately in §2; the solution of the first order perturbation scheme is
given in § 3.

2. Basic equations
Defining u(R, Z, t) and w(R, Z, t) to be respectively the radial and axial

components of displacement, the axisymmetric equations of elastodynamics
are

d2u 1 du u (1—2v) d2u 1 82w _ 1 d2u , , ..
dR2 Hldli'll2 2 ( 1 - V ) ^ 1 2(1 -v)dR3Z ~ c2 5?

l - 2 v /d2w i_ 8w\ 8hv 1 / d2u i a u \ = H ^ (

2(l-v)\aR2 R8RJ dZ2 2(1 -v)\dRdZ R dZj c2 8t2

where v denotes Poisson's ratio and where c is the dilatational wave velocity

c =

in which expression X and n are the Lame constants and p is the density.
For the problem of an axisymmetric punch of profile

Z = -f(R) (2.3)

where / i s a specified function, we require the solution of equations (2.1), (2.2)
subject to the conditions

= 0,R<a(t). w = Q(t)-f(R) (2.5)

In writing down (2.4) we assume a smooth punch so that %rz vanishes for all
R on Z = 0. In (2.5) we assume without loss of generality, that/(O) = 0 so
that Q(i) measures directly the penetration of the tip of the punch into the
half space.
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From physical considerations the two functions a(t) and Q(t) are related,
as in the corresponding static problem, by the condition that the normal stress
distribution under the punch involves no physically unacceptable singularities.

Because equations (2.5) and (2.6) refer to a moving boundary R — a(t),
it proves convenient to utilise a new dimensionless radial co-ordinate

r = Rla(t). (2.7)

To preserve homogeneity in the differential equations we make a similar
change of variable for the axial co-ordinate

z = Zja(t) (2.8)

and at the same time replace t by a dimensionless time

T = ctla0. (2.9)

Here a0 is a quantity of dimension length, conveniently chosen to be the
constant length parameter a0 appearing in (1.2).

In terms of the modified independent variables, equations (2.1) and (2.2)
become

N(u, w) = (alao)
2u-2(adlal)Lu +(d/ao)

2L(L+l)u-(adla2,)Lu (2.10)

M(u, w) = (alao)
2w-2(adlal)Lw+(a/ao)

2L(L+l)w-(adla2
o)Lw (2.11)

where N and M are operators associated with the elastostatic problem

,, . . d2u ldu u (l-2v)d2u , 1 d2w
MM, W) = h — H (2.12)

dr2 r dr r2 2(1-v) dz2 2(1 - v) drdz
. , , . l -2v (d2w 18w\ d2w 1 (d2u l d t A , , , . . ,
M(u, w) = —- H H H (2.13)

2(l-v)\dr2 r dr) dz2 2(1 -v)\drdz r dz)K

and where the fluxion dots denote differentiation with respect to T. Finally L
is the operator.

h=r— +z—. (2.14)
dr dz

The corresponding forms of the boundary conditions (2.4), (2.5) and (2.6) are
respectively

z = 0 . ^ + ^ = 0 (2.15)
dz dr

z = 0, r< 1. w = «(T)-/(ra(t)) (2.16)

(2.17)+ ^ + ( l v )
\dr r) dz

where
«tt = 6(0-

So far, in the context of the theory of linear elasticity, no approximations
have been introduced. However, the basic equations (2.10) and (2.11) are
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too complicated to solve in the absence of simplifying approximations. Various
approximations are suggested by the forms of (2.10) and (2.11). For example,
for sufficiently slow and slowly accelerated motion we could assume equations
(2.10) and (2.11) to be dominated by the left sides, treating the right sides in
a perturbation approximation. The problem considered here is slightly different
and is defined by

a to = flo(l + ij(T)) (2-18)
where |>;|-^1 and a0 is a fixed constant; thus we employ an amplitude
perturbation scheme rather than one based on a low frequency approximation.

To derive the perturbation scheme we write

a = ao[l+afa)] (2.19)

<?(*) = <7o[l+^ito + e202(*)+-] (2.20)

u = uo + sul + e2u2 + ... (2.21)

w = WO + EW1+E2W2+.... (2.22)

In these expansions £ is an ordering parameter, introduced to identify terms
of the same order, and subsequently equated to unity. The leading terms u0,
w0 in (2.21) and (2.22) are taken to be the (known) elastostatic solutions for
contact radius a0 and penetration depth q0; in this static solution a0 and q0

are related in a known fashion

q0 = y(a0). (2.23)

For example, for the case of a spherical (or more precisely " parabolic ")
punch of radius B for which

f(R) = -R2I2B (2.24)
we have [e.g. see (3) or (4)]

y(fl0) = al/B. (2.25)

Substituting from (2.19), (2.21) and (2.22) into (2.10) and (2.11) and picking
•out the coefficients of £°, e1, e2 etc., leads to the perturbation scheme

N(u0, w0) = 0, M(ii0, Wo) = 0 (2.26)

N(uu wj-iii = -fjLu0, M(uu wt)-w^ = -fjLw0 (2.27)

N(u2, w2)-u2 = 2r]ul-2fiLu1-ijLul + ri2L(L+l)u0-rj)iLu0 (2.28a)

M(u2, w2) — w2 — 2t]\v2 — 2fiLv;1-r\Lwl+r]2L{L-1r\)w(i — r\f\Lw0 (2.28b)

etc.

Thus, as hypothesized, u0, w0 are solutions of the elastostatic equations and,
according to the first terms in (2.19) and (2.20), solve the static problem for
contact radius a0 and penetration depth q0. The first and second perturbation
equations are respectively (2.27) and (2.28). Clearly these equations, and
those of higher order, are inhomogeneous wave equations in which the in-
homogeneous terms on the right-hand sides are of lower order than the terms
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on the left-hand sides. Thus in principle the perturbation equations may be
solved successively. In practise only the first order equations (2.27) are readily
solvable and in the present paper we confine discussion to these equations.

In any event, it is doubtful whether we would be justified in considering
equations (2.28) as valid second order approximations, since, in deriving these
equations, we have already neglected terms comparable with u2, w2 in imposing
boundary conditions on the unperturbed surface z = 0; it is possible that
terms of comparable magnitude would also arise from a finite elastic calculation.

Equations (2.27) are solved in § 3 below. We note here properties of the
static solution u0, w0 for the case of the spherical punch defined by (2.24).
The properties in question, of importance subsequently, are the values of
a^, x^ and iv0 on the surface z = 0

(2.29)

T<Z°> = 0 ( r> l ) (2.30)

Of these results (2.30) and (2.31) follow directly from the imposed boundary
conditions together with equation (2.25). The remaining result (2.29) is well
known in the Hertz contact theory (e.g. see (4)), although the appearance of
both a and a0 may seem puzzling. Essentially the appearance of both a and a0

in (2.29) is because of the assumption that (u0, w0) provide an appropriate
zeroth order approximation to the displacement field for all values of a.
Formally the zeroth order stress field is linear in a"1 (as indicated by (2.29))
because in computing strains from u0, w0 we make use of equations (1.1);
for example

£(0) _ 5WQ _ 1 dWg

dZ a dz

and similarly for the other strain components.
The choice (M0, VV0) for the zeroth order displacement field is not unique.

Alternative possibilities [e.g. (a/ao)
2(«0, w0)] differ from (u0, w0) by terms of

order rj(u0, w0); of course a different choice for the zeroth order approximations
involves modified perturbation equations. Ultimately the sum of the zeroth
and first order terms of the solution is necessarily independent [to order
t\(ii0, w0)] of the choice of zeroth order approximation. The present choice
for the zeroth order approximation involves a time independent displacement
field and this leads to the simplest first order perturbation scheme, i.e. equations
(2.27).
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3. Solution of the inhomogeneous wave equations (2.27)
Particular integrals of equations (2.27) are very easily found by virtue of

certain properties possessed by the operator L. The properties are that if
u, w are solutions of an elastostatic half-space problem for which xrz vanishes
on z = 0 then the displacement components

ti = Lu, w = Lw

are also solutions of a half-space problem for which xTZ vanishes on z = 0.
These theorems are proved in the Appendix.

In particular
d = Lu0, w - Lw0

satisfy

N(a, vv>) = 0, M(Q, w) = 0

so that immediate particular integrals of equations (2.27) are

" i = I(T:)LU0, M>! = r\(x)Lw0.

It follows that complete solutions of equations (2.27) may be written in the
form

Ul = U+r,(x)Lu0, wt = W+r\(x)Lw0 (3.1)

where (U, W) satisfy the usual homogeneous wave equations of axisymmetric
elastodynamics

N(U, W) = V, M{U, W) = W. (3.2)

To find the boundary conditions satisfied by (U, W) we compare the known
behaviour of (w0, w0) and (Lu0, Lw0) with the imposed conditions (2.15),
(2.16) and (2.17). From (2.15), the known behaviour of x^p (equation (2.30))
and the properties of the solution Lu0, Lw0 discussed above, we have from
rrz = 0 on z = 0

^ + ^ = 0 , z = 0,(allr). (3.3)
oz or

Similarly we derive from the condition that azz vanishes on z = 0, r>\ (i.e.
equation (2.17))

( ^ £ ) ^ 0 . (3.4)

Finally, using (2.19), (2.20) and (2.24) the boundary condition (2.16) for the
normal displacement under the punch becomes for r< 1, z = 0

Now by definition on z = 0, r< 1, w0 = qo~i(aolB)r2 so that wx satisfies

w1=q091-alr]r2IB, 0<r<l , z = 0. (3.5)
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However on z = 0, the displacement component riL(w0) takes the value

= -a2
or,r2IB. (3.6)

Comparing the second of (3.1) with equations (3.5) and (3.6) leads finally to the
boundary condition

W=q0Bi(?), 0 < r < l , z = 0. (3.7)

The problem defined by equations (3.2) and the boundary conditions (3.3),
(3.4) and (3.7) is that of a smooth flat circular punch indenting dynamically
a half-space; the radius of the punch is unity and the penetration history
9o^i(T)- This problem has been considered recently by Robertson (5) whose
results are used in what follows.

So far it has been possible to proceed without specifying either T](T) or
equivalently (^(T). The relation between these quantities is derived from
consideration of the normal stress azz on z = 0. From (2.29) and equation
04.13) of the appendix, the normal stress on z = 0 is given by

(3.8)ff» nL
7t(l — v)Ba

where

is the stress distribution associated with the flat punch problem. Physically
we expect <xzz to be finite over 0 <; r g 1 for a spherical punch and this is only
possible if the singularity of the type (1— r2)"* given explicitly in (3.8) is
cancelled by an identical singularity appearing in Ezz. Such a singularity is
to be anticipated in Ezz, at least in the case of slowly varying 0(T), for then the
flat punch problem is of a quasi-stationary nature; the singularity of the static
flat circular punch problem is precisely of the required type and the choice
of amplitude of 6t required to eradicate the infinite singularities in <7ZZ then
provides the relevant relation between 6 and r\. The argument for the dynamic
case is of a similar nature and is given in the first instance for the particular
case of periodic 01(T)

viz., 0!(T) = 5e-tmt (3.10)

where 8 <̂  1 is a constant amplitude and co the dimensionless circular frequency.
From Robertson's analysis we have for the corresponding Szz

^ e [ ( l r ) M
— v)a

2 * r 2 )V 5 }] . (3.11)
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In this expression -P(co) is the series

n n2) \3% 3n

while a12, a13, a14. and a34 are given by

I2 I

n n 7i

7I3

T r2

Finally the /„ are certain definite integrals which depend solely on Poisson's
ratio; for v = i Robertson finds f

7j = 2-45791, 72 = 2-28989, 73 = 2-26230, 74 = 2-29960.

Comparing (3.8) and (3.11) we see that in order to cancel the relevant singularities
it is necessary to choose r)(r) periodic and of the form

r]{z) = i5P(co)e~i<OT. (3.13)

In deriving (3.13) we have used the result q0 = a\\B given by the static problem.
In general, for non-periodic motion, equations (3.10) and (3.13) provide a
relation connecting the Fourier transforms of r\{%) and #I(T). For sufficiently
slow variation of either r\(x) or 0J(T) the series for P(a>) will be dominated by
the first few terms of (3.12); in this approximation we find

(̂  7T \7C 7t2' \37I 71 7t3/

74 , 7,73 , 272
2 77272 , if

3n n2
 3TI

2 1^2 n^3 „*

when v = £, where now J/(T) and 0J(T) are both real and we have assumed the
validity of differentiating the Fourier integrals.

In the same approximation, and when v = $, the stress distribution under
the punch is given by

[(
nB

-O-OOlO(91(T)+...}+(l-r2)^{OO11201(T) + ...]
t In Robertson's paper the first eight /„ are tabulated for nine values of v.
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and the total load is given by

L = — 2na2azzrdr

B

These formulae are adequate for sufficiently slow variations in O^r). Sufficiently
rapid variations in 0J(T) render the above results invalid; in these circumstances
there is no explicit form for the solution of the dynamic flat punch problem
and the present problem could be solved only by numerical procedures. In
practice the formulae given here are satisfactory for most purposes, even for
example in the extreme case of the generation of high frequency ultrasonic
waves at 100 Kc/s frequency across a contact surface of 1 mm radius.
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Appendix
Properties of the operator

L= r — -t-z —.
dr dz

This Appendix is concerned with the proposition that if u, w are elasto-
static components of an axisymmetric displacement field for which xrz = 0
on z = 0 then the displacement field

U = Lu, vv> = Lw

also satisfies the elastostatic equations and yields xrz = 0 on z = 0.
It is well known that axisymmetric half-space problems in elastostatics

with tr2 = 0 on z = 0 are formally solvable in terms of a single harmonic
function <f> which satisfies Laplace's equation. We adopt the representation
given by Galin (4)

— dz — z — 041)

w = 2(l — v)d> — z— (AT)
dz

where

dr2 r dr dz2
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Straightforward calculations yield

oz J

zr z= -ipzlLJL (AS)
drdz

so that the result (rrz)z _ 0 = 0 is immediately verified. Consider now the
function

\/f = L<f>. (A6)
It is easily shown that if </) is harmonic then \jj is also harmonic, so that the
substitution of \j/ for <j> in equations (,41) and (Al) yields an elastostatic
displacement field for which rrz = 0 on z = 0. We now show further that
the displacement Lu derives from formula 041) in which <j> is replaced by L<p.

Operating on both sides of (Al) with L= r hz— we have
dr dz

where in the last term we have used the result that L commutes with z —.
dz

Consider now

Integrating by parts the last term in the integral on the right of 048) leads to

r
J z

drdz | drl J . dr
so that 048) becomes

s dr Jz $r dr
on assuming that <j> and its derivatives vanish sufficiently rapidly as z->oo.
Comparing (Al), 048) and (A9) now yields the result

Lu = (1-2v) \ — (L4>)dz-z — (L(j>) 0410)
Jz dr dz

which is obtainable by the substitution u->Lu, (p-tLcj) in 041). A similar result
for 042) follows immediately since

Lw = 2(1 -v)L<t>-
\ dzi

z/
dz

so that Lu, Lw form an admissible elastostatic displacement field.
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Given explicit formulae for w0 and a^ on z = 0 the above theorems are
useful for evaluating properties of the solution Lu0, Lw0 on z = 0. For the
spherical punch we have from equations (2.29) and (2.31)

wo = ^ ( l - | r 2 ) , z = 0,
B

The result
n2r2

follows immediately from (̂ 411). To find the surface stress a^ due to the
displacement field Lu0, Lw0 we make use of the fact that the associated potential
function is L4> so that from (A4) at z = 0

2 , (2*
d

( + )
\ dz drdz/z

This result together with (,412) is used to obtain equation (3.8) of the text.
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